Virtual Experiments

Geoffrey Dobson
gdobson@andrew.cmu.edu
June 15, 2018

Overview

- Virtual Experiments Overview
- Variables and Methods
- Examples
Virtual Experiments

- Virtual Experiments
 - Test a model, not reality
 - Model should be as close to reality as possible
 - “All models are wrong, but some are useful” - George EP Box
 - Good for testing assumptions
 - Good for what-if analysis
 - Good for generating hypotheses

Why Virtual Experiments?

- Real Experiments
 - Expensive - (Spaceship launches)
 - Unethical - (What if spray poison gas on Pittsburgh?)
 - Infeasible - (Bridge hold up if 500 concrete trucks on it?)

- Don’t use Virtual Experiments:
 - When you’re looking for ‘truths’ and not ‘trends’
 - When you can get what you want from a survey
Cost of Virtual Experiments

- Virtual Experiments can be expensive!
 - Buy data
 - Buy software
 - Buy computing power
 - Cost of coding the model, maintaining the code

Virtual Experiment Design

- Many of the same problems and challenges of real experiments, come up in virtual experiment design
- Dependent Variables
- Independent Variables
- Method of experiment
- Control Conditions
- Generality
- Power
Independent Variables

- What am I changing run to run?
- How many different independent variables?
- **BE CAREFUL!**
 - Too many combinations could take time, i.e., years, to complete the simulation

Dependent Variables

- What am I measuring?
- What does this imply in the real world?
- Is the independent variable manipulation believable, as it relates to the dependent variable?
- Usually best narrow down the dependent variables to just a few
Method

- Most of the “method” is - explaining the control variables, and how the independent variables are manipulated
- Strategies for manipulation of independent variables
 - Set them to create a baseline
 - Set them to show when there is no impact
 - Set them to show best/worst case
 - Set them randomly across an appropriate distribution

- Has anyone done virtual experiments?

Control Conditions

- Control Conditions, often, are independent variables that are not changing, or changing in a controlled manner
- EG - In network topologies, ER Random networks are often used as control conditions
- EG - Holding a temperature constant in climate models
- EG - Holding Windows server vulnerability growth rate within a distribution between 1 - 3% in cyber security models
Generality

- Defining model parameters can become very specific
 - Best to draw from literature when possible!

- EG - Examining network information flow after actor removal
 - Bad example
 - Case 1: Remove Gordon
 - Case 2: Remove Jill
 - Case 3: Remove Pat
 - Good example
 - Case 1: Remove Actor with highest degree centrality
 - Case 2: Remove Actor with highest betweenness centrality
 - Case 3: Remove Actor with highest eigenvector centrality

Power

- Given enough repetitions, even trivial differences between simulation conditions will produce statistically significant results.

- It’s important to focus on trends, rather than specific values.
 - Wrong: Because of the manipulation condition, Y increases by 5%.
 - Better: Y tends to increase under the manipulation condition.

- A reasonable heuristic is 25 repetitions per combination
Example 1

How does varying the degree of ethnocentrism in an artificial society affects the formation of social relationships across social groups under different models of the underlying cultural structure?

<table>
<thead>
<tr>
<th>Parameters of Interest</th>
<th>Values Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial knowledge distribution</td>
<td>random, group based, all same</td>
</tr>
<tr>
<td>Initial Bias Parameter (IBP)</td>
<td>0.01, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Parameters Varied</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Activation Threshold (GAT)</td>
<td>-5, -1</td>
</tr>
<tr>
<td>Group Learning parameter (GLP)</td>
<td>5, 25, 50</td>
</tr>
<tr>
<td>Individual Activation Threshold (IAT)</td>
<td>-1, 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constants</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Simulation Turns</td>
<td>150</td>
</tr>
<tr>
<td>Number of Agents</td>
<td>1000</td>
</tr>
<tr>
<td>Number of Knowledge Bits</td>
<td>500</td>
</tr>
<tr>
<td>Number of Interactions</td>
<td>2</td>
</tr>
<tr>
<td>Number of Knowledge bits passed per interaction</td>
<td>1</td>
</tr>
<tr>
<td>Density of knowledge</td>
<td>0.4</td>
</tr>
<tr>
<td>Decategorization Parameter (DP)</td>
<td>6</td>
</tr>
<tr>
<td>Groups Per Agent</td>
<td>1</td>
</tr>
<tr>
<td>Total number of groups</td>
<td>4</td>
</tr>
<tr>
<td>Repeated</td>
<td></td>
</tr>
<tr>
<td>Number of repetitions</td>
<td>10</td>
</tr>
<tr>
<td>Total Runs</td>
<td>$3^4 \times 2^3 \times 2 \times 10 = 3060$</td>
</tr>
</tbody>
</table>
Analyzing the results

- Run the simulation
- Construct a network of who talked to who more than N (N=2 here) times
- Look at the log-odds of a tie to a member of the outgroup

\[
\log_2\left(\frac{\text{#relations connecting two agents in different groups} + 1}{\text{#relations connecting two agents in the same group} + 1}\right)
\]

Results from VE

Figure 4: The x-axis represents the ten different IBP conditions and the three different shapes of points represent knowledge conditions. The y-axis gives the log-odds of an out-group tie, and lines connect the mean outcomes across the different conditions. Ninety-five percent (95%) bootstrapped confidence intervals are drawn at each IBP condition.
Results from VE

Figure 5a) The mean number of group schemas that agents held across all conditions. 5b) The mean number of knowledge bits that the generalized other schema had set to 1 across all agents in the group based and uniform knowledge conditions only. Error bars are 95% bootstrapped confidence intervals

Conclusions from VE

- The model generated results that were sort of obvious
 - In my eyes, this is a good thing!
 - What do you think?
- Results suggested that neither stereotypes nor the form of underlying cultural structures alone are sufficient to explain the extent of social relationships across social groups
- Rather, we provide evidence that shared culture, social relations and group stereotypes all intermingle to produce macro-social structure.
- What do you think should be next?
 - Cross-cutting groups
 - Differentiating in-group love from out-group hate
Example 2

How many cyber forces should we deploy to minimize the effect of a routing protocol attack (RPA)?

Example 2