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ABSTRACT 

A lot of centrality measures have been developed to analyze 
different aspects of importance. Some of the most popular 
centrality measures (e.g. betweenness centrality, closeness 
centrality) are based on the calculation of shortest paths. This 
characteristic limits the applicability of these measures for larger 
networks. In this article we elaborate on the idea of bounded-
distance shortest paths calculations. We claim criteria for k-
centrality measures and we introduce one algorithm for 
calculating both betweenness and closeness based centralities. We 
also present normalizations for these measures. We show that k-
centrality measures are good approximations for the 
corresponding centrality measures by achieving a tremendous 
gain of calculation time and also having linear calculation 
complexity Θ(n) for networks with constant average degree. This 
allows researchers to approximate centrality measures based on 
shortest paths for networks with millions of nodes or with high 
frequency in dynamically changing networks. 

Categories and Subject Descriptors 
G.2.2 [Discrete Mathematics]: Graph Theory – Graph 
algorithms. 

General Terms 
Algorithms, Measurement, Performance. 

Keywords 
Large networks; Centrality approximation; Shortest paths; 
Betweenness centrality; Closeness centrality. 

1. INTRODUCTION 
The idea of centrality has a long tradition in the analysis of 
networks [6] [30]. Centrality calculations try to identify the most 
important nodes and are part of almost any network analytical 
project nowadays. Different centrality measures [43] cover 
different interpretations of importance. Centrality measures fit 
very well to the idea of ordering social actors upon their 
importance. Another reason for the popularity of centrality 

measures is their reduction of multi-dimensional complex network 
data into one dimensional information with just one value per 
node. This makes it possible to analyze network data with 
standard statistical algorithms and tools. Questions of the 
correlation of centrality and attributes of actors (e.g. age, gender, 
income) can be discussed. 

The centrality of a node is a function of its position within a given 
network. Therefore the direct and indirect connections of a node 
to all other nodes play an essential role in the calculation of 
centrality measures. Some measures are calculated by looking at 
all direct connections of a node, e.g. degree centrality [27], or by 
also including all possible indirect paths into the calculation, e.g. 
information centrality [42]. Other Measures are based on shortest 
paths, e.g. betweenness centrality [1] [26] or closeness centrality 
[27]. A common limitation for all algorithms based on shortest 
paths is the calculation time needed for larger networks. For 
example, without the use of parallelization techniques [2], it is 
almost impossible to calculate the most between actors of a large 
scale online social networks like Facebook and Twitter. But 
researchers already work with this data, e.g. [45]. Other sources 
for huge network data are patents [5], wikis [31], or 
communication networks [35]. However, dealing with large 
networks is not just a problem for a small group of researchers 
working on supercomputers. The improvements in both computer 
speed and storage capacity enable almost every researcher or 
student to collect and store a great amount of data on their 
personal computer at universities or at home. Therefore, a big 
need for centrality measures for large networks is emerging. 

Another limitation for centrality calculations come to the force in 
dynamic networks [16]. Longitudinal networks have a long 
tradition [32] [39]. But if we assume that Sampson had the data of 
25,000 novices in 500 different but interacting monasteries or 
Newcomb had millions of observations of thousands of students 
from the entire campus, both using e-mail or mobile 
communication logs, the need for efficient algorithms is obvious. 
Complex calculations are inapplicable for analyzing networks in 
real time. For instance, if we have to recalculate our measure 
every minute to monitor transformations in changing networks, 
measures with, for example, fifteen minutes of calculation time 
would produce delays in analysis. Another area with the need for 
an enormous amount of calculations for changing networks can be 
described as what-if analysis where researchers are interested in 
network change after potential interventions at networks. We ask, 
how can the intuition provided by well grounded network 
measures of centrality be preserved in “variations” of those 
metrics that are scalable and so usable in the massive data context. 
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To deal with these challenges some approaches are offered in 
literature. Borgatti and Everett [10] suggest calculating 
betweenness centrality using the ego network of every node and 
show that this a good approximation for betweenness centrality 
calculated for the overall network. Brandes and Pich [13] use an 
idea by Eppstein and Wang [22] to show that the shortest path 
calculation for a selection of nodes (pivots) can be used to 
estimate centralities based on shortest paths. A similar approach is 
used by Okamato et al. [34] to find the nodes with the highest 
closeness centrality value in a network. Carpenter et al. [17] 
recommend decomposing large networks at single node cut points 
(articulation points) or at cuts being more complex, and therefore 
time consuming, to calculate. Chan et al. [18] offer community 
centrality for modular networks when the community structure is 
known or pre-calculated. The advantage of network 
decomposition lies in the algorithmic complexity of measures 
based on shortest paths; dividing a network into halves and do the 
calculation separately for theses halves is much faster than the 
calculation for the complete network. The dynamic aspects of 
shortest path algorithms are tackled by Demetrescu and Italiano 
[20]. They present an algorithm for dynamically updating the 
shortest path calculation in changing networks without 
recalculating the overall measure. 

In this article we use the concept of calculating the shortest paths 
from all nodes but restrict the path distances. In the context of 
betweenness centrality, Borgatti and Everet [11] suggest the term 
“k-betweenness centrality” when limiting the length of the 
shortest paths. Brandes [14] shows the modification of the 
algorithm for calculating betweenness centrality [12] needed to 
calculate k-betweenness. Ercsey-Ravasz and Toroczkai [23] 
showed that the “high-betweenness backbone” of a network can 
be identified by focusing on sub-graphs created by limited 
distance paths from nodes. We combine these ideas into a 
common framework of a k-measure approach for closeness and 
betweenness based centralities. We claim criteria for k-measures 
and elaborate aspects of normalization, implementation, and 
algorithmic complexity. We show that k-centralities are good 
approximations for the corresponding centrality measure. 
Therefore, we suggest using these k-centrality measures instead of 
the corresponding centrality measures for larger networks or in 
cases when the calculation time is critical (dynamics network 
analysis). In section 2, definitions of graph theory and the basic 
concept of k-centrality measures are introduced. In section 3, we 
discuss betweenness based measures and in section 4 closeness 
based measures. These sections also discuss how to modify the 
algorithms to turn them into k-measures algorithms. In section 5, 
we discuss the impact on the calculation time and in section 6 the 
validity of the approximations of k-centrality measures using 
random as well as stylized networks. Section 7 consists of case 
studies using real world networks. The conclusions are discussed 
in section 8. 

2. DEFINITIONS 
One of the main reasons for the popularity of centrality measures 
is their independence from the purpose of the network. Regardless 
of whether infrastructural networks [44], research cooperation 
networks [36], or biological networks [19] are being investigated, 
the same measures within the same software tools are used. This 
is the case because of the fact that a lot of centrality measures just 
use the underlying graph structure of networks for calculation. So, 
from a network analytical perspective, a graph is a network 
without meaning. Graph theory defines a graph G = (V,E) as a set 
of nodes V and a set of edges E connecting the nodes. We denote 
the number of nodes with N = |V| and the number of edges with M 

= |E|. Two nodes ni and nj are adjacent if and only if an edge eij 
exists in E. The number of adjacent nodes di for a node ni is the 
un-normalized degree of the node. Pendants are nodes with di = 1. 
If ω is a weight function of E with ω(e) > 0, e  E then G is 
unweighted if ω(e) = 1, e  E and weighted otherwise. In 
undirected graphs each edge is reciprocal: eij = eji, e  E, not so in 
directed graphs.  

Two nodes ni and nj are reachable if there exist a set of nodes {ni, 
na, …, nf, nj}  V and a set of edges {eia, …, efj}  E. This set of 
nodes and edges is called a way. A component is a set of reachable 
nodes. A way with no nodes or edges occurring more than once is 
called a path. The length of a path d(ni, nj) is the number of edges 
of the path from ni to nj. The shortest path between a pair of nodes 
is also known as the geodesic distance. The characteristic path 
length is the average of the shortest paths between all pairs of 
nodes of a network. The longest geodesic distance within a given 
graph is called diameter. The clustering coefficient CCi for a node 
ni is defined as the proportion of actual connections between 
neighbors of i and all possible connections between the neighbors 
of i: |ean|*|ean-1|/2. The k-reach  of a node ni is the number of 
other nodes which can be reached on all possible paths with the 
length k starting from ni. For simplicity we assume unweighted, 
undirected, and connected graphs for further discussions. 
Nevertheless, these considerations can be applied to directed or 
weighted graphs and, with modifications, to unconnected graphs. 

Centrality measures [27][43] are used to reveal nodes with certain 
structural aspects considered as important. The idea of k-
centralities is based on reducing global calculations to local 
calculations. Fig. 1 shows a network with 13 nodes and a star like 
structure. The central node 13 connects four node chains with 
three nodes each. Algorithms based on shortest paths (see sections 
3 and 4) would calculate the shortest paths from each node to 
every other node using a breadth-first algorithm [40]. The 
breadth-first algorithm starts in a given network at any node and 
walks in concentric circles through the network using the edges 
connecting the nodes. In the first step, all direct neighbors are 
reached. In the second step, all nodes with distance 2 are reached, 
etc. So, assuming k = 2: Instead of walking from a starting point 
(e.g. node 1) via shortest paths through the whole network until 
reaching nodes 4, 7, and 10 the algorithm stops after 2 steps 
visiting nodes 2 and 3. Starting at node 12 a 2 step limited 
breadth-first search reaches the nodes 3, 6, 9, 10, 11, and 13. 

In the following sections we show some centrality algorithms 
based on shortest paths and elaborate how to adopt the algorithm 
of a centrality measure C to become a k-centrality measure Ck. We 
focus on betweenness centrality and closeness centrality and 
describe other measures just in part when they can be calculated 
using an almost identical algorithm. For all k-centrality measures 

Figure 1: k=2 steps for k-centralities 



we define k  2, ignoring the case of k = 1. We claim three 
criteria for Ck measures: 

a) Ck must remain unchanged the basic ideas of the 
algorithm of C. 

b) Ck has to be an approximation for C. 

c) Ck has to converge to C with Ck = C, when k = 
diameter. 

3. BETWEENNESS BASE MEASURES 
The concept of betweenness is one of the “three distinct intuitive 
conceptions of centrality” introduced by Freeman ([27]: 215). 
Anthonisse [1] defines the rush of a node as the total flow through 
a node on shortest paths. Freeman [27] connects the probability of 
this in-between position with the notion of information control. 
These network positions are also responsible for concatenating 
different parts of a network [15]. Looking at fig. 1, it is obvious 
that node 13 is important for the flow of information through the 
network starting from any other node. 

The betweenness concept is first used by Shimbel [41] to calculate 
values for every single node in a given network. Shimbel’s stress 
centrality  points out that if a node na is in an intermediate 
position between two other nodes ni and nj, then na has a “certain 
responsibility” to ni and nj. This results in stress if there is activity 
in the network.  calculates the shortest paths for each node to 
every other node and counts the number of shortest paths 
including node na: 

∑  (1) 

Shimbel [41] does not offer any normalization to make the 

measure comparable for networks with different sizes. However, 
it is obvious that the center of a star [27] is the position with the 
highest possible stress. Using  (eq. 2) from betweenness 
centrality  [27] can therefore be used to normalize . This 
results in a measure similar to betweenness centrality [27] but 
ignoring the influence of alternative shortest paths to the 
importance of a specific shortest path. Because  is a less known 
and less used simplification of , we discuss the k-measure 
approach in the following paragraphs using . 

Freeman [27] points to the independent development of 
betweenness centrality  by Anthonisse [1] and Freeman [26]. 

 is the probability for a node na being part of the shortest path 
connecting two other nodes ([43]: 190). Let gij be the number of 
shortest paths from ni to nj and gij (na) the number of shortest 
paths from ni to nj including node na. The betweenness centrality 

 for a node na is consequently 

∑    with   (2) 

The betweenness score for all nodes in a given network is within 
the range of 0 (node included in no shortest path) and  (node 
included in all shortest paths - the center of a star).  is used 
for normalization to make networks with different sizes 
comparable. 

Based on the introduced idea of k-centralities, we limit the path 
length for the breadth-first search of the shortest paths to k steps. 
In addition, we normalize the scores with the proportion of actual 
calculated shortest paths ∑  in all possible dyads. The k-reach 
for all nodes ∑  can be easily gathered by counting the number 
of enqueued nodes during the breath-first searches (see algorithm 
1).  for a node na is therefore defined by 

∑ , , ·
∑

 (3) 

Analogous to the definition of ,  is the probability for a node 
being part of shortest path with the maximum length of k 
connecting two other nodes. The underlying assumption that  is 
an approximation for  is that nodes which are between on short 
paths are more likely to be between on longer paths because short 
paths are many times part of longer paths as well. The adoption of 
the algorithm of  to calculate  is simple: stopping the 
enqueuing process in the breadth-first search algorithm ([14]: 
139). Table 1 shows the calculation of k-betweenness centrality 
for the network of fig. 1. The different columns are the results for 
k = {2, 3, 4, 5, 6 = diameter}. We can see an underestimation of 
all centrality scores >0 for small k. The results of table 1 suggest 
that nodes which are in-between on short paths are 
disproportionately high in-between on longer paths. We do not 
include this into the normalization of the results because when 
calculating approximations with k-measures, we are more 
interested in fitting the ranking and the distribution of the result 
vector rather than the exact values. When we look at the criteria 
we claimed for k-measures at the end of section 2, we see that the 
k-approximation of the final result works fine from a proportional 
perspective.  

4. CLOSENESS BASED MEASURES 
Closeness based measures use the concept of shortest paths in a 
different way. Having short paths to all other nodes is important 
for efficient communication [7] or information diffusion [6]. The 
most important closeness based measure is closeness centrality 

Algorithm 1. k-centrality for closeness and betweenness based 
measures; based on [14] 

for s  V          //shortest‐k‐paths 
  empty Predecessors 
  dist    ;       0 
  dist s     0;   s     1; N    0 
  s  Queue 
  while Queue not empty 
    Stack  v  Queue 
    for w  such that evw  V 
      if dist w          //new node 
        dist w     dist v  1 
        if dist w    k   
          w  Queue 
          N    1 
      if dist w     dist v     1 
          w       w       v    
        v  Predecessors w   
   
  while Stack not empty  //centrality accumulation 
    w  Stack 
    for v  Predecessors w   //betweenness accumulation 

        v     



·  1     w   

    if w  s 
      CB  w       w   
    Distances s     dist w    //closeness accumulation 
 
for s  V          //normalizations 

  C   s  ’   C   s   /   N N
·
N N

∑ N
 

  CC  s  ’   
D  

  ·  
N

N
 /  

N
 



. The sum of the shortest paths d(na,ni) from a node na to all 
other nodes is the farness [37]. The inverse of the farness is the 
closeness centrality [27] 

∑ ,
   with     (4) 

Therefore, a node is central in case of small shortest path 
distances to all other nodes.  scores again highest for the central 
node of a star structure (Freeman, 1979) by having a farness of 1 
step to all other nodes. To normalize  we divide by  [43] 
to be able to compare networks with different sizes.  

The basic assumption of k-closeness centrality  is that nodes 
which reach a lot of other nodes within k steps are more likely to 
reach all nodes within few steps. Using the idea of bounded-
distances on eq. 4 results in the first part of eq. 5. To actually 
calculate  we have to additionally consider the size of the k-
reach  of a node. Having a lot of nodes within a k-
neighborhood results in a high value for the sum of the distances. 
On the other hand, a node with a small  is treated 
preferentially. To compensate for this effect, we normalize the 
distance sum with the proportion of  within the number of all 
other nodes (N-1). We also adapt  to the star structure with 

the size .  for a node na is therefore the closeness to all 
reachable nodes within k steps compared to the proportion of 
reachable nodes after n steps: 

∑ ,, ,
·    with     (5) 

The number of nodes reachable for a node na within k steps can be 
easily achieved.  is the number of nodes enqueued during the 
breadth-first search algorithm (see algorithm 1) when calculating 

. Table 2 shows the results of the approximation steps using the 
network visualized in fig. 1. The claimed criteria for k-centralities 
fit. 

5. PERFORMANCE 
In the last sections we derived k-centrality measures from their 
corresponding centrality measures. In this section we analyze the 
suitability of using k-centrality measures alternatively to the 
centrality measures. Because all measures introduced in the 
previous sections can be calculated with the same algorithm 
(algorithm 1), the calculation time for these measures and also its 
corresponding k-measures is the same. Therefore, we do not 
analyze the performance of a single measure but focus on the 
running time of the underlying algorithm. We use random and 

stylized networks for performance and validity evaluation (see 
next section). Erdos-Renyi random networks [24] are the typical 
model for random networks. A set of nodes is created and for 
every pair of nodes a link is set with a constant probability p. 
These networks have short average path lengths and almost no 
local clustering. Small-World networks [44] are constructed by 
starting with a 1-dimensional lattice connecting every node with 
its k physically next neighbors. With a probability p, the edges are 
randomly rewired in the next step, resulting in a network with 
both a high clustering coefficient and low average distances. 
Scale-Free networks [3] are created iteratively by adding one node 
after another and connecting the new nodes with preexisting 
nodes by favoring nodes which are better connected. This leads to 
highly centralized networks and power-law degree distributions. 

Table 3 shows the results of the performance tests for random and 
stylized networks (Small-World: p = 0.15, Scale-Free: N0 = 8). To 
analyze the impact of the structure of the networks on the 
calculation time, we have kept the number of nodes (N = 5,000) 
and the average degree (  = 6.0) stable. Every line in table 3 
reflects the average of the calculations of 100 networks with the 
same parameters. The time columns show the proportion of the 
calculation time compared to the original algorithm. The time 
columns  in table 3 are therefore a representation of the 
percentage of the calculation time needed for , , … (For 
example, in a Small-World network with N = 5,000,  = 6.0, and 
p = 0.15 it takes 4.6 % of the calculation time of a measure to 
calculate the corresponding k-measure with k = 4.) 

In table 3 one can see the performance advantages of the k-
measure approach. The locally structured Small-World networks 
result in the biggest time gain while the very centralized Scale-
Free networks perform with the least time gain. The Erdos-Renyi 
random networks score better than the Scale-Free networks but 
much worse than Small-World networks. Different network 
structures result in different time needed to calculate k-measures. 
By taking a closer look at algorithm 1 for calculating the k-
measures, we are able to see that the breadth-first search 
algorithm enqueues all neighboring nodes of preselected nodes 
until the k-distance is reached. Therefore the time gain for the k-
measures is a function of how many nodes are enqueued or 
checked to be enqueued. If the number of enqueueing attempts 
within a k-distance of all nodes is very high, the performance of k-
measures is much smaller than in cases when this number is 
smaller. Looking again at table 3, one can see this effect in the 
performance values for Scale-Free networks. The centralized 
structure of these networks and an average path length of 4.0 
connect almost every node with the central hubs within 3 steps. 

 

Table 1: k-betweenness centrality example 

Node(s)    =  
13 0.273 0.506 0.709 0.788 0.818 
3,6,9,12 0.045 0.141 0.217 0.279 0.303 
2,5,8,11 0.045 0.056 0.098 0.131 0.167 
1,4,7,10 0.000 0.000 0.000 0.000 0.000 

 

Table 2: k-closeness centrality example 

Node(s)     =  
13 0.444 0.500 0.500 0.500 0.500 
3,6,9,12 0.300 0.355 0.387 0.387 0.387 
2,5,8,11 0.188 0.231 0.270 0.300 0.300 
1,4,7,10 0.111 0.125 0.167 0.205 0.235 



With the next step, the majority of nodes can be reached, resulting 
in a rapid increase of calculation time. On the other hand, the high 
clustering coefficient in Small-World networks [44] implicates a 
large proportion of the neighbors of a node being connected with 
each other and therefore bringing a much smaller number of new 
nodes into the enqueueing process. This results in shorter 
calculation time. 

We are able to generalize the estimation of the performance of the 
k-measures for all networks with different structures (including 
real world networks). The number of enqueueing attempts for a 
node ni is its degree di. The k-distance bounded breadth-first 
search for a node na therefore requires  

 (6) 
                                                              with ,   

enqueueing attempts. We denote  as the average value for all  
in a network.  is the key to numerically understanding the 
performance differences of table 3. The higher the value of , the 
more calculation are processed, and the longer it takes to calculate 
the k-measures. Because the sum of the degree of all nodes in an 
undirected network is twice the number of edges, 2M, this is the 
boundary value of  for k = diameter. As the time needed to 
calculate k-measures is a function of , we can use eq. 7 to 
estimate the overall amount of time needed for the calculation of a 
measure  after calculating the corresponding k-measure . 
The calculation of Da (and therefore of  ) can be accomplished 
by calculating da for all nodes before starting the k-measure 
algorithm and summing up these values during the enqueueing 
process of every node without affecting the calculation 
complexity.  

  ·   ·  
 

   with   
∑

 (7) 

Applying these considerations to networks with different sizes but 
stable average degree (e.g. interpersonal communication networks 
[28]), one important conclusion can be drawn: The time needed to 
calculate k-distance bounded breadth-first search for a single node 
na is independent from the network size and is solely a function of 
the average local structure  dominated by the network topology 
and the average degree1. This implies another advantage of k-
measures for large networks. The time needed for calculation can 
be described with . As  is a constant value independent 
from the network size, the calculation complexity of k-centrality 
measures is . This is a significant improvement over the 
Θ(nm) of the original algorithm [12]. 

                                                                 
1  For example, for the stylized test networks  = 131 for k = 2 

and  = 421 for k = 3 for small world networks;  = 291 for k = 
2 and  = 1,726 for k = 3 for Erdos-Renyi networks. 

6. VALIDITY 
Table 4 shows the validity test for  compared to with k=2, 
k=3, k=4 and k=5. The validity is measured in three ways. First, 
we correlate (Pearson) the results with the result. Because 
calculations of betweenness centrality do not produce normally 
distributed result vectors and the independence assumption for 
correlations is violated with network data, we use two additional 
performance indicators for validation of the results. Top 10 Hits: 
The number of the top 10 nodes of the calculated measures which 
are correctly identified using k-calculations. Top 1: The k-distance 
which is (on average) needed to correctly identify the most 
important node. Examine the validity of identifying the most 
central nodes is important because this is the essential task of 
centrality measures, In table 4 you can see that in Small-World 
networks with 5,000 nodes and an average degree of 6.0, using k 
= 4 results in the ability to identify 7.9 top ten nodes correctly and 
also allows the most central node to be found. Table 5 shows the 
same performance and validity experiments for  with similar 
outcome. Both tables are based on average values for 100 
networks with identical parameters. 

In tables 4 and 5, one can see the connection between network 
structure and validity. Shorter average path lengths in random and 
scale-free networks bring every node in near path distance to the 
center(s) of the network. Therefore the globally important nodes 
can be identified with smaller k. On the other hand, the high 
clustering coefficient in small-world networks results in a flatter 
slope of calculation time (see previous section) but also in less 
validity.  

7. CASE STUDIES 
In the previous section we discussed issues of performance and 
validity using random and stylized networks. In this chapter we 
apply the ideas of k-centralities to real world data. The first 
network is a medium sized collaboration network. We use this 
network to analyze performance and validity. The second network 
is a large network, and we therefore do not calculate the 
centralities but the k-centralities and use this to estimate the 
calculation time for the corresponding centrality measures. 

7.1 Astro-Ph: A Collaboration Network 
Newman [33] created a network of scientists posting preprints on 
the “High-Energy Theory E-Print Archive” between Jan 1, 1995 
and December 31, 1999. Two scientists are connected if they are 
co-authors of at least one common paper. We ignore the line 
weights in the network and focus on the largest component, 
including 14,842 nodes and 119,616 edges (avg. degree 16.1). 
Newman describes the network as having small-world attributes 
(avg. path length 4.8, diameter 14). Therefore, we expect good 
performance of k-centralities. On the other hand the high, average 
degree will affect the performance adversely. The size of the 
network allows us to calculate the centrality measures and 
compare the results with the k-centrality measures. 

Table 3: Performance in Random and Stylized Networks 

  Avg. Dia- Path- Time 
Network Nodes Degree meter Length    
Erdos-Renyi 5,000 6.0 9.3 4.9 0.014 0.061 0.286 0.770 
Small-World 5,000 6.0 11.8 7.0 0.008 0.018 0.046 0.126 
Scale-Free 5,000 6.0 7.0 4.0 0.022 0.193 0.733 0.999 
 



Table 6 shows the results of the performance and validity 
calculations for the astro-ph network for k-betweenness and k-
closeness centrality. The short average path length, a result of a 
higher degree and a small-world structure, are mentioned by 
Newman (2001). These attributes describe the big increase in 
calculation time from C  to C . The most central node can be 
identified with k = 2 while some nodes in the top 10 betweenness 
centrality ranking are incorrect. This results in a weaker validity 
for betweenness centrality.  

 

Table 6: Performance and Validity for astro-ph network 

 Time Correlation Top 10 Hits Top 1
 C  C  C  C  C  C  C
Betweenness 0.088 0.342 0.820 0.876 7 8 2 
Closeness 0.088 0.342 0.903 0.981 10 10 2 
 

7.2 Wikipedia: A Large Network  
The network consists of 659,388 nodes representing English 
Wikipedia pages and 1,182,967 un-directed edges linking the 
pages with each other in a case of bi-directed links. The average 
degree is 3.6, the maximum degree is 1,488. The network is based 
on the Wikipedia XML corpus collected by Denoyer and Gallinari 
[21] and was created for the 2007 Sunbelt Viszards-Session [4]. 
To approximate the most central nodes in the Wikipedia network, 
we use k=2 and calculate k-betweenness  and k-closeness 
centrality . The calculation takes 33 minutes on a personal 
computer with an Intel Xeon 2.80 GHz CPU and 12 GB Ram 
without the use of multi processors. We use eq. 3 to estimate a 
calculation time for the centrality measures  of 25 days with 
the same system. Of course, it is possible to do these calculations 
with the help of super computer or computer clusters using 
parallel algorithms [2]. However, the Wikipedia network is too 
large to calculate betweenness and closeness centrality on a single 
home computer within an acceptable period of time. By using k-
centrality measures we are able to approximate measures based on 
shortest paths within reasonable time. 

8. DISCUSSION 
Borgatti and Everett [2006] suggested calculating betweenness 
centrality using bounded-distance shortest paths calculations. 
Brandes [14] offered an efficient algorithm for this calculation. In 
this article we elaborated the idea of using k-centrality measures 
as approximations for closeness and betweenness based centrality 

measure. We claimed criteria for k-centrality measures, offered 
normalizations, and analyzed performance and validity. In a 
nutshell, k-centrality measures bring a tremendous gain of 
calculation time and also a high validity of the results. We were 
able to show that just 5 % of the original calculation effort is 
needed to receive a valid outcome. In denser or highly centralized 
(e.g. scale-free) networks, shorter average path distances prevent 
the time benefits of k-centrality measures. If the average degree is 
low (e.g. 5 to 25) and the network is locally structured (e.g. small-
world networks), the time gain is enormous. A small average 
degree and high local clustering are essential attributes of 
networks constructed of human interactions [28]. Therefore, it is 
possible to calculate k-centrality measures based on shortest paths 
for such networks with a few hundred of thousands or even 
millions of nodes within feasible time. We were also able to show 
that the calculation complexity of k-centrality measures is  in 
case the average degree is constant with increasing network size, 
which results in a much better scalability than the most efficient 
algorithm for betweenness and closeness centrality [12] with 

. 

The reduction of the calculations leads to a massive improvement 
in scalability. This is not surprising. More interesting is the high 
validity of the results by just using a small fraction of the original 
calculations. We explain this outcome by considering the nature 
of shortest paths in typical networks. First, it is clear by definition 
that the less important a node is, the larger its distance to all other 
nodes. Networks are structured in a way such that paths into the 
center are short. This is true for random and stylized networks 
(e.g. small-world, scale-free networks) as well as for real world 
networks. Therefore, almost every node is connected to and 
through the center on short paths. However, only the nodes in the 
center have small distances to all the peripheral nodes. Therefore, 
using only k steps for the calculation of shortest path for every 
node means that the algorithm focuses mostly on central nodes 
and rarely on peripheral nodes. Second, the majority of the nodes 
do not contribute to the overall structure of a network; particularly 
in the core-periphery networks common within communities, 
organizations and task-groups. In such networks, algorithms 
which calculate the shortest paths between all nodes spend more 
of their time focusing on peripheral nodes. Preventing the breadth-
first search algorithm to walk to every single peripheral pendant 
during the shortest path calculations for all nodes thus saves 
substantial computational time with minimal impact on the 
magnitude of the resulting metric. 

Table 4: Validity of k-betweenness centrality applied to random and stylized  
networks with 5,000 nodes and an average degree of 6.0 

 Dia- Path- Pearson Correlation Top 10 Hits Top 1 
Network meter Length      
Erdos-Renyi 9.3 4.9 0.978 0.992 0.990 0.995 6.9 9.0 8.9 9.4 2.9 
Small-Worlds 11.8 7.0 0.919 0.974 0.990 0.991 5.2 6.6 7.9 8.2 3.5 
Scale-Free 7.0 4.0 0.975 0.990 0.999 1.000 9.3 9.7 9.9 10.0 2.2 

 
Table 5: Validity of k-closeness centrality applied to random and stylized  

networks with 5,000 nodes and an average degree of 6.0 

 Dia- Path- Pearson Correlation Top 10 Hits Top 1 
Network meter Length CC CC CC CC CC CC CC CC CC

Erdos-Renyi 9.3 4.9 0.940 0.958 0.975 0.964 9.1 9.6 9.6 9.9 2.2 
Small-Worlds 11.8 7.0 0.908 0.941 0.954 0.966 6.3 7.8 9.0 9.5 2.9 
Scale-Free 7.0 4.0 0.974 0.968 0.996 1.000 9.9 10.0 10.0 10.0 2.0 
 



This argument suggests a drawback to k-centrality measures: The 
incapability of detecting global bridges when they are distant from 
denser connected centers. When we assume a network designed of 
two almost separated components of actors, both very well 
connected within the groups and simply connected by a chain of 
the length of, for example, five actors with each other. The actor 
in the middle of the connection chain would score highest in 
betweenness and also in closeness centrality. k-centrality 
measures are not able to identify this actor (unless k is set  
unprofitably high). Thus, there is also an argument for local 
calculations with regards to the contents of larger social networks 
consisting of human beings. Normally information does not pass 
over many steps to every single node in the complete network. In 
real life the assumed actor in the middle of a connecting chain 
might sit on the fence rather than in the center. 

In this article we described local algorithms for the approximation 
of centrality measures based on shortest paths. These are the most 
widely-used centrality algorithms. A key issue for future research 
is whether measures based on shortest paths are really appropriate 
for all networks or only for certain classes of networks. Another 
focus of subsequent research has to tackle the question of how to 
estimate the k of the k-measures to guarantee satisfying results. 
We do not address these issues here; however, we note that in 
some networks, the rate of the “item” being sent through the 
network (e.g. information, beliefs or diseases) may atrophy or 
decay at such a rate that a k-centrality measure may be a better 
measure of node criticality.  Future research should consider this 
issue. 

In addition, there are other measure families, such as measures 
using all paths [42] or eigenvector based measures [8][29]. Future 
work should consider the implications of the k-centrality measures 
approach as approximations of the corresponding centralities for 
these measure families. 
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