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Identities are the words 
and phrases we use to 

label other people
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Stereotypes are the 
meanings conveyed 

by an identity
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Affective 
stereotypes 
are defined 
by how we 
feel about 
identitiesEvaluative
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(Osgood, 1969; Heise 1987 )

An EPA profile is a position in this 3D space

4



6/15/16

3

6.15.2016 5

Semantic 
stereotypes 

refer to 
relationships we 

presume 
between 
identities   

????
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Our identities and the 
stereotypes they carry have 
important effects on our lives
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Overview
• Extracting affective stereotypes using “social 

event networks”
• Extracting a network model of stereotypes
• Networks of identities
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•Newspaper data 
–600K articles
–LexisNexis, centered 

on 16 MENA 
countries

–Major news outlets
–7/10 – 12/12

The Data
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Measuring Stereotypes with ACT

Evaluative
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Potency
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winner • An affective, 
attributional 
measurement 
model

(Osgood, 1969)

protestor?
official?

Good
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Inferring Stereotypes using ACT

officials

criticize

women

officials?

ACT gives a mathematical model for how 
social events imply stereotypes



6/15/16

6

6.15.2016 11

Caveat to applying event model

officials

accused

protestors

?

?
?
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?

Soln. – allow stereotypes to “diffuse”

officials

accused

protestors

?

?

officials

criticize

women

officials officials

protestors
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A caveat to applying event model

Sometimes,
officials officials

Solution:
Assume multiple latent stereotypes 
of each identity/behavior exist
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bully

toddler

winner
Protestor

official

An overview of the approach
Last week, Egyptian officials shot protestors 
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More on extracting events, identities
1. Ran dependency parser, extracted all  

N -> V -> N
2. Cleaned text using, e.g., stemming (accused -> 

accuse)
3. Hand-curated list of identities and behaviors

• 102 identities, 87 behaviors, 10K events
• Only 44% of identities in ACT dicts
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The Statistical Model
Officials criticize demonstrators

criticize [-4 3 2]
women [4 1 4]
….

ACT Dictionary
Affect Control 
Theory logic 

(event model)

Language ModelGaussian 
Mixture Model
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•Sunnis universally 
bad, powerful

•Explanation: 
–Events on the 

ground
–Western media 

bias?

One Result w.r.t. religious identities
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NETWORK MODELS OF STEREOTYPE
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Parallel Constraint Satisfaction Models

Sister

Brother Patient

Doctor

Links in PCSMs 
define 

semantic 
stereotypes

PCSMs are essentially Markov Random Fields  
through which cognitive activation flows
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Hard to model Affect in PCSMs

Grad 
Student

AthletePowerless Powerful

ScholarThug

Good

?
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Combining existing models

+ =
Brother

Sister
Brother

Brother

Sister

Attributional 
Parsimonious,

Affective
No semantic 
relationships

Relational 
Cognitively More 

Plausible, Semantics
No affective 

meaning
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Affective + Semantic Network of Stereotypes

Grad Student

Musician

Bully

Dancer

Professor

Jerk

Artist

Stereotypes as an
attributed network

Now, how do we 
“learn” from Twitter 
data?
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Data Used (Population considered)
•Twitter data

– Subset of 50K users from Study 2
– Subsetting based on more restricted bot/celeb removal, 

gender tagging (gender not used)
• 310 identities of interest

– From popular identities in Study 2 results; some domain 
relevant

• Sentiment data (EPA profiles) 
– Smith-Lovin et al. (2015)
– Warriner et al. (2014)
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Generative model – affective stereotypes

• Draw per-identity distrib. in EPA space from survey 
priors

• Draw per-user EPA profiles from this distribution
• Draw per-tweet ”deflection” balancing by user’s 

current views, constraints in tweet 
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Details on deflection

• In ACT, deflection defines likelihood of social event
– “Teacher instructs student” has low deflection
– “Teacher hits student” has high deflection

• I use the same concept for likelihood of a tweet 
• Like social event “suggests”, or constrains, EPA 

profiles for identities, so too does text in a tweet
• Formalize using quadratic constraints, like ACT does 

for event model
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Strategy for mining affect

For each identity of interest:
• Identify any social events it is involved in
• man (young) -> killed_by -> police_officer

• Find any “sentiment words” (in our 
sentiment dictionary) in the tweet

• Construct q by summing constraints –
• “Terrible” constraint on police officer (𝜙"#):

Identity of interest

Other identity

So terrible that a young man was killed by a police officer.

Verb we have 
sentiment info for

Modifier we have 
sentiment info for
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Validation – Semantic model

Baselines:
– Simple: Just based on 

frequency of each identity 
– User: Laplace-smoothed 

language model

Fill in the blank (on 
left out data): 
___ rule, boys drool

Metric: Perplexity of 
identities in left-out 
data (lower is better)
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Validation – Affective model

• Baselines:
– Simple: Tweet-based 

average using VADER
– User: Simple back-off 

tweet-based model using 
VADER

Fill in the blank (on 
left out data): 
___ rule, boys drool

Metric: average 
rankings of identities in 
left-out data (lower is 
better)
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Results for Thug

•Top right –
affectively similar & 
semantically related

•N(-a) word 
semantically, not 
affectively related
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Existing NLP methods - Thug
E.g. deep learning… what words are related to 

thug?
$$

$
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NETWORKS OF IDENTITIES
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Approach
• Twitter data

– 150K Twitter users who sent >5 tweets from within the original 
Arab Spring dataset

• News data
– Original news data

• Construct common vocabulary; common data format
• Run through Bamman et al. Word2Vec embedding 

model
• Determine list of interesting identities

– 280 identities prevalent in both datasets
• Construct network of similarity between these identities 

for High/Low stability, News/Twitter (4 networks total)
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Tweets/News Sentences count by country
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Tweets/News articles by unrest level of country
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High/Low Civil Unrest Categorization

High	  Unrest	  Countries Low	  Unrest	  Countries
Bahrain Qatar
Iraq Kuwait
Iran Morocco
Libya Jordan
Algeria Saudi	  Arabia
Egypt Oman
Syria United	  Arab	  Emirates
Tunisia Yemen
Lebanon
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High Unrest, Newspaper data (.7 cutoff, LCC)
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High Unrest, Twitter (.65 cutoff, LCC)
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Low Unrest, News (.73, LCC)
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Low Unrest, Twitter (.65 cutoff)
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Conclusion
• Extracting affective stereotypes using “social 

event networks”
• Extracting a network model of stereotypes
• Networks of identities

• Many different ways to think about identities, 
text and networks!


