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Two key problems in the study of longitudinal networks are determining when to chunk con-

tinuous time data into discrete time periods for network analysis and identifying periodicity

in the data. In addition, statistical process control applied to longitudinal social network

measures can be biased by the effects of relational dependence and periodicity in the data.

Thus, the detection of change is often obscured by random noise. Fourier analysis is used to

determine statistically significant periodic frequencies in longitudinal network data. Two

approaches are then offered: using significant periods as a basis to chunk data for longitudi-

nal network analysis or using the significant periods to filter the longitudinal data. E-mail

communication collected at the United States Military Academy is examined.

Keywords: Fourier analysis, longitudinal networks, network dynamics, social network analysis, statistical

process control

1. INTRODUCTION

Longitudinal social networks are an important area of study in social network
analysis. As Wasserman, Scott, and Carrington (2007) described, ‘‘the analysis of
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social networks over time has long been recognized as something of a Holy Grail for
network researchers’’ (p. 6). Doreian and Stokman (1997) described the concept of ‘‘net-
work dynamics’’ as the field of study that assumes an underlying stochastic process that
drives network behavior over time. McCulloh and Carley (2008) extended this concept
to describe four network dynamic behaviors that a network can exhibit over time. First,
a network can remain stable. This means that the underlying relationships among agents
in a network remain the same, even though there may exist some fluctuation in observed
links within the network due to measurement error or weak relationship. It can be ana-
lyzed as a static network (McCulloh, Lospinoso, & Carley, 2007; McCulloh & Carley,
2010; Wasserman & Faust, 1994). Next, a network can evolve. This occurs when rela-
tionships among agents change as a result of agent interaction, exchange of beliefs
and ideas, or as agents gain a greater knowledge of the traits and resources of other
agents in the network. Network evolution has been explored throughmultiagent simula-
tion (Doreian & Stokman, 1997; Banks & Carley, 1996; Sanil, Banks, & Carley, 1995;
Carley, 1996, 1999). Network evolution has also been explored through Markov chains
(Leenders, 1995; Snijders, 1996, 2001, 2007; Snijders & Van Duijn, 1997; Wasserman &
Pattison, 1996). A network can exhibit a shock, which occurs when some exogenous
impact to the network causes relationships to change (McCulloh & Carley, 2008).
Finally, a network can experience a mutation if a shock initiates evolutionary change
(P. Doreian, personal communication, December 2008). Distinguishing between these
four different types of network behavior over time is important for understanding the
social mechanisms that drive over-time behavior in social groups.

Social network change detection (McCulloh & Carley, 2008) applies statistical
process control to graph level measures within a social network to detect statistically
significant changes in a network over time. This has been found to be effective in several
different data sets ranging from terrorist networks (McCulloh, Webb, & Carley, 2007)
to e-mail networks (McCulloh & Carley, 2008; McCulloh, Johnson, Sloan, Graham, &
Carley, 2009; McCulloh, Ring, Frantz, & Carley, 2008). Social network change detec-
tion estimates the mean and variance of a graph level measure within a longitudinal set
of social networks. Sequential observations of the graph level measure are standardized
using the estimated mean and variance and then used to calculate some statistic on the
network. The test statistic is compared to some decision interval. If the statistic exceeds
the decision interval, then the procedure indicates that there may have been a change in
the network. The network analysts can use certain change statistics to estimate the
point in time when the change most likely occurred. This change may have been evol-
utionary in nature or may have been caused by some exogenous source such as a shock.
Identifying that the change occurred and when the change occurred are the first two
steps in understanding the network dynamics affecting empirical data.

One major obstacle to the study of network dynamics is periodicity or
over-time dependence in longitudinal network data. For example, if we define a
social network link as an agent sending an e-mail to another agent, we have a
time-stamped data set. Intuitively, we can imagine that individuals are more likely
to e-mail each other at certain times of the day, days of the week, and so forth. If
the individuals in the network are students, then their e-mail traffic might follow
the school’s academic calendar. Seasonal trends in data are common in a variety
of other applications as well. When these periodic changes occur in the relationships
that define social network links, social network change detection methods are more
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likely to signal a false positive. A false positive occurs when the social network
change detection method indicates that a change in the network may have occurred,
when in fact there has been no change. To illustrate, assume that we are monitoring
the density of the network for change in hourly intervals. The density of the network
measured for the interval between 3 a.m. and 4 a.m. might be significantly less than
the network measured from 3p.m. to 4 p.m. because most of the people in the net-
work are asleep and not communicating between 3 a.m. and 4 a.m. This behavior is
to be expected, however, and is not desirable for the change detection algorithm to
signal a potential change at this point. Rather, it would be ideal to control for this
phenomenon by accounting for the time periodicity in the density measure. Only
then can real change be identified quickly in a background of noise.

Periodicity canoccur inmanykindsof longitudinaldata.Organizationsmayexperi-
enceperiodicity as a result of scheduled events, suchas aweeklymeetingormonthly social
event. Social networks collectedoncollege students are likely tohaveperiodicitydrivenby
both the semester schedule and academic year. Even the weather may introduce period-
icity in social network data, as people are more or less likely to e-mail or interact face-to-
face.At theUnitedStatesMilitaryAcademy, people tend to run outside inwarmweather
in small groups of two or three. During the winter, people go to the gym, where they are
likely to seemanypeople. This causes an increase in face-to-face interaction as people stay
inside. In a similar fashion, during the spring and fall,manypeople participate in interunit
sporting events such as soccer or Frisbee football. This can also affect face-to-face inter-
action and the social network data collected on them.

Spectral analysis provides a framework to understand periodicity. Spectral
analysis is mathematical tool used to analyze functions or signals in the frequency
domain as opposed to the time domain. If we look at some measure of a social group
over time, we are conducting analysis in the time domain. The frequency domain
allows us to investigate how much of the given measure lies within each frequency

Figure 1 Notional measure in time domain.
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band over a range of frequencies. For example, Figure 1 shows a notional measure on
some notional group in the time domain. The measure is larger at points B and D cor-
responding to the middle of the week. The measure is smaller at points A, C, and E.

If the signal in Figure 1 is converted to the frequency domain as shown in
Figure 2, we can see how much of the measure lies within certain frequency bands.
The negative spike in Figure 2 corresponds to 7 days, which is the weekly periodicity
in the notional signal. The actual frequency signal only runs to a value of 8 on the x-
axis in Figure 2. The frequency domain signal after a value of 8 is a mirror image or
harmonic of the actual frequency signal.

Figure 2 Notional measure in frequency domain.

Figure 3 Monthly period.
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The frequency domain representation of a signal also includes the phase shift
that must be applied to a summation of sine functions to reconstruct the original
over-time signal. In other words, we can combine daily, weekly, monthly, semester,
and annual periodicity to recover the expected signal over time due to periodicity.
For example, Figures 3–5 represent monthly, weekly, and subweekly periodicities.
If these signals are added together, meaning that the observed social network exhi-
bits all three of these periodic behaviors, the resulting signal is shown in Figure 6.

Figure 4 Weekly period.

Figure 5 Subweekly period.
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If the periodicity in the signal shown in Figure 6 is not accounted for, it appears
that there may be a change in behavior around time period 20, where the signal is
negatively spiked. In reality, this behavior is caused by periodicity. If we transform
the signal to the frequency domain as shown in Figure 7, we can see the weekly
periodicity at point B and the subweekly periodicity at point A.

We propose that spectral analysis applied to social network measures over time
will identify periodicity in the network. We will transform an over-time network
measure from the time domain to the frequency domain using Fourier analysis.

Figure 7 Transformation of Figure 6 to the frequency domain.

Figure 6 Sum of the signal in Figures 3–5.
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We will then identify significant periodicity in the over-time network and present two
methods for handling the periodicity. This newly proposed method will be demon-
strated on real-world data sets as well as simulated data sets.

Handling periodicity is very important. For social scientists to gain insight into
the evolution of social networks, they must be able to distinguish among shock, evol-
utionary change, and typical periodic behavior. We will present a method for identi-
fying and removing the periodic behavior of a signal so that change detection can be
performed more accurately.

2. BACKGROUND

Networks can be described by a number of different measures. Measures can
be defined for individual nodes or for the network as a whole. We will restrict our
attention to network level measures, but there is no reason that the methodology
presented could not be applied to node level measures as well. Common network
level measures include density, the number of nodes in the network, and the average
path length. In addition, node level measures such as betweenness, closeness, and
eigenvector centrality can be averaged over all nodes in a network to create network
level measures. For more information on social network measures, both graph level
and node level, the reader is referred to Wasserman and Faust (1994).

Measures may fluctuate in a periodic fashion over time. As agents in a network
change their relationships to other agents based on seasonal trends, these fluctua-
tions may be noticed in the network measures of those relationships. For example,
during the workweek, one might expect more e-mail communication within an office
than during the weekend. This could be observed by a greater network density (per-
centage of possible relationships) during the week than during the weekend. The
social network measures therefore provide a measure of the group as a whole.

Spectral analysis can be used to detect periodicity within social network mea-
sures over time. Periodicity in the social network measure provides some insight into
the periodicity of the underlying social organization. Spectral analysis can be used to
either filter out periodicity in overtime measures or provide insight into how data
should be aggregated to best represent a social group.

Spectral analysis is a mathematical process of converting a function or series from
the time domain into the frequency domain. A function or signal can be converted from
the time domain to the frequency domains with a transformation. A common trans-
formation is the Fourier transform, which decomposes a signal into a sum of sine waves
having different phase shifts and amplitudes. The Fourier transform is given by

Xðf Þ ¼
Z1

�1

xðtÞe�izpftdt:

A convenient property of the Fourier transform is that the inverse of the Fourier
transform is also a Fourier transform. This property makes it convenient to convert
back and forth between the time and frequency domains. We will use this property
to convert a signal from the time domain to the frequency domain, identify significant
frequencies, and convert those frequencies back into the time domain to provide an
understanding of the periodicity inherent in longitudinal social network measures.
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3. DATA

The approaches for handling periodicity in network data are demonstrated on
a longitudinal data set of e-mail traffic collected at the United States Military Acad-
emy at West Point, New York. This data set was collected in part to demonstrate
longitudinal network analysis. The participants were 25 undergraduate cadets at
the United States Military Academy serving in military leadership positions in one
of four cadet regiments. All participants volunteered to allow us to monitor the
header information of their e-mail traffic for the Fall 2008 semester. This study
was approved for ethics by the West Point Institutional Review Board. The e-mail
header information was used to create social networks by assigning a directed link
from node i to node j if node i sent node j an e-mail sometime during the designated
time period. This unique data set allowed us to investigate the periodicity of the data
for many hourly networks or a few monthly networks. In addition, we were able to
interview the participants to investigate potential causes of periodicity in the e-mail
communication networks.

While the West Point cadet data are sufficient to demonstrate spectral analysis
of networks, we use a simulated periodic signal to demonstrate the importance of
spectral analysis for change detection. The simulated data consists of a simulated
sine wave representing some measure of interest, where a change in the mean of
the wave is introduced at a known point in time. Random uniform error between
0 and the amplitude of the sine wave is added to the signal. The accuracy of the
CUSUM change point identification against a background of noise is then compared
between whether spectral analysis is applied or not.

4. METHOD

The spectral analysis approach proposed in this article consists of five steps to
determine the significant periodicity and then suggests two methods of handling the
periodicity in the data.1 We list these steps here and demonstrate them on the West
Point Cadet data in the next section.

4.1. Step 1: Plot the Measure of Interest

This first step is to determine network measures of interest. These can be net-
work level measures or node level measures. In this article we have restricted our
attention to network level measures. For the purpose of demonstration, we will
use the average betweenness of nodes in the network as a network level measure.
Another issue in this step is the number and length of time periods. In this example,
we investigate daily networks with the hope of determining weekly or monthly
periodicity. We could measure hourly networks or even networks corresponding
to each second of the day. Intuitively, smaller time periods will result in sparser
networks. Some amount of judgment will be required by the analyst to select an

1These methods have been made available as part of the over-time analysis report in �ORA, http://

www.casos.cs.cmu.edu/projects/ora.
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aggregation level where most of the nodes in the network are connected, but every
node is not necessarily connected to every other node.

4.2. Step 2: Discreet Fourier Transform

The second step is to transformthenetworkmeasureof interest fromthe timedomain
to the frequency domain. Since the network measures correspond to discrete time periods
and the measure is not continuous, the Fourier transformation cannot be applied directly.
A discrete version of the Fourier transform is used. The discrete version is given as

Xðf Þ ¼
XN�1

k¼0

xðkÞe� i2pfk
N

f ¼ 0; 1; . . . ;N � 1:

Henceforth, when describing the Fourier transform, we mean the discreet
version. This operation is standard in many mathematical software packages such
as MATLAB and Mathematica. It is also available in the Organizational Risk
Analyzer (ORA) social network analysis software.

4.3. Step 3: Determine Normal Frequencies

The third step is to determine the normal range of frequencies for the signal. The
Fourier coefficients of the transformation are estimated by the sum of independent
random variables. The mean of the coefficients approaches the normal distribution
as the sampling size (N) tends towards infinity in accordance with the central limit the-
orem. Therefore, we may assume that the frequencies of the transformed signal
approximate a normal distribution. In fitting a normal distribution to the frequencies,
we will be able to determine statistically anomalous or significant frequencies.

4.4. Step 4: Identify Significant Frequencies

This step requires that the analyst determine a confidence level for detecting
periodicity. The 95% confidence level is approximately equal to �2 standard devia-
tions from the mean frequency. Therefore, all frequencies within two standard devia-
tions from the mean are set to equal 0. This creates a new discrete signal in the
frequency domain of only statistically significant signals.

4.5. Step 5: Identify Significant Periods

Recall that the Fourier transform has an inverse given by

XðkÞ ¼
XN�1

k¼0

xðf Þe� i2pfk
N

k ¼ 0; 1; . . . ;N � 1:

Therefore, the Fourier transform is applied to the discrete signal in Step 4 to
determine the significant periodicity.

At this point the analyst has two options for handling the periodicity in the
data. The simplest method is to aggregate over the period. For example, the analyst
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may find weekly periodicity. People may have different email behavior on the week-
end than they do during the weekday. The analyst could then aggregate over the
daily networks to create weekly networks. Then the weekly periodicity would be con-
trolled within each weekly network. If the network becomes too dense by establish-
ing a link between nodes for a single weekly e-mail, the analyst is free to require more
than one e-mail message to define a link.

The analyst can also choose to keep using the daily networks but control for
the periodicity. The discrete signal in Step 5 is really the expected value of the chosen
social network measure from Step 1 for each point in time. The analyst can create a
filtered network measure by taking the difference between the original signal from
Step 1 and the signal from Step 5. This new signal is then a filtered signal that can
improve the performance of social network change detection.

This second approach for handling periodicity is investigated through simula-
tion. A periodic signal is simulated in Mathematica, a mathematical software
environment. The signal is shifted at a particular point in time. Uniform random
noise is added to the signal where the range of error is equal to the amplitude of
the signal. The CUSUM change detection algorithm is applied to the periodic signal
as well as a signal filtered in the manner described above. The change point identi-
fication of the CUSUM applied to each signal is compared.

5. RESULTS

The West Point cadet data average betweenness is displayed in Figure 8 for a
1-month period during the Fall 2008 semester. If an analyst were just looking at this
data, it may appear that the average betweenness is unusually high around Day 15.
There also appears to be moderately high values around Day 8 and Day 22.

The Fourier transform is applied to the average betweenness scores, trans-
forming these values from the time domain to the frequency domain. A plot of

Figure 8 Cadet data average betweenness.
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the transformed values is shown in Figure 9. It appears that there may exist signifi-
cant periodicity in the over-time measure.

A normal distribution is fit to the discrete frequency signal and values within
two standard deviations of the mean are set equal to zero. Figure 10 shows the
significant frequencies.

The significant frequencies are transformed back into the time domain. This is
known as taking an inverse transform of the signal. The resulting plot in the time
domain can be interpreted as the significant periodicity in the measure, since only
the significant frequencies were transformed back into the time domain. The signifi-
cant frequencies are plotted in the frequency domain. The significant periodicity, on
the other hand, is plotted in the time domain. Figure 11 displays a plot of the signifi-
cant periodicity in the average betweenness signal.

Figure 10 Significant frequencies in cadet data.

Figure 9 Fourier transform of average betweenness.
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It can be seen in Figure 11 that there is a spike in significant periodicity corre-
sponding to Days 7, 14, 21, and 28. This is perfect weekly periodicity. An interview
with the regimental commander of the participants in the study revealed that the
participants have a weekly meeting every Sunday. During this meeting, important
information is given to the group regarding events and activities for the week. In
addition, subordinate leaders are required to account for the whereabouts of all of
the cadets within their subordinate units and report the information up the chain
of command. This process of sending information up and down the chain of com-
mand will significantly affect the average betweenness of the network on Sundays.
Failing to account for this behavior may in turn affect an analyst’s ability to detect
real organizational change within this group.

At this point, an analyst can choose to monitor weekly networks, or continue
to monitor daily networks and filter out some of the periodicity. Figure 12 shows a

Figure 11 Significant periodicity in cadet data.

Figure 12 Filtered plot of average betweenness in cadet data.
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filtered signal in the time domain. Taking the original signal found in Figure 8 and
subtracting the periodicity found in Figure 11 for each time period obtained this sig-
nal. In effect, the new figure shown in Figure 12, displays the deviation from what is
expected in the signal due to the time of week.

Figure 13 shows the original and filtered signals together. It can be seen that
the extreme values of average betweenness detected in our first observation of the
network do not appear as extreme in the filtered signal. Therefore, the filtered signal
is less likely to cause a false alarm in change detection.

To further illustrate the importance of accounting for periodicity, we turn our
attention to an extreme case. Figure 14 displays a sine wave, where a change in the
mean of the signal occurs at Time Period 40. In addition to the periodicity, noise is
added to the signal in the form of uniform random error with a range equal to the

Figure 13 Original and filtered plots of average betweenness.

Figure 14 Sine wave with change at Time 40.
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amplitude of the sine wave. A random instance of this signal is displayed in Figure 15.
It can be seen that identifying the change at Time Period 40 may be difficult with the
combination of periodicity and noise.

The CUSUM change detection algorithm is applied to the noisy signal in
Figure 15. Figure 16 shows a plot of the CUSUM statistic. The CUSUM statistic
can be powerful in illuminating subtle change in a background of noise. It also appears
that the algorithm may have signaled false alarms around Time Points 10 and 30. It is
not clear that there is a good solid indication of change until after Time Point 50.

The filtering approach can be extremely useful in improving the performance of
the change detection approach. Figure 17 shows a plot of the CUSUM statistic on the

Figure 15 Sine wave with random error and change at Time 40.

Figure 16 CUSUM statistic applied to noisy sine wave.
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same signal as Figures 15 and 16, where the signal was first filtered for periodicity using
the steps outlined above. It can be seen in Figure 17 that the signal may more accurately
identify the correct change point in the signal and is less prone to false signal.

The simulation was repeated with four different levels of uniform random
noise. The level of random noise was set as a percentage of the amplitude of the sine
wave at 30%, 50%, 67%, and 100%. The change occurred at time 40, and the size of
the change was the amplitude. The average time to detect the change was compared
across the four levels of noise. For each simulation run, the CUSUM was applied to
both the original signal and the filtered signal. A pair-wise t test for the time to detect
change was conducted between the original and filtered signals for 100 independently
seeded instances of the noisy sine wave. The null hypothesis was that there was no
difference between detection performance between the original and filtered signals.
The p values for this null hypothesis are 0.05, 0.04, 0.72, and 0.88, respectively,
for noise levels of 30%, 50%, 67%, and 100% of amplitude. The p values for the error
that was less than or equal to 50% of amplitude are significant, indicating that the
filtering improves the time to detect a change. The p values for the error that was
greater than 50% of the amplitude are not significant, meaning we have no reason
to reject the null hypothesis that filtering does not improve change detection.

This behavior in performance appears reasonable. If the periodicity in the
over-time measure is greater than the level of observation error, then filtering the sig-
nal is likely to improve change detection performance. If, on the other hand, the level
of error in the observed over-time measure is greater than the periodicity, then spikes
in error may appear as a significant frequency, which may adversely bias the change
detection algorithm. It is possible that if the error is much greater than periodicity,
the spectral analysis may even mask true change. Future work should investigate the
impacts of spectral analysis on change detection performance.

Figure 17 CUSUM statistic applied to filtered signal.
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6. CONCLUSION

Periodicity is an important issue in the longitudinal analysis of social networks.
Intuitively, peoples’ observable relationships may change with the time of day, week,
month, year, and so forth. Accurate modeling of social network relations therefore
requires a way to account for and control for this periodicity. This issue is especially
important for any longitudinal analysis.

Fourier analysis can detect periodicity and provide insight to control for its
effect. The success of this approach has been demonstrated on both real-world
and simulated data sets. More research is needed to investigate how observation
error and organizational dynamics might affect the periodicity. It is expected that
if the random error in the signal is much higher than the amplitude, the filtering
techniques proposed here might not be effective. Likewise, if there is very little error,
filtering may be unnecessary. For most longitudinal analysis, however, we propose
that applying the approach laid out in this article may detect significant periodicity
and therefore improve the performance of change detection.

The spectral analysis has only been investigated for filtering and detecting trig-
onometric cycles in an over-time signal. It is conceivable that some forms of period-
icity may not follow a trigonometric cycle. For example, major holidays in the United
States are likely to affect communication patterns between individuals; however, they
do not occur on the calendar with regular trigonometric frequency. In addition,
changes in relations may taper off suddenly as in the case of an organization that
has a prescribed start and stop time to the workday. In this situation, a sine wave
may not appropriately capture the periodic behavior of the group. More research into
wavelets that consider different periodic signals is warranted. While the same general
approach laid out here may apply, the choice of transformation may differ.

The success of spectral analysis will be related to the number of available time per-
iods with network data. This approach requires continuous data withmany time periods.
This type of datamaybe difficult to obtain. In some cases the number of longitudinal net-
works may be already aggregated over some period of time. We recommend that a pro-
spective analyst apply this approach when looking at longitudinal data, but be aware of
the potential problems when investigating fewer than 10 longitudinal networks.

Spectral analysis of longitudinal network measures appears to be a powerful
technique for understanding periodicity in over-time data. While an entire special
issue of a journal could be devoted to this topic, we have shown how it can be effective
on one real-world data set. We have further demonstrated how spectral analysis can
improve the performance of the CUSUM algorithm using a simulated noisy sine
wave. In addition to the change detection performance implications, this approach
also leads to interesting insights into organizational behavior. The spectral analysis
of the West Point cadet data, for example, revealed the organization’s weekly meeting
time. Whether used for change detection or simply organizational insight, spectral
analysis represents a major contribution to the study of longitudinal network data.
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