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Chapter 1

DYNAMIC NETWORK ANALYSIS APPLIED TO EXPERIMENTS
FROM THE DECISION ARCHITECTURES RESEARCH ENVIRONMENT

Kathleen M. Carley, Ph.D.
Carnegie Mellon University, Pittsburgh, PA

Michael K. Martin, Ph.D.
Carnegie Mellon University, Pittsburgh, PA

John P. Hancock
ArtisTech, Inc., Fairfax, VA

INTRODUCTION

ADA CTA research is producing experimental results from simulations
of intermeshed networks of warfighters and battlefield surveillance
assets. These networks form a complex system with behaviors that
emerge from patterns of interaction among constituent entities. The sim-
ulated interactions are spatially situated, temporally distributed commu-
nications among people, robots, and software agents. In general terms,
the complex system — parts of which we address in this paper — can be
conceptualized as a two-level meta-network that includes interactions
among human agents at one level, interactions among artificial agents at
another level, and cross-level interactions between human and artificial
agents.

The issue addressed in this paper is Dynamic Network Analysis (DNA)
of system behavior. For the purposes of this chapter, we are not inter-
ested in examining the performance of one system relative to another.
Although this type of comparative analysis can be useful for researchers
or system designers, it is of questionable use to warfighters. Instead, we
are interested in analyses that produce tactically relevant, actionable
results that highlight the strengths and weaknesses in the system being
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16 CARLEY, MARTIN, AND HANCOCK

observed. To be useful, the analytical results must foster tactical insight
and stimulate battlefield decisions that prudently influence future sys-
tem behavior.

To this end, we describe two case studies that apply DNA to the sim-
ulated battlefield data being generated by experiments in the Decision
Architectures Research Environment (DARE). The first case involves inter-
cepts of simulated communications among human agents, which we
frame as an exercise in adversarial reasoning. The second case involves
simulated communications among surveillance assets (i.e., software
agents and robots), which we frame as an exercise in understanding the
automated control of a Persistent Coordinated Video Surveillance (PCVS)
system. Together, we believe the case studies demonstrate how DNA
(Carley, 2002) can foster tactical insight in complex multi-entity scenar-
ios. They also demonstrate that the combination of DNA techniques
required for tactical insight may vary according to the type of network
being analyzed. Finally, they show how DNA assists in the development,
understanding and tuning of software agent systems.

ANALYTICAL APPROACH

One approach to analyzing system behavior employs mainstream
statistical techniques on summary measures of performance (e.g., per-
cent of targets tracked, percent of priority targets tracked with accept-
able accuracy, track correlation, etc.). This type of analysis, however,
does not fully exploit the information generated in DARE experiments —
or by battlefield surveillance in general. More to the point, it provides lit-
tle insight into the identification of levers in the networks underlying sys-
tem behavior. Once identified, levers can be used to determine actions to
take to influence future system behavior.

DNA provides an alternative analytical approach that compliments
mainstream statistics. With DNA, the focus shifts from aggregate mea-
sures of performance for a collection of battlefield entities to the perfor-
mance implied by the structure of relations among battlefield entities.
This shift is the essence of what it means to view the battlefield from a
network science perspective. That is, from a network science perspective
we are less concerned with what is normal (e.g., averages, dispersions)
about entities in the battlefield (e.g., people, places) and more con-
cerned about detecting substantive patterns in the observed relations
among entities. The emphasis on the structure of relations in DNA makes
it particularly well-suited to the detection of anomalies and exceptions
(e.g., centralities, exclusivities) — the levers with potentially large influ-



Dynamic Network Analysis 17

ences on system behavior. DNA, therefore, fosters scrutiny of strengths
and vulnerabilities in the relations among battlefield entities (i.e., the
observed system). With a DNA model, we can identify (among other
things) implicit groups of entities, key people and locations, and opera-
tionally significant time frames. We can even begin to infer relations
among entities where none have been observed.

Network science has been hampered historically by a dominantly
social perspective focusing on who interacts with whom. However, Carley
(2002) argued that these social networks exist within an ecology of net-
works that can usefully be characterized in terms of the dynamics of the
relations among the who, what, where, how, and why. This is known as
the meta-network perspective. *ORA (e.g., Carley, Columbus, DeReno,
Reminga & Moon, 2008) is a dynamic network analysis package that can
be used to assess multi-mode, multi-plex networks; identify key players,
groups and vulnerabilities; enable comparison of two or more networks;
and facilitate reasoning about spatio-temporal networks.

*ORA supports analysis of dynamic networks in many ways: (1) com-
parisons of temporally ordered snap-shots of static networks, (2) statisti-
cal change detection on sequences of networks, (3) trail analysis for trail
data and conversion of trail data to networks, (4) simulation of change in
networks, and (5) comparative statics for immediate impact assessment.
Herein, we make use of statistical change detection and trail analysis,
along with *ORA’s visualization capabilities.

CASE STUDY1: TERRORISTS IN ADELPHI

The scenario for case study 1 was framed as intercepts of simulated
communications among agents representing terrorists and noncomba-
tants (e.g., pizza delivery guys). The agents communicated via phone and
email as they moved about the Adelphi region.

Data Generation

The data were generated by ArtisTech’s AlgoLink simulator. The
AlgoLink simulator was originally developed to test the capabilities of
message analysis tools to support intelligence analysis requirements in
battlefield communications. AlgoLink (see Figure 1.1) facilitates custom
construction of entity networks that follow specified communication
structures, times, places, durations, and behaviors. It generates both the
foreground (network of interest) and the background communication as
specified and stitches them together into a single communication record.
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Background communication is both structured (e.g. inter-mingled hierar-
chical and social organizations) and random as specified by the human
simulation operator. AlgoLink uses realistic communication and organiza-
tional data, timing, and morphologies but contains no information about
any real person or organization.

Figure 1.1
The AlgoLink message simulator interface

The data-set created for this experiment was generated by ArtisTech
staff looking forward to system-based Intelligent Agent communication
behavior analysis. The entities of interest were organized into a small
number of “cells” that were uniquely connected and stitched into a
larger background “community.” The data-set was geographically cen-
tered on the ARL Adelphi campus because the ARTEMIS project is coordi-
nated with the ARL Computation and Information Sciences Directorate
research systems. The simulated social structure was morphologically
similar to a medium-sized community of intelligent agents acting with a
specific purpose in a battlefield Command, Control, and Communications
(C3) system. To simulate “an event” that stimulates the communication
network, a spike in communication volume was inserted at a selected
time. The AlgolLink-generated data-set was a rapid way to assess the fea-
sibility of collaboration between the ARTEMIS-PCVS and CASOS teams.
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Analysis

The AlgoLink output was delivered as an XML file containing a
sequence of communications records. Each simulated communication
record identified the sender, the receiver, the time the communication
occurred, its duration, and whether its content was operationally rele-
vant, irrelevant, or ambiguous. It also contained latitude and longitude
for the position of the mobile senders and receivers during each commu-
nication.

Our analysis strategy in this case can be generally described as an
overview-and-zoom. That is, we first examined the general context of
communications activities, and then drilled down to determine impor-
tant agents, time-frames, and locations. The subset of *ORA capabilities
that proved particularly useful here included geospatial visualization, key
player identification, change detection analysis, and the correlation of
standard network and geospatial visualizations.

Using *ORA’s geospatial visualization capabilities (e.g., Davis, Olson,
& Carley, 2008) we exploited the presence of time-varying, geo-located
attributes of the intercepted communications to discover the scenario
involved suspicious entities fleeing the Adelphi area (see Figure 1.2).

Figure 1.2
Agents fleeing Adelphi over the time course of the scenario

Using a fuzzy group clustering technique, FOG (e.g., Davis & Carley,
2008), we found that the suspicious entities were organized into five
groups with shared members (see Figure 1.3). The interstitial members
are likely to contain the coordinators and leaders.
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Laltopy)

Figure 1.3
Agents organized in 5 groups that share members

To drill down, we first used *ORA’s Key Entity Report to identify the
three agents most critical to operations (see Figure 1.4). Because the
data were about communications, two different centrality measures
were used — degree centrality and betweenness centrality. Degree cen-
trality measures who is connected to most others (i.e., the actor most
likely to be “in-the-know”). Betweenness centrality measures who is
most likely to be on all the paths by which information flows (i.e., the
actor most likely to be influential). This enabled narrowing our focus to a
small group of leaders instead of focusing on the set of interstitial mem-
bers.
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Key Entity Report identifies 3 important agents

We next asked, is something happening? One way of answering this
is to see whether there is a change in standard behavior. Using the
Change Detection Report (see Figure 1.5), we identified period 3 as the
time-frame in which operations most likely occurred.
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Figure 1.5

Change Detection Report signals time period 3 is different
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The network change detection analysis (McCulloh & Carley, 2008;
2009; McCulloh, Webb, Graham, Carley & Horn, 2008) extends change
detection from operations research, where it has been used on variable
level data, to relational data. This is a statistical approach for detecting
small persistent changes in organizational behavior over time using sta-
tistical process control techniques applied to network summary statistics.
Period 2 was the point at which organizational behavior changed, leading
to radical difference by period 3. This appears to have been a planning-
execution phase shift.

Examination of individual-level metrics for the three key players and
network-level metrics (e.g., centrality, betweenness, efficiency, connect-
edness) corroborated our interpretation that period 3 was operationally
significant. Individual-level metrics indicated that actor 286 engaged in
extensive coordination at period 2, passing the reigns of control to actor
652 at period 4 (see Figure 1.6).

Figure 1.6
Individual-level metrics converge on period 3

Examination of network-level metrics (see Figure 1.7) showed that the
group was generally a very distributed structure that coordinated into a
centrally controlled, more efficient, unit at period 3. Then, it went back
toits
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Figure 1.7
Network-level metrics converge on period 3

standard form and became more “hidden” in the socio-communication
environment.

Having identified the key players and time period, we focused our
analyses on discovering what may have happened. Examination of the
agent x location network for period 3 (see Figure 1.8) indicated a large
cluster of suspicious entities in the Adelphi area (including key player,
Agent 286), a fairly large cluster of suspicious entities (including another

97, liaison

P
waypoint Wl —_}

286 in Adelphi
w/many others

Figure 1.8
Agent x Location Network for period 3

key player, Agent 97) in what appears to be a staging area, an apparent
waypoint between the staging area and the cluster of suspicious entities
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in Adelphi (also visited by Agent 97, who seems to be a liaison), and a
runner (key player, Agent 652) who visits many locations with few suspi-
cious entities present.

Another key advance, developed as part of the CTA, was the capabil-
ity to move between trail data — who was where when —and networks.
When we examined the trails visualization for period 4 (i.e., the period
immediately following the apparent operation, perhaps a period of initial
surveillance), we saw that the three key players were never in the same
place at the time; Agent 652 was again running, whereas the activities of
Agents 97 and 286 were restricted to one or two areas. The apparent
coordination handoff from Agent 286 to Agent 652 is related to 652’s
increase in spatial movement and coordination needed due to increased
movement. In the trails visualization (see Figure 1.9), time progresses
down the y-axis. Geographic regions form vertical bins along the x-axis.
Arrows are plotted as agents move from region to region (or within
regions), and in this case are color coded to the three key players.

Figure 1.9
*ORA Loom visualization of trails for 3 key players during period 4

Finally, correlating a standard agent x location network visualization
with a geospatial visualization for the end of the scenario we found that
Agent 286 was alone with a single movement between two locations in
Adelphi, Agent 97 was holed up with a sizable group of suspicious enti-
ties north of Adelphi, and Agent 652 was alone but on the run (see Figure
1.10).
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Figure 1.10
Correlation of agent x location network and geographic location at sce-
nario end

Given the pattern of communications and movement during the sce-
nario, two courses of actions appear reasonable: (1) scour Adelphi for a
bomb, IED, etc. planted during operations in period 3, or (2) go after dis-
persed suspicious entities. With respect to action 2, Agent 286 may be an
easy target with direct knowledge of the operations that occurred during
period 3. Targeting the location where Agent 97 is hiding, however, will
yield more suspicious entities. Note that the simulated data does not
include communications content so specification of the event is not pos-
sible, but the applied DNA analysis accurately identified the time, place,
and lead entities in the simulation.

CASE STUDY 2: MOVEMENT IN THE PERIMETER

The scenario for this case centered on an automated surveillance
system (i.e., the ARTEMIS-PCVS system) that is responsible for identifying
moving entities within the perimeter of a Blue Force research com-
pound. The system divides the perimeter into four areas of responsibility,
where each area is assigned to a “Tasking Agent” that is responsible for
surveillance (see Figure 1.11). Tasking Agents get simulated movement
reports from simple video analysis algorithms. Tasking Agents then prior-
itize “targets” and assign mobile robotic assets to pursue and identify the
targets.
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ARTEMIS Tasking Agent Areas of
C2 Responsibility

Figure 1.11
Tasking Agent Areas

Data Generation

The data were generated by ArtisTech’s ARTEMIS-PCVS system proto-
type (see Figure 1.12). This prototype uses hundreds of small reasoning

Figure 1.12
3D View of ARTEMIS-PCVS scenario on the GIS ARL Adelphi testbed
model
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algorithms encapsulated in software agents. The agents communicate
with humans, agents, and other system elements and even create and
delete other agents with frequencies that are dependent on their reac-
tions to the sensed environment (simulation).

The particular experimental run analyzed here was conducted to
determine whether Tasking Agent reasoning and communication about
sharing mobile robotic assets was functioning as expected. The scenario
included a short time of quiescence in the compound, followed by the
injection of a relatively large number of moving targets that moved
about the compound using reasonable paths but freely crossing areas of
surveillance responsibility. When targets cross areas of responsibility the
complexity of reasoning increases and requires that Tasking Agents trans-
fer (handoff) tracking and even possibly “lend” robotic assets to other
Tasking Agents. The act of lending the asset involves communication to
notify an adjacent Tasking Agent of an “incoming” unidentified entity,
and a multi-message Tasker-Global Tasker “handshake” to transfer con-
trol. There were two of these handoff events in the scenario. This sce-
nario was a simple one to facilitate early collaboration between ARTEMIS
and CASOS staff.

Analysis

As with case study 1, the data were delivered as an XML file com-
prised of a sequence of communications. The communications were
between software agents or software agents and robots.

Although the data sets were superficially similar (i.e., logs of commu-
nications records), case study 2 presented several challenges not present
in case study 1. These challenges arose primarily because the data for
this case were relatively impoverished. DNA requires large data sets and
we did receive more data for case study 2 than for case study 1. However,
the extra data were of little benefit because they provided little informa-
tion regarding the structure of the system we were analyzing. In terms of
structural information, the extra data were mostly redundant.

The analysis was complicated by the fact that the scenario included
only two instances of the target handoff event —the signal we were to
detect. In structural terms, this means that we were looking for a change
in network structure that involved (per ArtisTech’s description of the
handshake) three links at most. Thus, the statistical change detection
analysis used in case study 1 was of no use. Such a small change in struc-
ture would not be detected as being statistically significant.
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The analysis was further complicated by the absence of geo-coordi-
nates for the mobile robots. Therefore, *ORA’s geospatial visualization
capabilities could not be employed. The insight that can be gleaned from
visualizations of agents x locations, as used in case study 1, was also lost.
Without location, we also lacked any means for constructing trails data
to examine who was where when.

Finally, the goal of analysis in case study 2 differed from case study 1.
In case study 1, we employed DNA techniques designed to identify
important entities, locations, and times. The purpose of the analysis,
therefore, was to identify centralities. In contrast, the purpose of the
analysis for case study 2 was to identify exclusivities (i.e., the two Tasker-
Global Tasker handshakes).

Given the impoverished data set and our goal of detecting only two
instances of the handoff among a small set of agents and robots, the
analysis strategy we adopted for this case was one of converging opera-
tions (to “kick-start” a DNA of richer data in the future). ArtisTech per-
sonnel (with their knowledge of the system) manually analyzed the data.
CASOS personnel applied DNA techniques to the data. The following dis-
cusses only two of the issues we addressed.

To find the handoff where one Tasking Agent loaned a robot to
another Tasking Agent, we relied on ArtisTech’s identification of mes-
sage-types that indicate such a handoff occurred. Three message-types
were related to the handoff: Removeldentity, ReportPositionToSelected-
Tasker, and ReportPositionToSelectedTaskerReturn. Finding the handoff
was then simply a matter of using *ORA’s Sphere of Influence capabilities
to visualize which agents were involved. Figure 1.13 shows the three
important messages, along with the agents that sent and received them.
It can be seen that Tasking Agent 3 is positioned in the network differ-
ently than Tasking Agents 1, 2, and 4. Furthermore, we see that Tasking
Agent 3 was the only agent to send the ReportPositionToSelectedTasker-
Return message (as indicated by the arrow on the link between the agent
node and the message node). Global Tasking Agent 7 received this mes-
sage and sent a Removeldentity message to Tasking Agent 3. The sphere
of influence also indicates that the ReportPositionToSelectedTasker mes-
sage was probably not uniquely related to the handshake.
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Figure 1.13
Sphere of Influence visualization showing robot handoff

In anticipation of richer data sets, the second issue we examined was
whether we could use DNA techniques to partition agents into fore-
ground and background agents. To this end, the ArtisTech team produced
a meticulous message trace analysis and event identification as ground
truth for the CASOS team. Even as fully knowledgeable designers of the
communication logic this analysis and documentation took more than 4
hours using simple text search and a numeric message frequency analysis
provided by CASOS. The complexity of this analysis underscores the need
for network analysis techniques for a more complete system experiment
analysis.

Per ArtisTech’s analysis, agents could be divided into foreground
agents that were substantively related to the scenario and background
agents that existed simply to make the simulation run. Our task at
CASOS, therefore, was to employ one or another DNA technique to sepa-
rate foreground from background agents. We found that the Newman
grouping algorithm worked well, separating foreground and background
agents into groups that closely approximated the manual analysis. Seven
of ten background agents were correctly classified. But there was dis-
agreement between ArtisTech judges regarding whether one of the three
misclassified agents was a background or a foreground agent. One fore-
ground agent out of 29 undisputed foreground agents was misclassified.
That the Newman grouping algorithm corresponds fairly well with the
judgments of domain experts is promising, and suggests a line of
research concerning the “psychological validity” of Newman grouping.
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SYSTEM UNDERSTANDING AND TUNING ACTIVITIES

ArtisTech postulated the additional benefit of performing DNA on
the output logs from the internal system communications; the analysis
supported understanding of how the team and system achieved the mea-
sured performance. The ARTEMIS research team was in the process of
setting up system model experiments to study the advantages that auto-
mated reasoning could add to widely used numeric image and video pro-
cessing for the purpose of PCVS. As we modeled the reasoning and set it
into the simulation we have conducted many test runs. We can easily see
when the macro system behavior is as designed and when it deviates
from intentions. However, to determine why the deviations occur and
how the reactive agent networks achieve intended system performance
requires message level analysis. ArtisTech shared mixed-result test logs
with CASOS specifically to facilitate the identification of expected and
unexpected results, and how they arise.

Results from initial analyses in both case studies diverged from
expected results. In hindsight this is hardly surprising. Design of a com-
plex, multi-agent system with emergent reactive system behavior may
not be possible without the support of network analytics.

In both cases we found evidence of pragmatic, technically correct,
programming practices that interfered with substantive DNA of the com-
munications logs. ArtisTech confirmed that the experiment runs that
were analyzed were not considered final or expected to be entirely cor-
rect, merely typical in content and form. Whether we view this as a veri-
fication issue (i.e., building the thing right) or a validation issue (i.e.,
building the right thing) depends on perspective. Given that verification
is primarily an internal activity; the degree to which programmers
achieved the intent behind specifications is a matter of interpretation.
From the perspective of network analysis (i.e., users of the output logs),
however, we can note a minor short-fall in validation. Specifically, com-
munication records that are not relevant to the scenario being analyzed
should be filtered from the log to increase usability.

In the initial analysis, we experimentally illustrated that DNA
approaches provide a capability to analyze complex message sets to find
particular behavior patterns of interest. In the second analysis we began
forging a collaborative research approach designed to unearth the ana-
lytic steps — the combinations of DNA techniques — required to analyze
different types of messaging behavior.
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LESSONS LEARNED AND FUTURE DIRECTIONS

Open collaboration between data providers and network analysts
created a beneficial gap between expected and observed system behav-
ior. As data provider, ArtisTech developed the multi-agent system and
environment simulations, designed the scenarios, and conducted the
simulation-based experiments — with expected system behaviors in mind.
The nonlinearities inherent to complex systems comprised of interacting
agents, however, make it notoriously difficult to predict emergent and
reactive behavior, and are indeed the reason computer simulation is nec-
essary. As network analyst, CASOS received militarily relevant battlefield
simulation data without prior knowledge of expected system behavior.
The challenge to CASOS, therefore, was to use DNA to characterize what
happened in the mysterious scenarios received — and CASOS observa-
tions initially diverged from ArtisTech default expectations. To resolve the
discrepancy, we used DNA to examine why the simulations did not
behave as expected. Thus, the postulated benefit of the ArtisTech-CASOS
collaboration was the use of network analytics to gain insight into the
performance of multi-agent systems. ArtisTech, with CASOS, now plans
to use this approach and DNA tools to build a set of reusable system
experiment analysis methods that will be applied to understand how
variant Human/Automation PCVS experiments achieve observed results
using networks of communication and behaviors.

With regard to demonstrating the tactical relevance of DNA, the
availability of military scenario data is invaluable. It provides opportuni-
ties to combine extant DNA techniques into analytic strategies that pro-
duce results warfighters can use. Generally, we found that the family of
DNA metrics and visualizations that have been implemented in *ORA
over the past 10 or so years provides an ample basis for conducting tacti-
cally relevant, actionable analyses on battlefield data.

Two *ORA capabilities were particularly helpful during this effort:
geo-visualization and network change detection. The (not-so-simple) act
of placing networks on a map puts abstract social networks into a con-
crete, spatial context. It provides explicit information about where the
action is taking place. The capacity to detect structural changes among
temporally ordered networks provides explicit information about when
the action is taking place.

The case studies also helped to identify several areas where future
development could improve *ORA’s tactical relevance. The improve-
ments would generally support delivery of one or more Tactical Insight
Reports. As envisioned, these reports would contain the outputs of all
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DNA techniques that contribute to a particular analytic strategy. From
the two case studies described above, it appears that correspondences
among networks of the relations among entities, networks of geospa-
tially anchored entities, and networks distributed over time will play a
central role in such reports.

For ArtisTech the goal of DNA applications to system analysis and
monitoring is to investigate the creation of a generalized data structure
and DNA method combination approach that will allow the encoding of
expected or detected message and behavior patterns. The initial applica-
tion of this concerns post experiment review. The more far-reaching
implications of such DNA mechanisms extend to real-time embedded
system monitoring to increase distributed system security and user trust.
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