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1. Introduction

Since the earliest days of social network research, accurate
detection of cohesive group entities has been an attractive and elu-
sive goal. Group structure can be used for high-level descriptions of
complex networks, to support or contest theories about underlying
processes influencing social interactions, and to detect strengths or

vulnerabilities of social structures and individual positions in a vari-
ety of contexts. These goals have important applications in a wide
range of fields, including anthropology, sociology, organization
science, economics, management, and security and intelligence
programs.

Typically, group detection has consisted of dividing nodes into
discrete partitions indicating mutual association. However, com-
mon sense and empirical analysis (Freeman, 1992) support the view
that humans are capable of simultaneously filling many roles in
many contexts, such that a strict partitioning may prevent detection
of the true group entities in a graph. To better understand modular
structure in networks, we must develop models which allow for
multiple memberships and varied levels of membership.

In this paper we build off several link analytic group detection
methods, due to Kubica et al. (2003b) and Battacharya and Getoor
(2004), which allow for relaxed partitioning by permitting individ-
uals under certain conditions to participate in multiple groups. We
refine the representation of group structure by permitting vary-
ing strengths of association from members to group entities, and
present an algorithm that generates such groupings from link data
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using a stochastic model of link emission from group entities and
a maximum-likelihood clustering method. To analyze the utility
of the fuzzy overlapping group model, we make comparison to
groupings by anthropological observations and prior algorithms.
Our results suggest that this approach is capable of identifying
groups that are confirmed by existing quantitative methods as well
as expert ethnographic analysis, while providing additional infor-
mation about overlap between groups and individuals who play
multiple roles. This additional information facilitates understand-
ing emergent behavior in the groups.
The remainder of the paper is organized as follows. In Section 2,
we provide a brief background on existing group detection meth-
ods. We also discuss the generation of link data from networks, so
that we can apply our link analytic method to network datasets. In
Section 3 we describe our approach (termed FOG for “Fuzzy Over-
lapping Grouper”) in two subsections: one proposing a stochastic
model of the way groups generate link data, and another intro-
ducing a corresponding maximum-likelihood method for inferring
groupings based on evidence. In Section 4, we present performance
results on the FOG algorithm and use FOG to analyze two well-
studied real-world datasets: Sampson’s monastery survey data
(1968) and Davis, Gardner and Gardner’s southern women (1941),
comparing our results to previous groupings on the same. In the
conclusion, we discuss FOG’s potential contribution to group anal-
ysis based on our results, and identify additional work necessary.

2. Background and related work

2.1. Defining “Group”

Theoretically, we consider a group a set of entities which expe-
rience the same membership relation with respect to the same
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external entity, real or abstract. In the social sphere, this can take
many forms. For example: a formal organization like a board of
directors, an implicit organization like a circle of friends, a demo-
graphic quality such as hair color, or even the set of individuals
uniquely affected by an external force, such as the victims of a flu
epidemic.

This paper is concerned specifically with cohesive groups, divi-
sions which exhibit more associations within groups than between
them. This operational definition may at first seem to restrict the
varieties of group we can detect, yet we can imagine interaction
data in which each of the above categories of group would leave
such a trace. For example, members of a board of directors might
occur together on the recipient list for formal memos and meeting
announcements. Individuals afflicted by the same communicative
disease might tend to be clustered in space and time in hospi-
tal records. To some extent, measuring this definition of cohesion
depends on being able to clearly measure both the presence and
absence of links between entities – a property inherent in social
network data, but less obvious in link data, which we define and
discuss in the next section. In link data, a stochastic model must fill
the roll of defining what comprises a concentration of links. In the
next section we describe several widely used algorithms to detect
cohesive groups in both types of data.

Several non-cohesive group types are also popular in sociologi-
cal research, particularly structural similarity. Entities are grouped
together as structurally similar if their interaction patterns are sim-
ilar; that is, if they interact with the same other entities or classes of
entities. The group they experience membership with in this case
is called a structural role. An intuitive example of a structural role
is the middle manager in a hierarchical organization, who interacts
with both upper management and employees, but not necessar-
ily other middle managers. Like cohesive groups, structural roles
can be implicit and unnamed or encoded in formal relationships.
Like cohesion, the concepts of structural similarity and roles have
been operationalized in many ways, the most common discovery
techniques including block modeling (Lorrain and White, 1971) and
CONCOR (Breiger et al., 1975).

Although FOG is designed to illuminate cohesive groups, we
believe some researchers interested primarily in structural roles
may be able to apply it to their study. Some correlations exist
between structurally similar and cohesive groups. Membership in
a strongly cohesive group can directly constitute a structural role,
as interaction with other members dominates individuals’ interac-
tion patterns. Roles whose members do not interact can in some

cases nonetheless be detected as a cohesive group following a
transformation in data. For example, consider a dataset collected
from vendors in which each lists the clients they sell to. If one
inverts the association data to link vendors who share a common
client, cohesive groups in this new dataset will collect vendors who
filled similar roles in the original data. Finally, as we will discuss
in our analysis of Sampson’s data, detecting overlapping cohesive
groups permits detection of a type of structural role, the interstitial
actor.

2.2. Finding cohesive groups

One major theme in identifying cohesive network clusters has
been an evolving series of graph theoretic group definitions, gen-
erally subgraphs satisfying internal connectivity requirement (e.g.
cliques, k-clans, k-cores, k-plexes). These structures may over-
lap, leading to multiple community memberships. Palla et al.
(2005) give an iterative definition, related to k-cliques, designed
specifically to examine overlapping communities. Because group
membership under their technique is binary, all individuals in a
community overlap have equivalent positions. We hope that FOG
tworks 30 (2008) 201–212

can shed light on distinctions in these interstitial roles by adding
weights of membership.

An alternative graph theoretic approach due to Moody and
White (2003) emphasizes paths, defining cohesive communities
as those supporting redundant communication threads. The same
path-based rationale supports the heuristic method of Girvan
and Newman (2002), which calculates communities by iterative
removal of high-betweenness edges. Both techniques assign binary
memberships, and those using the Newman’s method lack capacity
for overlapping or nested groups. Moody and White’s communities
do not overlap at any given level (FOG’s do), but their hierarchy pro-
vides nesting relationships and is in some ways more informative
as it supports the pairwise query: at what level are two individu-
als grouped? Newman’s algorithm has seen several extensions and
applications (Clauset et al., 2004; Newman, 2004a,b; Newman and
Girvan, 2004) demonstrating its effectiveness on extremely large
datasets which cannot be analyzed by other techniques (including
FOG).

Another line of grouping research, block modeling, revolves
around partitioning matrices such that subgroups have consis-
tent relations. Block models are a natural setting for detection of
structural equivalence (Lorrain and White, 1971), but have been
extended to a variety of other settings including detection of cohe-
sive groups (Doreian et al., 2005). Popular algorithms for block
modeling include CONCOR (Breiger et al., 1975) and FACTIONS
search (Borgatti et al., 2005). Recently, Doreian et al. (2005) have
generalized block modeling for the analysis of 2-mode data, such
as the relation of individuals and parties attended in Davis’ study
described below. Such relations are represented as rectangular
matrices, and are block modeled by providing a separate partition-
ing for rows and columns. This closely relates to H-FOG’s method,
which discretely partitions one mode (the events). Rather than par-
titioning the other mode (individuals), however, FOG optimizes and
presents fuzzy groups induced by the first partitioning.

In this paper, we often discuss 2-mode as described above, but
refer to it as link data. This is to reference link analytic literature FOG
is related to, to distinguish it from network data, and to emphasize
FOG’s perspective that we observe a sample of an infinite stream
of links rather than the entirety of a finite matrix. We refer to
our observed links as evidence, represented as an unordered set of
links. Each link is an unordered set of entities in which each entity
is assumed to have the same relation to an observation, such as
“signed meeting roster”, or “was observed in photograph”. Our set
of links may carry redundant associations (i.e. two events with same

attendees) or simultaneous associations of more than two entities
(one event with five attendees).

Data mining communities have produced several methods for
extracting group entities from this type of data, including the GDA
model/k-Groups algorithm (Kubica et al., 2003b) and Battacharya
and Getoor’s (2004) iterative deduplication method. These algo-
rithms partition link data to infer groups which maximize the
likelihood of observing the given data, according to a stochastic
model. The fact that groups are built by partitioning links (not indi-
viduals) produces the advantage that, as with Palla et al., individuals
may belong to more than one group. The method we introduce in
this paper extends on these methods by allowing varying levels of
association from entities to groups. This relaxation is intended to
allow our group models to more tightly fit the data and to represent
a wider variety of associative structures.

Another existing technique with some similarity to the FOG
framework is Latent Dirichlet Allocation (LDA) (Blei et al., 2003), a
recently introduced stochastic model for machine learning mixed
memberships. Airoldi et al. (2005) have adapted the model to
examine single-mode network data, yielding novel clusterings in
protein–protein interaction networks (Airoldi et al., 2006). The pri-
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of individuals who are likely to be exposed to the same experiences.
Since we cannot directly calculate or represent the distribution of
such groups, we sample them instead by computing a fixed number
of groups of fixed size.

2.4. Datasets
G.B. Davis, K.M. Carley / Soc

mary distinction between FOG and relational LDA models is that
LDA allows a single observed to be explained by a mixture of groups,
whereas FOG assumes that a single social context is associated with
a given observation, but hierarchically clusters such contexts to
construct a restricted mixed-group structure.

2.3. Link data from network data

Link analysis and network analysis have grown out of distinct
communities, despite being frequently applied to the examina-
tion of the same interaction phenomena. In many ways, grouping
research has become an intersection point in which practitioners of
both fields are attempting to capitalize on the strengths of the other.
Link analysis researchers approach group models as an opportunity
to characterize structure and dependence in interaction data which
is too often analyzed as though observations were independent.
Analysts who have traditionally used graph theoretic approaches
to examine network data are incorporating statistical models and
significance tests to improve their ability to reason about noisy data
and support claims about the significance of structural characteris-
tics in their networks. For frameworks such as FOG to see the widest
use (and scrutiny), we must develop translation techniques that
allow data in one format to be examined using algorithms for the
other. These translations must account for disparate data qualities
emphasized in the two branches of analysis.

Since small changes in network structure can have a large
impact on the graph theoretic measures used in network analy-
sis, translations from link data to network data are designed to
reduce noise as much as possible. Many network datasets begin
life as something more closely resembling link data. Lists of inter-
actions or survey responses are “flattened” into a matrix of pairwise
interactions using summation, cutoffs, or reciprocation criteria
depending on the interaction being studied and the network type
desired. Recently, Kubica et al. (2003a) have presented cGraph, an
expectation maximization approach to detecting underlying net-
works.

The stochastic link analytic techniques we examined are
intended to robustly handle noise given enough data. However,
when our source data is limited to the information in an interac-
tion matrix, we run the risk of amplifying any noise present when
we generate additional links. We must also tackle the problem of
reflecting the structural data contained in the network model in a
way that link analytic algorithms can interpret.

The simplest approach would be to interpret each edge in the

network data as a single link between two entities. Though it retains
all of the original data, this naı̈ve method produces links that indi-
vidually contain the minimal amount of structural information.
Broader patterns such as paths and clusters can be revealed only
by inspecting many links at once. This disadvantages greedy algo-
rithms that examine individual links, such as H-FOG, because they
are provided little basis on which to make their earliest (and most
important) clustering decisions. For these algorithms, we must gen-
erate “richer” links that give more structural information while still
only sampling the overall network.

In this paper we have adopted the “random tree” solution
described by Kubica et al. (2003a), inverting its purpose to gener-
ate random interactions rather than extract graphs from observed
interactions. Link data is constructed stochastically by iteratively
adding to links entities which are randomly chosen from the neigh-
bors of those already present. Fig. 1 illustrates this process. In the
illustration, nodes A and B have been visited already, making the
entire peripheral boundary of C, D, and E available as possible next
additions. Note that C has a twice greater probability of selec-
tion than D or E, as there are two links proceeding to it from our
already-visited structure. If our matrix were weighted, it would be
tworks 30 (2008) 201–212 203

Fig. 1. Random tree in progress. (A) and (B) have been visited; (C), (D) and (E) are
candidates for next added node.

the summed weights of those links rather than the quantity that
determined relative likelihood. The intuition behind this process
is to simulate chains of gossip or casual assemblies that would be
directly measured as a source of 2-mode data if available. We use
this technique on a weighted collation of Sampson’s monastery data
later in this paper.1

Prior work has examined relationships between networks and
distributions of random processes on them. Kashima and Tsuboi
(2004) showed that random walks can be used as a kernel in classi-
fication of structural features of a graph. Random walks and trees in
social networks have been used in simulations as analogs to real-
world processes, such as knowledge dissemination or the spread
of a disease (Christley et al., 2005). Page and Brin (1998) note that
eigenvalue centrality of each node in a network is proportionate to
the fraction of an infinite length random walk it will occupy, which
they have famously analogized to the search for information on the
web.

In this paper, we interpret groups found in random trees as sets
2.4.1. Sampson monastery
We chose Sampson’s monastery dataset (1968) as a testbed for

the FOG framework because it is one of the datasets most widely
discussed in social grouping literature. Sampson conducted a sur-
vey in which novice monks at a monastery ranked their compatriots
according to four criteria: like/dislike, esteem, personal influence,
and consistency with the creed of the monastic order. Sampson
made strong arguments for several discrete social groups in the data
based on direct anthropological observation. Events confirmed his
observations when, during the study, novices of one group resigned
or were expelled over religious differences. Samson’s surveys may
be the dataset that comes closest to providing social data with a
labeled “ground truth” for grouping research.

1 A potential criticism of this method is that its stochasticity introduces uncer-
tainty into results. In fact, since results will converge with a large sample, the user
can define a preference between accuracy and speed by specifying a sample size.
Reproducibility can be achieved by storing and reusing a random seed. Finally, ran-
dom link production is consistent with FOG’s modeling of uncertainty in all data,
and we believe affirmed by both our own empirical results and the prior efforts
below.
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Sampson’s monastery is discussed in greater depth in Sampson’s
original (1969) dissertation, and in the December 1988 issue of the
journal Social Networks. We compare the groups discovered by FOG
to Sampson’s and those presented by Reitz in that issue in his intro-
duction of a hierarchical clustering algorithm. Like that paper, we
use Breiger et al.’s (1975) collation of Sampson’s data: for each of
the relations “like”, “esteem”, “influence”, and “consistency”, the
top three positive selections by each individual at time three are
recorded in a relation matrix. Negative selections are ignored, as
negative relations are intransitive and thus cannot be positive evi-
dence of an inherently transitive co-membership.2 These matrices
are summed, yielding a single matrix summarizing the preferen-
tial data at that time period. The matrix in its entirety is shown
below as Table 1. Because FOG analyzes link-based data, we then
pre-process this matrix to generate links using the random tree
technique described above.

2.4.2. Davis, Gardner, and Gardner’s southern women
The southern women dataset (Davis et al., 1941) lists the atten-

dance of 18 women and 14 parties. The parties in this network are
precisely the type of linking observation which FOG is designed
to analyze without pre-processing. As with the monastery dataset,
there exists a labeling for groups based on direct observation rather
than algorithmic analyses. Davis et al. used ethnographic analysis,
including surveys, to distinguish not only between the two major
cliques, but three tiers of centrality within them.

A wide variety of mathematical approaches have been used to
reanalyze the data. Freeman (1992) preformed a comprehensive
meta-analysis of 21 such studies, and we analyze our results in
response to some of his conclusions. We have also accepted that
paper’s verdict on which of two conflicting figures in the original
work was correct. We reproduce that figure as Table 2, below, for
reference.

3. The FOG framework

Grouping methodologies are often introduced as algorithms,

although they encompass distinct models, measures, data transla-
tions, and validation schemes as well as the model-fitting algorithm
itself. To minimize this confusion, we discuss FOG as a framework
consisting of several components. The FOG generative model relates
link interactions we observe to group entities, which are hidden.
The H-FOG algorithm is a simple link-clustering approach to fit-
ting groups of the type described in the model to data. (As we
will show, the algorithm does not guarantee optimality and future
work may yield a fast algorithm that finds better fits.) A separate
link generation algorithm creates link data from social network
data.

3.1. Stochastic model of evidence generation

Since we are trying to infer groups based on link evidence, we
define our group membership relation as the tendency to be pro-
duced in observations associated with the group. We can alter the
strength of the tendency to be included in observations without
altering its fundamental character. We formulate the above math-
ematically as follows.

2 FOG is agnostic regarding the definition of “association” within the group it
detects; instead the definition is defined implicitly by the input. For example,
enmities and friendship ties might be provided as equally compelling evidence of
competitive association. Alternatively, to detect only internally friendly groups, one
would provide FOG with only friendly ties. In Section 4, we compare to a contrast-
ing approach by Doreian and Mrvar (1996) which incorporates evidence of active
disassociation. Ta
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Fig. 2. Illustrating relationships in the FOG model.

Consider a set of entities E and a set of groups G. Entities are ele-
mentary objects whose presence or absence is observable in a set L
of links (which are sets of entities). Groups emit pieces of evidence,
which consist of sets of entities which are co-observed. Groups emit
with different frequencies, according to a probability distribution ��
across groups such that �g, for g∈G, is the probability that any given
link was emitted by group g;

∑
g ∈G�g = 1. Elsewhere in this paper

we refer to �g as the emission prior, since it represents our expecta-
tion that a piece of evidence will come from a specific group, prior
to examining the members observed in the link. A membership
vector �g, whose entries are the probabilities that that each entity is
present in a link that has been emitted by group g, further describes
each group. We write this as ge = P(e∈ l|g⇒ l)), or the shorthand
P(e|g). We will refer to ge as membership strength or affiliation.
Fig. 2 illustrates the hierarchy of objects we have defined.

When considering the likelihood that a particular group would
produce a specific link, we must consider not only the probability
of observing the entities present in the link but also the probability
of excluding those not present.

P(l|g ⇒ l) =
(∏

e∈ l

ge

)(∏
e/∈l

1− ge

)
(1)

The assumption that, in the emissions of a single group,
members are emitted completely independently is important to
maintaining that the membership relation differs only in inten-
sity between entities. (A joint distribution would imply additional
substructure.) Similarly, we assume that links are generated com-
pletely independently given the groups and their emission priors,

so that the only structure exists between the groups and the entities
themselves, and in the relative frequency of emission of the groups.
Combining, these we can derive the likelihood that an entire set
of evidence would be produced given a grouping and an emission
distribution vector. The factorial coefficient in this equation nor-
malizes for the ordering of the link set, which is irrelevant to our
model.

P(L|G, ��) = |L|!
∏
l∈ L

∑
g ∈G

�g

(∏
e∈ l

ge

)(∏
e∈ l

1− ge

)
(2)

Performance and representation precision (probabilities
involved can be extremely small) demand that the above likeli-
hood function be calculated via a log-likelihood transformation. To
enable this transformation, we place the restriction that ge ∈ [pmin,
pmax], where 0 < pmin < pmax < 1. This ensures that a group always
has some nonzero probability of emitting its least related entity,
or excluding from a link even its most significant member.

Previous stochastic models of link generation have included an
“error term” under which there is some small probability that a
link will be emanated containing entities which do not cohabit any
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group. This was necessary to allow models to be fit to data without
placing extreme penalties on groups which were forced to include
outlying entities as equal members to more supported nodes. In
FOG, a similar purpose is served by allowing weak memberships
and assuming weak universal memberships, with the advantage
that we need no prior beliefs about an error rate.

3.2. The H-FOG algorithm

With the relationship between groups and evidence described
above, we can reduce group detection to an optimization problem
which searches for the grouping with the greatest likelihood of
generating the observed evidence: arg maxP(L|G, ��). Calculating
G,��
this explicitly would be intractable, so we propose an estimation
algorithm.

Since our model requires that a single group be responsible for
emanating each link, we can restrict our search by considering only
groups which optimally represent some partition of the data. The
group with the highest probability of single-handedly generating a
set of links is the one which emits each entity with probability equal
to the proportion of the link set in which that entity occurs. We build
groups of this sort by iteratively clustering link evidence in a way
that ensures links with the greatest similarity are grouped together.
For each pair of groups g1, g2, we consider a new group gn that
would maximize probability of emitting the combined evidence
supporting both groups (Ln← L1 ∪ L2). We then calculate the ratio
as a heuristic indicating the relative increase in likelihood of the
underlying links if they are considered the emissions of one merged
group rather than two separate ones.

|Ln|2P(Ln|gn)
|L1|2P(L1|g1)+ |L2|2P(L2|g2)

(3)

The pair for which this ratio is highest is merged.
m the DGG dataset.

The tree in Fig. 3, constructed from the southern women dataset,
illustrates the hierarchical clustering of evidence. Each intermedi-
ate node corresponds to a group tuned to produce evidence of the
types found in the leaves below. We define a horizon from this tree
as a set of nodes such whose children span all of the evidence, for
which none is the ancestor of another. A horizon, such as the circled
nodes in Fig. 3, corresponds to a set of groups which account col-
lectively for all of the observed evidence. If we choose our horizon
from the bottom level, groups are tuned to very specific profiles
of evidence, so that they are expected to produce any of the few
links below them with relatively high probability. As we move up
the tree, membership rosters for groups become more complex
and the distribution of links which they produce becomes more

entropic, so that the probability of producing any particular link
drops exponentially. At the same time, �g values rise as we ascend
the tree, since each group represents a greater proportion of the
underlying evidence. Near the top, groups are overly general and
fit the evidence underneath poorly, so that, even though �g’s are
high, the total probability of producing the evidence set is quite
low.

Unfortunately, reduced P(l|g⇒ l) outpaces increased P(g⇒ l)
over a climb of the tree, so that there is usually no optimal mid-
point that would allow us to discern a “most probable number of
group entities”. This conflict between the need for well-supported
groups and ones that tightly fit the data must be resolved by a pref-
erence fitting the context of the analysis. As such, an operator must
currently specify a number of groups, k, for which to search, effec-
tively deciding on a tolerable tradeoff between a simple model with
few groups and a model which most closely fits the evidence but
may in fact be over-fit. Fortunately, due to its hierarchical nature,
H-FOG needs be run only once to generate candidate groupings for
each feasible k. An analyst can then explore different numbers of
groups dynamically to determine subjectively which is best sup-
ported.
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Fig. 4. Fuzzy groups in Sampson’s monastery. Group A corresponds to the

4. Results and analysis

4.1. Fuzzy groups in the monastery

Since Sampson’s data consists of pairwise relations, we gen-
erated link data using the random-tree technique previously
discussed. Ten trees were initiated at each node, each expanding to
contain three nodes, and the set was clustered using the FOG algo-
rithm. Results are shown as a two mode (agent→group) network
in Fig. 4. Line thickness indicates the degree of membership. We
normalized line thickness within each cluster because it is not nec-
essarily appropriate to compare association levels between groups.
This is because our link generation method required exactly three
individuals in each observation, artificially deflating the average

frequencies of emission in large groups and inflating it in small
ones. Nodes have been manually laid out to elucidate membership
categories we discuss.

Sampson identified novice 2, Gregory, as the most significant
leader of the “young Turks”, the liberal newcomers who would
be expelled or resign in the coming drama. The members of that
group are collected exactly as those affiliated with group A. Gre-
gory’s position, as both the most affiliated to the Turks and the
only novice with connections to all three groups, suggests a high
degree of centrality both within the young Turks and in the net-
work as a whole. This type of border-spanning centrality has been
linked to iconoclasticism, power, and stress, painting a vivid picture
of factors which may have contributed to Gregory’s exit. The offi-
cial reasons given for his expulsion were excessive independence
and arrogance. Could he have been singled out as more dangerous
precisely because he had captured the attention and esteem of indi-
viduals outside the clique? Rank of affiliation to group A turns out to
be a good predictor for the order in which the young Turks left the
abbey: the second individual most affiliated with the Turks is Samp-
son’s second identified leader, John (novice 1), who resigned shortly
after Gregory’s exit, trailed by Mark (7) and the other novices.
g Turks”, group B to the “loyal opposition”, and group C to the “outcasts”.

Sampson’s third and lowest-ranking leader, Winfred (12), does
not buck this trend. Although his relatively low association to group
A belies his eventual identification as a leader of the Turks, it accu-
rately reflects his placement as the last one to leave the Abbey.
Winfred’s undistinguished position in our plot illustrates some
biases of this analytic method, as well as some peculiarities of his
situation. Winfred identified strongly enough with his group that
he was completely embedded: all of his incoming and outgoing
connections in the survey data lie within the Turks. The result is
that, although the random trees in which he appears are exclu-
sively tied to group A, he simply does not participate in nearly as
many total evidence pieces as high-betweenness boundary span-
ners like Gregory or John. As this shows, our evidence-generation
technique could rightly be said to put a premium on individuals

with high betweenness. However, this is defensible when paired
with interpretation placing it in a social context. Recall that we
generated random trees in order to model iterative interaction pro-
cesses within the graph, such as the spread of a rumor or the slow
accumulation of individuals to a casual gathering. It is easy to imag-
ine an individual with more diverse ties, such as Gregory, being
drawn into a wider variety of gatherings. By being a prolific inter-
actor, Gregory may well have defined the Turks to the rest of the
community, without necessarily intending to or even identifying
exclusively with them.

Evidence supports the distinction between Gregory’s “celebrity”
and Winfred’s “poster child” stances. In Sampson’s study, Winfred’s
leadership was either absent or unobserved in the presence of the
two higher-profile leaders, and became clear only after their exit.
Winfred’s embeddedness seems to reduce his significance at the
time of our analysis, but as the split widened between the Turks and
the opposition, making positions like Gregory and John’s untenable,
Winfred’s exclusive loyalty became the crucial element of his in-
group leadership.

The membership and leadership of the “loyal opposition” party
are similarly gathered around group B in our plot. Peter (4) and
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Bonaven (5), who were identified by Sampson as the leaders of
the opposition, show the highest affinity for the group. Members
described as less attached show less affinity, and one such novice
shows a split allegiance to the outcast group.

The absence of any links, save Gregory, between the opposi-
tion and the Turks serves to reflect the conflict between the two
groups. By contrast, the “outcasts” in group C have several members
associated with other groups as well. These cases show that fuzzy
memberships can help elucidate not only the complexity of an indi-
vidual’s allegiances, but also the character of a group as exclusive
or inclusive to interstitial members.

Sampson originally identified a fourth group, but we restricted
our analysis to three clusters because the last was not a cohesive
group fitting our definition. Sampson does not describe the “waver-
ers” as a set of individuals allied or interacting with one another,
but as being in similar positions of doubt between the two major
groups, more akin to our interstitial roles. Additionally, previous
analyses have questioned the distinction between the waverers
and the loyal opposition. Our own analysis places two of them,
Romul (10) and Victor (8), as weak members of the loyal oppo-
sition. From a purely structural perspective they are tied more to
the loyal opposition; whatever there mental allegiance.

Armand (13) is categorized as an outcast, owing less to his
statements of affinity for those individuals than from Basil’s (3)
and Elias’ (17) connections to him. Our classification of Armand
as an outcast is in line with the discrete partitioning provided
by Doreian and Mrvar (1996), who demonstrate that there was
increasing evidence over time that this foursome was a genuine
group. Doreian and Mrvar used a block modeling approach optimiz-
ing structural balance, a measure of cohesion incorporating both
positive and negative relations. Interestingly, their partitioning is
perfectly correlated with the groups to which each individual is
assigned maximal membership by FOG. We take these convergent
results from different methodologies as encouraging validation in a
setting for there is no known ground truth. The Doreian and Mrvar
study also includes a temporal analysis suggesting that in the final
period of Sampson’s observation, two members of the Young Turks,
Gregory and Mark, gave responses that fit better within the Outcasts
partition. Both of these individuals are marked as interstitial in the

FOG results, although Gregory’s departure is somewhat surprising
considering his very strong alignment with the Young Turks and
weak connection to the Outcasts.

4.2. Fuzzy groups among southern women

Analyses of the DGG data, including the original, have gener-
ally partitioned the women into two cliques3 that intersect on a
few individuals or events. We use a “spectrographic4” visualiza-
tion scheme in Fig. 5 to present the results of a 2-clustering of the
southern women in greater detail than would have been readable
in the Sampson analysis. Bars of each color indicate each woman’s
affiliation with two groups derived from 8 and 6 of the party rosters
respectively. Individuals are sorted along the X-axis according to the
difference in their membership levels, which maximizes the visual
distance between the cliques. We have also included a 2-mode net-
work visualization for comparison to the one we presented for the
Sampson data.

The results of our algorithmic approach correspond strongly to
the intuitive conclusions of Davis et al. In group A, the core and pri-

3 We use clique here to maintain consistency with prior work, not to indicate a
graph theoretic relationship.

4 So named after similarity to overlaid graphs of element density used to differ-
entiate substances in mass spectrometry.
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mary periphery are reproduced precisely as plateaus in the mem-
bership levels. Someone attempting to fit our analysis to their mode
might draw slightly different tiers for the group B, but the rough
ordering of individual affiliations is the same. For both groups, the
most peripheral members are seen in the center of our chart, with
low levels of affiliation in both groups. Some of these members
have been shown to be interstitial; for example Davis et al. report
that Ruth (9) was claimed by both cliques in interviews with mem-
bers. Others, such as Pearl (8) and Verne (10) were only claimed by
members of the cliques to which our chart shows greater affiliation.

There are many mathematical studies of the DGG data to which
the H-FOG clustering correlates. We will omit a pairwise compar-
ison, as many of the results are significantly similar to Davis et
al.’s intuitive analysis described above, and a comprehensive meta-
analysis has already been accomplished by Freeman. Instead, we
focus on FOG’s contribution to one prong of that analysis: the core-
periphery structure of the two cliques.

Davis et al.’ describe as “core” the individuals that are seldom
excluded from their clique’s functions. We see that the most affili-
ated individuals in both groups demonstrate a propensity to appear
with the other group as well. This supports the argument we pro-
posed with the Sampson data,5 that leaders of a group may either
arise out of greater participation with other groups than do the less
active members, such as those in DGG’s “primary” and “secondary”
members, or else experience more pressure to do so.

In his meta-analysis, Freeman treated core-periphery as an
ordering of individuals for each group, without specifying that cen-
trality in one group promoted distance from the other (although
that was a side effect of many techniques compared). FOG results
certainly fit that mode, but the juxtaposition of affiliations given
above lends itself to an additional breakdown of several interac-
tions. We can separate individuals into several modes of interaction.
We have central leaders, such as the novices John or Gregory or the
Southern women Nora and Katherine. There are embedded leaders
such as Winfred, Laura, or Brenna. There is a loyal second tier in each
of the groups we have analyzed, and finally a set of truly interstitial
individuals who participate at low levels in both groups.

From our observations of these roles in Sampson data, we might
issue the prediction that a thoroughly embedded member, such as
Brenda or Flora, would flourish if there were a falling out between

the two groups. On the other hand, if good relations continued
between the groups, our profile of an emergent leader might bet-
ter fit individuals such as Ruth or Helen: those with strong ties to
one group, but some degree of participation with the other. Davis
et al. do not examine conflict between these cliques and describe
no events that would be telling regarding our first hypothesis.
However, they completed a larger study of many cliques, in which
they used interstitial members to examine relations between social
classes associated with each clique. They describe a class of “on the
way up” individuals, who participate in events outside their clique
in order to socialize with those above them in social class.

The interpretation of interstitial members as a separate class
is supported by Doreian et al. (2005), wherein an error-averse
block-model partitioning of events revealed that Pearl and Dorothy
attended only events attended by members of both groups. For
the block modeling approach, which considers extra-group connec-
tions when assigning groups, this was sufficient evidence to place
them in a distinct group. FOG, which permits overlap but optimizes
only for intra-group cohesion, places them instead in both groups.
By analyzing interstitial members, we can use FOG to capture some

5 Since the DGG analysis is based on direct observations rather than synthetic
observations from random trees, we do not have the same concern about overem-
phasizing centrality that we did with the novices.
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Fig. 5. H-FOG 2-clustering of the DGG dataset, spectrogr

of the same structural insights provided by block modeling. How-
ever, some structural subtleties would not be captured by FOG. For
example, we would be unable to distinguish between individuals
like Pearl and Dorothy that attended only mixed events, and indi-
viduals who attended no mixed events but attended some from
each group.

4.3. Runtime

The graph in Fig. 6 profiles the runtime of the H-FOG algo-
rithm on evidence generated from random groupings with varying
aphic (top) and network (bottom) representations.

number of entities. Memberships for each entity are chosen from
a uniform distribution, and several sets of evidence with varying
numbers of links are generated, according to the FOG stochastic
model described previously. In total, the figure summarizes run-
time on 1500 evidence sets from 150 groups. The algorithm was
implemented in Python, an interpreted scripting language, and
executed on an Intel Pentium 4 machine running at a speed of
3 GHz.

Number of groups (not shown) has a minimal effect on runtime,
as the vast majority of calculation is performed on the lower lev-
els of the tree, before the cutoff for number of groups is reached.
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Fig. 6. FOG Runtime v. # entities and # groups.

The effect of the number of links (L) being grouped dominates
that of any other variable on runtime. Runtimes of H-FOG fall
under an O(L3) bounding. This is expected from the fact that H-
FOG must examine O(L2) candidate merges at each of L levels in
the merge tree. Runtime is affected linearly by the number of enti-
ties observed, as this number determines the upper bounds on the
number of calculations necessary to examine a candidate group. In
practice, many of these calculations are memoized, allowing for a
tighter bound than discussed.

5. Discussion and future work

We set out to introduce a new quantitative way of reasoning
about the complex relationship between individuals and groups,
allowing varied degrees of participation in multiple groups. We
proposed the FOG stochastic model, which dictates relationships
between individuals, groups, and observable interactions as a gen-
erative model for link data. To make FOG a useful analysis tool, we
introduced the H-FOG algorithm which fits a model to existing link
data. To investigate single-mode network data, we implemented
a simple method for generating rich multi-entity links from a
pairwise network based on a simplistic simulation of interaction
processes.

5.1. Validation

Mathematical approaches to group detection are based on the
assumption that groups have a reality outside individual percep-

tions, which we can detect statistically. It should therefore be
possible to empirically validate grouping methods on their abil-
ity to predict the outcome of processes in which groups play a role.
Currently, the closest we have to this sort of predictive test is to
compare our analysis to that of anthropologists like Sampson, who
were able to relate their intuitive observations to unforeseen events
in the social group. Can fuzzy grouping rediscover social patterns
that stood out to ethnographers in the field?

In the two datasets we studied, the answer is yes. The discrete
groups identified by both Sampson and the DGG team were nearly
identical to the list of individuals with greatest affiliation to each
group in our analysis. Additionally, substructures and leadership
roles identified by the original authors corresponded strongly to
the levels of affiliation we discovered. FOG sits well among a vari-
ety of mathematical approaches which have supported the original
intuitive analyses. However, these have usually relied on separate
techniques to distinguish groups, leaders, and internal structures.
One advantage of FOG is the ability to unify these multiple levels of
analysis under a simple model.

On the subject of validation, many link analytic methods, includ-
ing k-Groups and iterative deduplication, have been validated from
tworks 30 (2008) 201–212

a data mining perspective by testing the ability of the method to
rediscover groups from artificially generated data. We plan to con-
duct this type of examination when we complete a new fitting
algorithm to replace H-FOG.

5.2. Interstitial roles

The existence of interstitial roles, where an individual retains
several group affiliations, was our principle motivation for devel-
oping a fuzzy grouper. We identified many such individuals in our
analysis, fitting several profiles. With great frequency, the most
apparent leaders of a group had weak ties to other groups as well,
as did those members with the least affiliation to any group. The
differentiation of these two roles, as well as the surprising result
that most groups contained a well-embedded middle tier, would be
difficult without FOG’s novel properties: the combination of multi-
ple memberships and degrees of membership. As FOG is applied to
additional datasets we expect that a better understanding of indi-
vidual roles based on multiple memberships will emerge. The FOG
approach holds promise of providing a mathematical base for cap-
turing and defining some critical types of social roles not heretofore
measurable.

It is worth noting that FOG did not always identify as interstitial
the individuals whom we would expect. In some cases, such as with
Sampson’s waverers, individuals who were considered interstitial
by an observer were placed in single groups by FOG. Conversely,
some of the “secondary” clique members in the DGG dataset would
appear to be interstitial on a reading of our charts, but were only
claimed by a single clique in specific surveys conducted by Davis et
al. The distinction between members who are simply weakly con-
nected and those who fill an actively interstitial role may be beyond
our level of analysis. Alternatively, noise may have been introduced
in the specific data we examined, or results may have been mis-
interpreted by the original observers. Since analysis of interstitial
roles is a vital component of FOG, future work should investigate
in depth what factors in data affect our ability to differentiate
roles.

5.3. Generating link data from networks

Although the theory underlying the FOG model requires link
data that indicates a shared context between members, we are
optimistic about the ability to examine single-mode network data
by generating fake data from simulated interactions. In the Samp-

son data, we were able to affirm existing knowledge about the
monastery social groups using this approach, while generating new
theories.

A crucial aspect of this analysis was to connect the final results
with the assumptions under which link data was generated. Since
Breiger et al.’s matrix indicated relationships between novices that
could lead to interaction, we built our link generator as a simu-
lator of social contexts that spread “infectively” through iterative
interactions. This type of link increased the observation frequency
of high-betweenness individuals, but we might expect those indi-
viduals to be disproportionately represented in real data recording
this type of interaction. Understanding this bias helped us interpret
the difference between embedded and interstitial members when
interpreting the role of novice Winfred (12), the last leader of the
young Turks.

A potential criticism of random link generation is that it injects
variance into our analysis. In this study, we approached the problem
by generating larger sets of random trees until differences between
runs were below the threshold of our qualitative analysis. However,
increasing the number of samples comes at a significant computa-
tional cost. We attempted a similar process using a network from
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a cleaned corporate email corpus (Diesner et al., 2006) contain-
ing 150 users, and were still experiencing visible variance between
results when using samples of 450 links at an average runtime of
over 8 h. We hope to address this in future work, first by improving
scalability so that larger samples can be used (see alternative algo-
rithms below), and second by conducting a sensitivity analysis to
guide selection of sample parameters for networks of different sizes
and properties. Notably, some networks drawn from 2-mode data
may be easier to analyze in their original form. We were able to per-
form an informative analysis of the same emails in only 30 min by
multi-recipient emails rather than random walks on the incidence
network as observations.

Another peculiarity of the random-tree link model is that it
discards the directionality of links. Since FOG interprets only the
presence or absence of an individual in a link, no distinction is
drawn between individuals originating a random observation and
those added subsequently. This affects the placement of individuals
like Amand (13), who appeared in many interactions with individu-
als whose admiration or affection he did not reciprocate. One could
again argue that many types of real data would have similar con-
fusion, but it is also possible that a link model could be adjusted to
include this information.

We also believe that networks of different relations may require
different link models. In a formal communication network, such
as a corporate hierarchy, where messages pass along a fixed route
from source to destination, a random, directed walk would be more
appropriate than a random tree. It might be convenient to analyze
2-mode networks by simply interpreting one of the modes as links,
but that decision should similarly depend on the type of relation-
ship represented in the network. Link generation for multi-mode
networks is another direction we intend to develop to further FOG’s
applicability.

5.4. Analyzing and visualizing fuzzy relationships

Social groups with binary memberships can be analyzed by
common statistical techniques. For example, when Davis et al.
introduced the southern women dataset as overlapping cliques,
they were able to investigate the character of each clique by taking
aggregate statistics over its members. The same analysis would be
non-trivial for a FOG cluster. What is the mean income of the mem-
bers of a fuzzy group? The question is especially difficult because
our results are intended to denote a level of participation, and not
necessarily the degree to which members are representative of

their group. If fuzzy groupings become a useful analytic tool, new
measurements will have to be developed or adapted to properly
interpret the new information given.

We have barely scratched the surface on that work in our intu-
itive analysis of the clusterings in this paper, but we have tried to
uphold several principles in our analysis. First, membership val-
ues should not be examined independently of the context of other
memberships held by the same individual and to the same group.
Groups or individuals may have different average memberships,
for reasons that have less to do with the actual importance of
those memberships than with the nature of group events or the
way data was collected or generated. Secondly, the novel strength
of grouping with multiple, variable memberships is the ability to
compare several simultaneously occurring memberships in indi-
viduals. We intend use FOG to define and investigate roles that are
defined in terms of multiple memberships, rather than to rehash
issues of internal group structure that have been examined by other
algorithms.

At this phase in our understanding of fuzzy overlapping groups,
visualizations play an especially important role by influencing the
types of patterns we can identify intuitively. We have presented
tworks 30 (2008) 201–212 211

two visualization paradigms in this paper, one indicating individu-
als’ memberships to groups as a weighted two-mode network, and
the other a spectrographic view providing all membership levels
explicitly in bar chart form. As with most visualizations of overlap-
ping clusters, placement of individuals can be difficult as the page
does not have enough dimensions to represent all association pat-
terns. We had few enough groups in both of our analyses that we
were able position individuals for reasonable clarity, but this would
not be true in more complicated datasets. We have experimented
with several heuristics for laying out more than two groups in spec-
trographic figures, but more work needs to be done in this area.

5.5. Alternative algorithms

In this paper, we focused on one algorithm, H-FOG, which per-
forms hierarchical clustering on event data. H-FOG was appropriate
for the datasets we examined because of their relatively small size
and known number of groups. We are currently investigating alter-
native algorithms which share the FOG stochastic model but allow
settings with more data or unknown group numbers.

If an analyst plans to examine only a specific number of groups
k, then H-FOG waists significant computation time calculating
branches of the tree above and below that point. k-FOG is an
alternative algorithm which uses expectation maximization (EM)
clustering rather than hierarchical. Like H-FOG it is susceptible to
local maxima, but tends to converge much faster and is thus suit-
able to larger datasets. In some settings, an analyst may be interest
in groups of a certain type but be uncertain of the exact num-
ber. ˛-FOG allows specification of an ˛ parameter encoding the
desired level of group cohesion (as compared to number of groups).
It then approximates optimal group assignments and number of
groups using a Dirichlet process built around the likelihood func-
tion described in this paper.

The details of these algorithms are beyond the scope of this
paper, but future work comparing them will allow us to better
assess the strengths of different clustering paradigms in this fuzzy
grouping context.

FOG represents a significant movement forward in our ability
to identify groups as it enables the location of fuzzy groups. Fuzzy
groups are a more natural and compelling way of thinking of human
social groups. An unintended consequence of this approach is that
the strength of membership in groups and the prevalence of exclu-
sive members are diagnostic. We saw historical case study evidence
that the strength of membership was valuable in predicting the

willingness of actors to act with their group; e.g., in the case of the
Sampson data, the strength of group membership is a good indica-
tor of the order of leaving. We saw similar evidence that the higher
the prevalence of exclusively tied individuals the higher the like-
lihood that the group would fission into an isolated component;
e.g., in the case of the DGG group 2 is predominantly composed of
exclusive members and it is the group that ultimately fissioned off.
While preliminary, and based on only two case studies, these find-
ings are strongly suggestive. As such, we expect that a fuzzy group
approach may be key to building a mathematics of emergent group
phenomena.
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