

Some stuff on identities and networks and stereotypes and text

Kenny Joseph

kjoseph@cs.cmu.edu

institute for SOFTWARE RESEARCH

Carnegie Mellon

Center for Computational Analysis of Social and Organizational Systems http://www.casos.cs.cmu.edu/

Semantic stereotypes refer to relationships we presume between identities

Ę

Our identities and the stereotypes they carry have important effects on our lives

Overview

- Extracting affective stereotypes using "social event networks"
- Extracting a network model of stereotypes
- Networks of identities

Inferring Stereotypes using ACT

- ? officials
- criticize
- + women

ACT gives a mathematical model for how social events imply stereotypes

ISC institute for SOFTWARE RESEARCH

Carnegie Mellor

Caveat to applying event model ? officials accused ? protestors

A caveat to applying event model

Sometimes,

officials officials

Solution:

Assume multiple latent stereotypes of each identity/behavior exist

Carnegie Mellor
13 IST SOFT ACE

More on extracting events, identities

- Ran dependency parser, extracted all N -> V -> N
- Cleaned text using, e.g., stemming (accused -> accuse)
- 3. Hand-curated list of identities and behaviors
- 102 identities, 87 behaviors, 10K events
- Only 44% of identities in ACT dicts

One Result w.r.t. religious identities

- Sunnis universally bad, powerful
- Explanation:
 - -Events on the ground
 - –Western media bias?

Carnegie Mellon

NETWORK MODELS OF STEREOTYPE

.15.2016

Carnegie Mellor

Parallel Constraint Satisfaction Models Links in PCSMs define semantic stereotypes PCSMs are essentially Markov Random Fields through which cognitive activation flows

Data Used (Population considered)

- Twitter data
 - Subset of 50K users from Study 2
 - Subsetting based on more restricted bot/celeb removal, gender tagging (gender not used)
- 310 identities of interest
 - From popular identities in Study 2 results; some domain relevant
- Sentiment data (EPA profiles)
 - Smith-Lovin et al. (2015)
 - Warriner et al. (2014)

Generative model – affective stereotypes

$$p(\mu, \Sigma) \sim \mathcal{N}IW(\mu_0, \Sigma_0, \kappa_{0,S}, \gamma_{0,S})$$

$$p(\phi) \sim \mathcal{N}(\mu, \Sigma)$$

$$p(d) \sim \text{Laplace}(q_{u,n}(\phi_u, X_{u,n}, C_{u,n}, z), \beta)$$

- Draw per-identity distrib. in EPA space from survey priors
- Draw per-user EPA profiles from this distribution
- Draw per-tweet "deflection" balancing by user's current views, constraints in tweet

.15.2016

Carnegie Mellor

25 IST institute for

Details on deflection

$$p(d) \sim \text{Laplace}(q_{u,n}(\phi_u, X_{u,n}, C_{u,n}, z), \beta)$$

- In ACT, deflection defines likelihood of social event
 - "Teacher instructs student" has low deflection
 - "Teacher hits student" has high deflection
- I use the same concept for likelihood of a tweet
- Like social event "suggests", or **constrains**, EPA profiles for identities, so too does **text in a tweet**
- Formalize using quadratic constraints, like ACT does
 for event model

Carnegie Mellor

6 151

Strategy for mining affect

So terrible that a young man was killed by a police officer.

For each identity of interest:

man (young) -> killed_by -> police_officer

 Find any "sentiment words" (in our sentiment dictionary) in the tweet

Construct q by summing constraints –

• "Terrible" constraint on police officer (ϕ_{no}) :

Other identity

Verb we have sentiment info for

Modifier we have sentiment info for

			F -	
$(\phi_{po,e} - ter_e)$	$(\phi_{po,p} - \phi_{po,p})^2$	$-ter_p)^2 +$	$(\phi_{po,a} -$	$-ter_a)^2$

Carnegie Mellor

Validation - Semantic model

Associative Model	Ppl.	
Simple	4.864	
User Baseline	4.474	
Our Model	4.363	

Metric: Perplexity of identities in left-out data (lower is better)

Fill in the blank (on left out data):

___ rule, boys drool

Baselines:

- Simple: Just based on frequency of each identity
- User: Laplace-smoothed language model

Carnegie Mellor

28 ISC institute for SOFTWARE RESEARCH

6.15.2016

Validation - Affective model

Affective Model	Avg. Rank
Simple	134.744
User Baseline	127.272
Our Model	126.042

Metric: average rankings of identities in left-out data (lower is better)

Fill in the blank (on left out data):

___ rule, boys drool

- Baselines:
 - Simple: Tweet-based average using VADER
 - User: Simple back-off tweet-based model using VADER

Carnegie Mellor

29 IST institute for SOFTWARE RESEARCH

Results for Thug

- Top right –
 affectively similar &
 semantically related
- N(-a) word semantically, not affectively related

Carnegie Mellon

15

Carnegie Mellor

Existing NLP methods - Thug E.g. deep learning... what words are related to thug? gangsta n 💲 a thuaa : goon hood b \$:h ghetto 0.650 0.700 0.72 0.625 0.675 **Cosine Similarity** (GloVe Twitter model, 200-dimensional)

NETWORKS OF IDENTITIES Carnegie Mellor

Approach

- Twitter data
 - 150K Twitter users who sent >5 tweets from within the original Arab Spring dataset
- News data
 - Original news data
- Construct common vocabulary; common data format
- Run through Bamman et al. Word2Vec embedding model
- Determine list of interesting identities
 - 280 identities prevalent in both datasets
- Construct network of similarity between these identities for High/Low stability, News/Twitter (4 networks total)

6.15.2016

Carnegie Mellor

3 ISC institute for SOFTWARE

Tweets/News Sentences count by country

.15.2016

High/Low Civil Unrest Categorization High Unrest Countries Low Unrest Countries Bahrain Qatar Iraq Kuwait Morocco Iran Libya **Jordan** Algeria Saudi Arabia Egypt Oman **United Arab Emirates** Syria Tunisia Yemen Lebanon Carnegie Mellor ISC institute for SOFTWARE RESEARCH

Conclusion

- Extracting affective stereotypes using "social event networks"
- Extracting a network model of stereotypes
- Networks of identities
- Many different ways to think about identities, text and networks!

Carnegie Mellon

ISC institute for SOFTWARE RESEARCH