Overview

- What is a trail?
- How do we get trail data?
 - Characterize trail as network data
- Trails and Loom
 - Visualization
 - Networks from trails
 - Finding similar trails
What’s a Trail?

- A trail is a trace of the movement of something over time

- Thus, for example, the movement of an attachment through a series of email communications creates a trail

- What are some other examples of trails?
 - People moving from place to place
 - Twitter hashtags
 - ...

Event Data and trails

- In a series of relational email events, information may flow

- Today – look at geospatial trails: agents travelling to different locations
Geospatial Trails

- Usually geospatial trails represent agents travelling in continuous space and time.

- Network data: discrete node and discrete time.

Example

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017, June 7, 9 am</td>
<td>Green St.</td>
</tr>
<tr>
<td>2017, June 7, 10 am</td>
<td>Design District</td>
</tr>
<tr>
<td>2017, June 7, 11 am</td>
<td>Chinatown</td>
</tr>
<tr>
<td>2017, June 7, 12 am</td>
<td>16 th st.</td>
</tr>
</tbody>
</table>
Trials visualization

• ORA Over-time visualizer
 – Benefit: Can see changes in network structure over time
 – Drawback: For sparse trail data, not very effective
• ORA GIS Visualizer
 – Benefit: Can see the spatial distribution of trails
 – Drawback: Lose the temporal information
• Loom
 – Benefit: Can see the temporal distribution and the places travelled to
 – Drawback: Spatial distances, where they exist, are not preserved

What we’ll do

• Import a “DynamicMetaNetwork” with spatial information
• Visualization
 – Understand the benefits and drawbacks of different visualizations of trail data
 • ORA Over-time visualizer
 • ORA GIS visualizer
 • Loom
• Finding Similar trails
 – Use Loom to cluster trails
• Obtain networks from trails
Import a dynamic meta-network

• Same as importing a regular meta-network
 – Drag-and-drop
 – File->Open Meta Network

• Import TrailsDataset.xml
The Data

- Our trail:
 - Locations are our nodes
 - Agents are what is moving between them

- Let's explore the data
 - In ORA proper
 - Networks over time visualizer
 - Geospatial Visualizer

ORA Proper
Networks Over Time Visualizer

June 2018
CASOS Summer Institute 2018

Networks Over Time Visualizer

June 2018
CASOS Summer Institute 2018
Geospatial Visualizer

- Choose a Network

Please select a single network to view overtime
Agent's Location

OK Cancel
Geospatial Visualizer

Loom
Loom

Visualization of things over time is hard
 - State of the art revolves around animation
 - Loom allows us to visualize trails over time in a static, understandable environment

Trails may have similar patterns, but these are difficult to observe
 - Loom allows us to cluster similar trails together

We can get networks from trails, for example, who is connected by the given attachment?
 - Loom allows us to easily export such networks to ORA
Why cluster?

- Why are we interested in trails and trail clustering?
 - Gain information by analyzing agents across space and time together.
 - Interested in grouping agents that display same behavior across time. E.g. visit the same locations across time.

Feature vector representation using PFSA

\[\beta \alpha \alpha \beta \]

Depth = 1

\[\begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix} \]

Depth = 2

\[\begin{bmatrix} \pi_{11} & \pi_{12} & 0 & 0 \\ 0 & \pi_{22} & 0 & 0 \\ 0 & 0 & \pi_{33} & 0 \\ 0 & 0 & 0 & \pi_{44} \end{bmatrix} \]

Depth = 3

\[\begin{bmatrix} \pi_{11} & \pi_{12} & \pi_{13} & \pi_{14} \\ \pi_{21} & \pi_{22} & \pi_{23} & \pi_{24} \\ \pi_{31} & \pi_{32} & \pi_{33} & \pi_{34} \\ \pi_{41} & \pi_{42} & \pi_{43} & \pi_{44} \end{bmatrix} \]
Clustering of Trails using PFSA

- Each trail is now represented by a numerical feature vector, the state probability vector of the derived PFSA (the model of the generative process).
- To look at joint spatiotemporal behavior we now cluster the agent trails based on their feature vectors.
- This is done using a two step process.
 - A coarse clustering step: Trails are initially grouped coarsely according to the locations visited, irrespective of the frequency of the visits.
 - A cluster refining step: The coarse clusters are each then clustered using agglomerative clustering to derive groups of trails which visit “similar” locations with “similar” frequencies.

Refining the Coarse Clustering

Depth = 1

Depth = 2

Depth = 3
Viewing time sequences

- Each cluster contains trails with similar patterns in the sequences of locations visited
- Thus extract the longest common subsequence amongst all the trails belonging to a cluster.

![Diagram showing longest common string and subsequence example]

What we’ll do

- Import a “DynamicMetaNetwork” with spatial information
- Understand the benefits and drawbacks of different visualizations of trail data
 - ORA Over-time visualizer
 - ORA GIS visualizer
 - Loom
- Use Loom to cluster similar trails
 - The high level concept
 - The details
- Obtain networks from trails
Generating Networks from Trails

- We can better understand how different cities relate via championships by getting networks out of them

What we’ll do
- Generate the networks
- View them in ORA Proper
- Use ORA Network Visualizer

Exporting the Matricies
What we now have

- ORA uses the entire trailset and outputs a single meta-network
 - Colocation – An edge is created between the trophies if they ever existed at the same place at the same time
 - Visit Matrix – An edge is created between city and trophy if the city ever won that trophy
 - Transition – An edge is created between cities if a trophy ever traveled from one to the other in consecutive years

Colocation
Transition

Visit
Summary

• We discussed what a trail was – a trace of the movement of something through a network over time

• We used an example dataset and looked at trail data three different ways – in the Networks Over Time visualizer, the GIS visualizer and Loom

• We talked about how to find similar trails in Loom

• We looked at how we can get new, interested networks out of our trail data