

Carnegie Mello	m
×	Background and related works (2)
• Inte	resting experiments with multi-agent simulations CORP (Carley and Lin, 1995)
	 Examined organizational structures and their performance under various test conditions (operating in optimal conditions, operating under internal/external stresses, etc)
• (Construct (Schreiber and Carley, 2004)
	 A validation study on Construct Compared the generated probability interaction matrix to the communication frequency from surveys
	 An empirically validated what-if analysis Did what-if analyses with the cases showing high correlation between the simulation result and the survey result
	 Plot the expected performance changes over time Virtual Design Team (Kunz Lewitt and Jin 1008)
	 Develop computational tools to analyze decision making and communication behavior to support organizational reengineering
	 Output includes the predicted time to complete a project, the total effort to do the project, a measure of process quality, etc.
CASOS	 Reducing time to market -> previously sequential activities
📱 💽 🕹 June	17, 2006 Copyright © 2005 Kathleen Carley 4

🕅 Input da	ata – Nel	twork i	info.	
 Need two datasets network information and 				
isolation scenarios		People / Agents	Knowledge / Resources	Tasks / Events
 Meta-Matrix Knowledge, resource and task 	People / Agents	Social Network	Knowledge Network	Assignment Network
nodes are required for Near- Term analysis.	Knowledge / Resources		Information Network / Substitutes	Needs Network
	Tasks / Events			Precedenc e Ordering

Input da	ata - Isolation strategy (2)
ntelligence re	eport
ncludes the I dentified by N	ists of nodes /arious
neasures.	
Measure	Implication
Measure Cognitive demand	Implication Measures the total amount of effort expended by each agent to do its tasks.
Measure Cognitive demand Total degree centrality	Implication Measures the total amount of effort expended by each agent to do its tasks. The Total Degree Centrality of a node is the normalized sum of its row and column degrees.
Measure Cognitive demand Total degree centrality clique count	Implication Measures the total amount of effort expended by each agent to do its tasks. The Total Degree Centrality of a node is the normalized sum of its row and column degrees. The number of distinct cliques to which each node belongs.
Measure Cognitive demand Total degree centrality clique count eigenvector centrality	Implication Measures the total amount of effort expended by each agent to do its tasks. The Total Degree Centrality of a node is the normalized sum of its row and column degrees. The number of distinct cliques to which each node belongs. Calculates the principal eigenvector of the network. A node is central to the extent that its neighbors are central.
Measure Cognitive demand Total degree centrality clique count eigenvector centrality betweenness centrality	Implication Measures the total amount of effort expended by each agent to do its tasks. The Total Degree Centrality of a node is the normalized sum of its row and colum degrees. The number of distinct cliques to which each node belongs. Calculates the principal eigenvector of the network. A node is central to the exten that its neighbors are central. The Betweenness Centrality of node v in a network is defined as: across all node pairs that have a shortest path containing v, the percentage that pass through v.
Measure Cognitive demand Total degree centrality clique count eigenvector centrality betweenness centrality high betweenness and low degree	Implication Measures the total amount of effort expended by each agent to do its tasks. The Total Degree Centrality of a node is the normalized sum of its row and colum degrees. The number of distinct cliques to which each node belongs. Calculates the principal eigenvector of the network. A node is central to the extent that its neighbors are central. The Betweenness Centrality of node v in a network is defined as: across all node pairs that have a shortest path containing v, the percentage that pass through v. The ratio of betweenness to degree centrality; higher scores mean that a node is potential boundary spanner.

Carneg	ie Mellon	
×	Reference	
•	 Weber, R., Rick, S., Camerer, C. (2004) The Effects of Organizational Structure and Codes on the Performance of Laboratory 'Firms'. Working Paper. Department of Social and Decision Sciences. Carnegie Mellon University. Pittsburgh PA. Jin, V. Y. and Levis, A. H. (1990) Effects of Organizational Structure on Performance: Experimental Result. Research Report. LIDS-P ; 1978. Laboratory for Information and Decision Systems. Massachusetts Institute of Technology. Boston MA. John Graham (2005). Dynamic Network Analysis of the Network-Centric Organization: Toward an Understanding of Cognition & Performance, Doctoral degree dissertation, CASOS lab, Carnegie Mellon University, PA Carley, K. M. and Lin, Z. (1995) Organizational Designs Suited to High Performance Under Stress. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 25, No. 2, 221-230. Kunz, J. C., Levitt, R. E., and Jin, Y. (1998) The Virtual Team Design: A Computational Simulation Model of Project Organizations, Communications of the Association for Computing Machinery, 41(11), pp 84-92 Schreiber, C. and Carley, K. (2004) Going beyond the Data: Empirical Validation Leading to Grounded Theory, Computational and Mathematical Organization Theory, 10, pp 155-164 	
•	Kathleen Carley. (2003). Dynamic Network Analysis. Committee on Human Factors, National Research Council. pp 133-145	
CASU		
	June 17, 2006 Copyright © 2005 Kathleen Carley	18