From Texts to Networks
From AutoMap to ORA

- Extract a network from texts using AutoMap
 - Easy approach is D2M – data-to-model
- Load relational data into ORA
 - Visualize the network
 - Generate specialized reports
 - Hot topics report
 - Semantic network report
 - Generate other reports

Network Text Analysis:
two-step, iterative process

1. Text pre-processing:
 - Condense data to terms relevant for domain and research question
 - Normalization
 - Reduction
 - Supports the task of finding meaningful interpretations of texts
 - Natural Language Processing and Information Extraction
 - precondition for NTA

2. Link Formation:
 - Determine how the relevant concepts will be linked into ties
Data To Model Procedure

- Preprocessors
 - Clean and compartmentalize texts
 - Speeds processing
- D2M script
 - Common bi-grams
 - Thesauri
 - Deletes
 - Relation extraction
 - Ontology cross-classification
- Postprocessing
 - Attribute addition
 - Geo-location
 - Membership and belief inference
 - Event inference (still in development)

Key: Coding Choices

- Text pre-processing:
 - Condense data to concepts relevant for domain and research question
 - Supports the task of finding meaningful interpretations of texts
- Statement Formation:
 - Determine how the relevant concepts will be linked into statements
 - Analysts: tailor them to research question
Text pre-processing: Filters

- Deletion
 - remove non-content bearing words such as determiners, conjunctions, articles, prepositions
 - Highly efficient
- Thesauri
 - Convert diverse concepts to the same concept e.g., aliases
 - Enables theme construction

Text pre-processing: Thesauri

- A thesaurus converts from one concept to another
 - Column 1: relevant text-level concepts in the
 - Column 2: corresponding higher-level concepts
 - Represents text-level concepts in a more abstract or general way
 - a single higher level concept typically has multiple entries in the thesaurus.
- And the AutoMap thesauri provides info on ontology and node attributes
- Thesaurus creation support:
 - Union Concept List
 - N-grams (especially bigrams)
 - Feature Selection (e.g. tf-idf)
 - External sources (CIA World Fact Book, WordNet)
 - Bootstrapping
Universal and Domain

Terminology in thesaurus and the concepts to be deleted might depend on data and research question content into the associated higher level concepts

- Universal
 - Thesauri – General conversions that most people want
 - Delete List – General stop words, numbers, measures and temporal indicators

- Domain
 - Thesauri – Special conversions for the specific data and research question not covered by universal or that alter the universal choice
 - Delete List – Special concepts that are uninteresting in the domain
 - E.g. all concepts with low TFIDF or low frequency or isolates

- Thesauri’s over-ride delete lists
 - Domain thesauri over-rides universal thesauri
 - Universal delete list over-rides domain delete list

Pre-processing

- “John Doe is actively involved in several industry and civic associations.”
- Deletion:
 - Remove non-content bearing concepts
 - High data reduction rates
 - Delete List: is, in, and
 - Delete List creation support: concept list per text and corpus (Zipf’s law)
- Adjacency:
 - Direct: John Doe actively involved several industry civic associations.
 - Rhetorical: John Doe xxx actively involved xxx several industry xxx civic associations.

Pre-processing

• Stemming
 – Detect inflections and derivations of concepts
 – Convert each concept into related morpheme
 – John Doe is actively involved in several industry and civic associations.
 – Porter: John Doe be activ involv in sever industri and civic associ.
 – Krovetz: John Doe is actively involve in several industry an civic association.

 Unpublished PhD Theis, University of Massachusetts.

• Thesauri
 – Convert concepts with more abstract concepts (generalization thesaurus) or meta-matrix entities (meta-matrix thesaurus)
 – John Doe is actively involved in several industry and civic associations.
 • Generalization thesaurus
 • John Doe/ John_Doe
 • involved/ engage
 • Industry/ economy
 • civic associations/ community
 • meta-network thesaurus
 • John_Doe/ agent
 • engage/ task
 • economy/ resource
 • community/ organization
Getting Started - Data Collection

- Newspaper articles
- Books
- Journal articles
- Abstracts
- Interviews
- Essay Questions
- Email
- Web pages
- Dictionary entries
- Scripts
- Concept circles
- Power point presentations

Any type of raw text

Representation Scheme

<table>
<thead>
<tr>
<th>DNA Term</th>
<th>Term</th>
<th>Graphic</th>
<th>Equivalent Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>Link</td>
<td>Concept</td>
<td>Word Phrase</td>
</tr>
<tr>
<td>Link</td>
<td></td>
<td>Link</td>
<td>Sentence Implication</td>
</tr>
<tr>
<td>Dyad</td>
<td>Statement</td>
<td></td>
<td>Relation</td>
</tr>
<tr>
<td>Network</td>
<td>Map</td>
<td>Focus</td>
<td>Idea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fact</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Definition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mental Model</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Frame</td>
</tr>
</tbody>
</table>
Representation Scheme - Details

- **Multiple types of links**
 - **Links** - Can have strength, direction, and meaning.
 - **Single word or phrase**
 - **Exact words**
 - **Generalized ideas**
 - **Multiple types of concepts**

- **Link**

- **Statement**
 - Two concepts and the link between them

Concept Circle

- **List of concepts**
- **Place idea**
- Have respondent draw lines between linked concepts

When Appropriate
- Want to cue respondent
- Want only predefined concepts
- Less than 50 concepts

Usage Hint
- Train respondents on small task (10 concepts)
- Go over map with respondent
Concept Circle - Example

Clustering Task #2: April 26, 1989
Name __________________________

Directions: These words have been mentioned in class lectures over the past semester. Please draw a line between pairs of words which you believe should be connected. It is important that all connections that you intend to make be clear and easy to see. Please do not draw so many lines on any one worksheet that you cannot easily see how you’ve connected those words.

Variations:
When Respondent Draws Lines
- Place strength on lines
- Place arrows on lines for causality
- Place marker on lines for type of link

Application Process
- Can be applied by interviewer during interview
- Can be done as reading text
Link formation

- In order to extract semantic network from raw or pre-processed data we need to link the nodes
- Multiple approaches exists:
 - Distance based approach: Windowing:
 - Text Unit
 - Window Size
 - Adjacency

Syntactic Based Link Formation

- Distance based approach, Windowing:
 - Text Unit (text, paragraph, sentence)
 - Window Size (2 to N)
 - Adjacency (direct or rhetorical)
- Thesaurus:
 - leader/ leader;
 - involved/ engage;
 - civic associations/ civic_association
- Coding Choices:
 - Sentence, thesaurus content only, rhetorical adjacency, window size sentence
- TEXT: Leader xxx actively involved xxx several industry xxx civic associations.
From Texts to Networks

- Distance based approach, Windowing:
 - Text Unit (text, paragraph, sentence)
 - Window Size (2 to N)
 - Adjacency (direct or rhetorical)

Relational data: not thes. content only, WS 3:
Leader - actively involved - several associations

Link 1

Thesaurus content only, direct adj. WS 3 or rhet. adj. WS 10:

Window Based Location of Links

- John Doe is actively engage in several economy and community.
Extracted Network as Mental Models

• Semantic Network (Map)
 – Representation of a sample of what people have in their minds and use to make sense of their surroundings.
 – Cognitive construct that reflect the subjects' knowledge and information about a certain topic.

One-mode networks: semantic networks

1. One mode networks: semantic networks, cognitive/mental models:
 – Represent reality that people have in their minds and use to make sense of their surroundings.
 – Cognitive constructs that reflect the subjects’ knowledge and information about a certain topic.

• Applications:
 – Interviews: individual and group-level
 – Self-presentations: annual reports, self-applications, mission statements
 – Groups: (Shared) Situational Awareness

One-mode networks: Example

AutoMap Usage Hints

- If using exact words
 - use a frequency level - only if used more than "3" times
- If generalizing
 - create thesaurus file with examples of how to code words be very general
- General
 - code 2 or 3 first to make sure you like set up
- Comment
 - there will be a limited number of words per topic/community
Illustrative Applications

- Enron
 - Diesner Carley
- Al Qaeda
 - Carley
- Decision Making
 - Carley
- Learning to Write
 - Palmquist PhD
- Risk Perception
 - Bostrom PhD
- World Bank & Poverty
 - Saburi PhD
- Authorship
 - Lewis
- Impact of Email on Invisible College
 - Gardner & Carley
- Robotics in Science Fiction
 - Student Project
- What Children Remember
 - Cicourel

Text pre-processing: Negative Filters

- Deletion
 - remove non-content bearing words such as determiners, conjunctions, articles, prepositions
 - Highly efficient
- Adjacency:
 - Direct: drop delete words and move word right and left to delete word directly next to each other
 - Rhetorical: insert a placeholder where a delete word was removed in order to maintain original distance of all words
Impact of Coding Choices on Network

Impact of statement formation settings on number of unique statements

Semantic Network as Meta-Networks

- We might also want to know about other nodes
 - Who is linked to what organizations
 - Who has access to what resources
 - Who possesses what knowledge
 - Who is involved in what tasks
 - Who was at what event
 - What resources are needed for what tasks
 - ...

- We might also want to know about other attributes
 - Who has what personal characteristics
 - What types of locations exist
 - ...
Semantic Network as Meta-Networks

- Implement meta-matrix model as ontology in AutoMap: Meta-Matrix Text Analysis
 - Extract structure of social and organizational systems from corpora
 - Provide relational data that can be further analyzed with other tools and methods
- Use your own ontology

Multi-mode networks

- Social Networks
 - Supports asking traditional/ baseline questions:
 - Who is connected to whom?
 - What type of relationship?
 - With multi-mode models and data we can move beyond traditional questions and also ask:
 - Which agent or group is located where, has access to what resources, possesses what knowledge, is involved in what tasks, has what personal characteristics, ...?
- AutoMap:
 - Use meta-network as is
 - Use self-modified meta-network
 - Use your own ontology

Extraction of Relational Data From Texts – Toy Example

Example from UN News Service (New York), 12-28-2004:

“Jan Pronk, the Special Representative of Secretary-General Kofi Annan to Sudan, today called for the immediate return of the vehicles to World Food Programme (WFP) and NGOs.”

- **extract relational data**
 - **One-mode networks**
 - **Jan Pronk**
 - **Kofi Annan**
 - **Sudan**
 - **vehicles**
 - **WFP**
 - **NGO’s**
 - **semantic networks**
 - **multi-mode networks**
 - **Jan Pronk**
 - **Kofi Annan**
 - **Sudan**
 - **vehicles**
 - **WFP**
 - **NGO’s**

Extraction of Relational Data From Texts – Two Approaches

- **Any type of network:**
 - **Locate/identify** “relevant” nodes, e.g. knowledge
 - Sparse

- **Ontologically coded, socio-technical networks:**
 - **Classify** relevant nodes according to some ontology or taxonomy

Default Ontology in AutoMap

- **Named Entities**
 - Agent
 - Individual actors
 - Specific – unique often with first and last name - Jamie O’Connor
 - Generic – non-unique and often a role - haberdasher
 - Organization
 - Groups, corporations, populations
 - Specific – unique - IBM
 - Generic – a type - Non-government organization
 - Location
 - Places things can be at
 - Specific – unique with lat and lon or place on map - United States of America
 - Generic – may be at multiple locations – hill
 - Event specific, generic
 - Major happenings that impact groups
 - Specific – occur once – World War I
 - Generic – multiple occurrences - Tornado

- **General Entities**
 - Knowledge
 - Branches of knowledge
 - Topics of interest
 - Resources
 - Things that are not purely mental – disease, food, wire
 - Tasks
 - Activities – eat
 - Beliefs
 - "isms" - Catholicism
 - Sentiment – positive, negative
 - Belief statements – right to bear arms
Ontological Text Coding

- Requires mapping of words to categories (agent, event, knowledge, location, organization, resource, task, attribute)

1. Explicit mapping (positive filters)
 - Deterministic, incomplete, outdated, spelling variations, typos
 - Exploit available data (CIA world fact book, lists, ...)

2. Regular expressions
 - Identifying relevant strings of text (particular characters, words, or patterns) (JGSoft: RegexBuddy)
 - KWIC (keyword in context) ([A-Za-z0-9] = Alphanumeric chars.)
 - URL’s, dates, phone numbers

Thesauri Format

<table>
<thead>
<tr>
<th>conceptFrom</th>
<th>conceptTo</th>
<th>Ontology</th>
<th>nodeType</th>
<th>Category</th>
<th>Country</th>
<th>Hon</th>
<th>Lan</th>
<th>Acronym</th>
</tr>
</thead>
<tbody>
<tr>
<td>mine-clearance</td>
<td>mine_clearance</td>
<td>task</td>
<td>belief</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>parents</td>
<td>parent</td>
<td>agent</td>
<td>generic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pat Mcginn</td>
<td>Pat_Mcginn</td>
<td>agent</td>
<td>specific</td>
<td>Celebrity_Politician</td>
<td>United_States_of_America</td>
<td>Pat</td>
<td>Mcginn</td>
<td>Male</td>
</tr>
</tbody>
</table>
Window Based Location of Links

- John_Doe is actively engage in several economy and community.

Window Based Location of Links with Ontology

- agent is actively task in several resource and organization.
Example Text Files

Hisham Al Hussein
... the Philippine government booted the second secretary at Iraq's Manila embassy, Hisham Al Hussein, on February 13, 2003, after discovering that the same mobile phone that reached his number on October 3, 2002, six days later rang another cell phone strapped to a bomb at the San Roque Elementary School in Zamboanga.

Abu Madja and Hamsiraji Ali
That mobile phone also registered calls to Abu Madja and Hamsiraji Ali, leaders of Abu Sayyaf, Al Qaeda's Philippine branch.

Abdurajak Janjalani
It was launched in the late 1980s by the late Abdurajak Janjalani, with the help of Jamal Mohammad Khalifa, Osama bin Laden's brother-in-law.

Hamsiraji Ali
... Hamsiraji Ali, an Abu Sayyaf commander on the southern island of Basilan, bragged that his group received almost $20,000 annually from Iraqis close to Saddam Hussein.

Place Concepts in Meta-Network

<table>
<thead>
<tr>
<th>Agents</th>
<th>Knowledge</th>
<th>Resources</th>
<th>Tasks</th>
<th>Locations</th>
<th>Organizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>abu_madja</td>
<td>school</td>
<td>bomb</td>
<td>bomb</td>
<td>basilian</td>
<td>al_qaeda</td>
</tr>
<tr>
<td>bin_laden</td>
<td></td>
<td>phone</td>
<td>philippine</td>
<td></td>
<td>bu_sayyaf</td>
</tr>
<tr>
<td>hamsiraji_ali</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>manila</td>
</tr>
<tr>
<td>hisham_hussein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>zaboanga</td>
</tr>
<tr>
<td>Janjalani</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jaml_khalifa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>saddam_hussein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
... and knowledge and resources

Semantic Networks

Prof. Kathleen M. Carley

kathleen.carley@cs.cmu.edu

Center for Computational Analysis of Social and Organizational Systems
http://www.casos.cs.cmu.edu/
Semantic Network

- Network of concepts
- Sometimes referred to as
 - a mental model
 - An information network
- Generally extracted from texts
- Variations on nodes
 - Words vs concepts
 - topics vs concepts
- Features of links
 - Co-use or logic or semantic relations
 - Strength – generally represents frequency
 - In text or across texts

Illustrative Semantic Network

```
Healthcare
  ↓
User needs
  ↓
User community
  ↓
Sale techniques
  ↓
Accounting Systems
  ↓
Computer capabilities
  ↓
New products
  ↓
Programming
  ↓
Product problems
  ↓
Inventory Systems
  ↓
Product information
```

-Hospital
-Programming
-New products
-Inventory Systems
-Product problems
-Product information
-Computer capabilities
-New products
-Programming
Why compare texts as networks: Locating Common Ground

- Do people use same words
- Do people use same words in same way
- Do people evoke the same concepts
- Do people link the same concepts in the same way
- Are the same disciplines employed
- Are the same journals, trade magazines, etc. read

Information Network: Text & Graphics

Student A: I found that scientists engage in research in order to make discoveries and generate new ideas. Such research by scientists is hard work and often involves collaboration with other scientists which leads to discoveries which make the scientists famous. Such collaboration may be informal, such as when they share new ideas over lunch, or formal, such as when they are co-authors of a paper.

Student B: It was hard work to research famous scientists engaged in collaboration and I made many informal discoveries. My research showed that scientists engaged in collaboration with other scientists are co-authors of at least one paper containing their new ideas. Some scientists make formal discoveries and have new ideas.
Network Approach to Communicative Power

- Three key communicative dimensions
 - Intensity/consensus – weighted degree or number of graphs of individual’s mental models or number of reports the tie is present in
 - Conductivity – indegree*outdegree or betweenness
 - Density – degree
- Most words will be low on all three dimensions
- Words that stand out on any one dimension will have extra communicative power
- Messages containing such words will be more persuasive

Distributional Information

Communicative power is a function of reach
Reach depends on the network position of speaker and of concept
Every concept has a network position
 in individual’s map
 in social knowledge
Concepts vary on properties of positions
Network position of concept determines its communicative power
Cube analysis of communicative power: Concept Embedding

The Cube
General: Ordinary Word

- sense of frustration
- expansion
- maddeningly
- contradictory evidence

Factoid

- Nov. 22, 1963
- 4 Density
- 3 Conductivity
- 4 Consensus
Emblem

Kevin Costner

- fights injustice
- good guy
- actor
- hero
- decency

Stereotype

Capra-style Hero

- 16 Density
- 0 Conductivity
- 10 Consensus
Standard Symbol

15 Total Degree
120 Betweenness
8 Frequency

President

Allusion

15 Total Degree
0 Betweenness
8 Frequency

Grassy Knoll
Cube

Purpose
Generate network measures on concept position

Output
Concept by value matrix

Have Ready
A map
A union file
A file representing individual mental model
A file representing social knowledge

Illustrative Concept - Car

- **Car**
- **Promotes Social Interaction**: Total Degree 3
- **Encourage Hall Activities**: Betweenness 3
- **Resource**: Frequency 5
- **5 Total Degree**
- **6 Betweenness**
- **1 Frequency**
Illustrative Concept — Gnerd

- self-punishing works too hard
- easily gets along
- interacts with students
- works
- lazy
- encourages hall activities
- encourages california atmosphere
- encourages hall activities
- analytic task oriented
- decision making
- type of courses taken
- office hours
- interacts with students
- sets office hours
- tells stories
- meets students
- makes students feel...
Distribution of 3E concepts

3e Cube
Highly Communicative Concepts

density conductivity intensity
"car" 5.000 6.000 1.000 factoids
"kids" 5.000 6.000 1.000 factoids
"intelligence" 26.000 120.000 0.846 prototypes
"interesting" 28.000 132.000 0.643 prototypes
"phantom" 48.000 176.000 0.938 stereotypes
"hacker" 32.000 207.000 0.969 stereotypes
"participates" 32.000 220.000 0.969 stereotypes
"teaching-abi" 36.000 224.000 0.889 stereotypes
"hall-member" 32.000 231.000 0.969 stereotypes
"expert" 31.000 238.000 0.968 stereotypes
"lookupableto" 51.000 270.000 0.882 symbols
"gnerd" 40.000 336.000 0.950 symbols
"accessible" 41.000 378.000 0.925 symbols
"gets-along" 64.000 735.000 0.781 placeholders
"fits-in" 67.000 780.000 0.821 placeholders

Cube and Social Knowledge

fits-in (placeholder) (67, 780, 0.821)
gets-along (placeholder) (64, 735, 0.781)

insists on quiet (factoid) (10, 24, 1.0)
mellow (factoid) (19, 70, 0.947)
tolerant (ordinary) (23, 76, 0.870)
egocentric (ordinary) (10, 10, 0.800)

number students ok TC (factoid) (14.33, 0.929)
Place Concepts in Meta-Matrix

<table>
<thead>
<tr>
<th>Agents</th>
<th>Knowledge</th>
<th>Resources</th>
<th>Tasks</th>
<th>Locations</th>
<th>Organizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>abu_madja</td>
<td>school</td>
<td>bomb</td>
<td>bomb</td>
<td>basilian</td>
<td>al_qaeda</td>
</tr>
<tr>
<td>bin_laden</td>
<td></td>
<td>phone</td>
<td></td>
<td>philippine</td>
<td>bu_sayyaf</td>
</tr>
<tr>
<td>hamsiraji.ali</td>
<td></td>
<td></td>
<td></td>
<td>manila</td>
<td></td>
</tr>
<tr>
<td>hisham_hussein</td>
<td></td>
<td></td>
<td></td>
<td>zaboanga</td>
<td></td>
</tr>
<tr>
<td>janialani</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jaml_khalifa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>saddam_hussein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of Cube analysis

- Texts can be coded as networks
- Networks represent the mental model
- Coding texts as mental models focuses on meaning
- Concepts have position in texts
- Examining positions focuses on communicative power
- Classifying concepts creates Meta-Networks