

Statistical Models of Networks Link Probability Model (LPM) for Stability					
LPM sin networl	nulated i ks and a	networks are re shown to re	compar epreser	ed to empiricant the network	al well.
М	8	N	60000		
e_mean	e_stdev	s_mean	s_stdev	t-val	р
409.2857	38.5604	358.0939	12.77466	3.754923	0.00
365.8571	18.2978	320.0974	12.7394	7.073195	0.00
365.8571	29.04266	320.1638	12.79331	4.449958	0.00
377.8571	38.24669	330.6744	12.77289	3.489244	0.00
375.2857	36.10039	328.3765	12.79551	3.675254	0.00
349.8571	38.15944	306.0783	12.7845	3.244918	0.00
373.8571	48.45076	327.0728	12.82622	2.731135	0.01
		0.17.1500	10 77754	0.004040	0.01

omparison o	i unan	ge Det	ection	Appro	acne
	CUSUM $k = 0.5$	EWMA $r = 0.1$	EWMA $r = 0.2$	EWMA $r = 0.3$	Scan Statistic
Average Betweenness	9.32	8.24	10.16	11.52	6.76
Maximum Betweenness	14.36	14.72	15.72	17.08	13.24
Std Dev. Betweenness	16.44	16.24	16.92	18.52	15.24
Average Closeness	10.68	9.08	13.60	17.52	10.48
Maximum Closeness	8.76	6.00	10.60	37.96	8.64
Std Deviation Closeness	34.48	34.72	34.52	35.68	27.08
Average Eigenvector	31.28	31.28	31.28	31.28	24.00
Minimum Eigenvector	14.36	14.36	14.28	15.56	14.88
Maximum Eigenvector	5.24	5.40	5.80	7.52	4.00
Std. Dev Eigenvector	5.92	4.88	6.40	6.96	3.64

Car isr	megie Mellon sorrwar sorrwar kistarch	Netw Analy	vork (ysis c	Change of Real \	Detec Norld	tion: Data	
		No Nodes	Time	Method of	Type of	Design	Known
			Periods	Collection	Relation	_	Change
	Fraternity	17	15	Survey	Ranking	Fixed	Yes
	Leav 07	68	8	Survey	Rating	Free	Yes
	Leav 05	158	9	Survey	Rating	Free	None
	Al-Qaeda	62-260	17	Text	Rating	Free	Yes
	Winter C	22	9	Observation	Rating	Fixed	Yes
				& Survey			
	Winter A	28	9	Observation	Rating	Fixed	Yes
				& Survey			
	IkeNet 2	22	46	Email	Count	Free	Yes

Email

Copyright © 2016 Kathleen M. Carley – Director CASOS, ISR, CMU

Msg Count Msg

Free

Yes

IkeNet 3

CASOS

68

June 2016

121

Carnegie Mellon ISC SOFTWARE **Summary of Change Detection Across Data Sets** Too little risk may prevent change detection $\alpha = 0.05$ $\alpha = 0.01$ Data $\alpha = 0.02$ $\alpha = 0.005 \ \alpha = 0.001$ Change Fraternity 8 10 10 10 13 Never Leav 07 3 5 5 5 Never Never Leav 05 None No F.A. No F.A. No F.A. No F.A. No F.A. Al-Oaeda 1997 1999 1999 2000 2000 Never Winter C May Oct Sept Sept Oct Never Winter A May Sept Sept Sept Oct Aug 25 26 27 27 IkeNet 2 26 27 14 19 19 20 IkeNet 3 15 18 lune 2016 Copyright © 2016 Kathleen M. Carley – Director CASOS, ISR, CML

arnegie Me	llon
	Change Detection Hands-On
	C C
	Select Measures
	Select the measures to compute:
	Select Measures Set Measure Inputs
	Q total degree ▼
	Measure Title 🔻 Network Level 💌 Node Level 💌 Computation 👻 Uses Link Val 💌
	Centrality, Tot false true fast true
TAN —	June 2016 Copyright © 2016 Kathleen M. Carley – Director CASOS, JSP, CMU

