
How to get Twitter Data from the Twitter REST
and Streaming API

David M. Beskow

Carnegie Mellon University

29 January 2018



Collecting Data on the Web in General

1. What platform should I use?

2. Should I collect everything?

3. How much should I pay?

4. Is my collection method legal/ethical?

5. Do I need an IRB?

6. Can I share this data?

7. Real-time vs. Historical?

8. API vs. Scraping?

2/20 ,



Why Twitter??

1. As an open micro-blog, Twitter often represents the macro
conversation

2. Relatively broad penetration

3. Relatively easy to collect

4. Falls under creative commons license

5. Offers rich demographic, geographic, text, and network data

3/20 ,



Streaming or REST API

1. Collect historical data with Rest API

• Content Based
• Geo-based (radius from point of interest)
• User data

2. Collect real-time data with the Streaming API

• Content based
• Geo-oriented (bounding box)

4/20 ,



What format is my data in?

1. JSON!

2. Related question, what the heck is JSON?

3. JSON is a simple format for sharing unstructured data

{

'key': 'value',

'user_name': 'network_science_guy',

'tweet_text': 'Never teach code after lunch!'

}

Typically one JSON “object” per tweet/line of file

5/20 ,



Twitter JSON Structure

1. Text

2. Coordinates

3. Created at

4. favorite count

5. favorited

6. id

7. Lang

8. ...

Full list of fields at:
https://dev.twitter.com/overview/api/tweets

6/20 ,

https://dev.twitter.com/overview/api/tweets


Network

1. User x User

• Mention
• Following
• Retweet

2. Hashtag Graphs

• Co-occurrence
• Bipartite graph: user x hash tag

3. Node attributes

• Profile features: following count, creation date,. . .
• Language patterns, geo coord., etc

7/20 ,



How to do it

1. Option 1: Use some commercial data collecting services

2. Option 2: Get the ASU team to do it (TweetTracker)

3. Option 3: Do it yourself!

• API credentials (https://apps.twitter.com/, show how. . . )
• Find a programming language you’re comfortable with

I R - twitteR package
I Python – tweepy is the most popular tool
I Java – Hosebird is Twitter’s own tool for connecting to the

streaming API

8/20 ,



Common Approaches

1. Track all tweets within the U.S. for 6 months

2. Follow 1000 users I think are interesting for 6 months, do a
network analysis

3. Follow #brexit for 6 months, do a network analysis

4. ...

9/20 ,



Common Practice #1

1. Hook in to the Streaming API with keywords and/or bounding
box for a bit

2. Find users that are “interesting”

3. Use the Search API to collect all of these users’ data

4. Try to get rid of bots, celebrities if I can help it

Pros: Relatively easy, fast
Cons: Results are limited to these streaming keywords/locations.
The resulting mentioning/retweeting networks are usually sparse.

10/20 ,



Common Practice #2

1. Start with a set of seed users of interest

2. Collect timelines for these users

3. Find new users within one-step connection (mentioning,
following, retweeting)

4. Repeat step 1.

Pros: Get comprehensive social links for a group of users.
Cons: Time consuming, relies on the choice of seed users.

11/20 ,



DEMO

12/20 ,



Install twitter col Package

Before starting, you first must install the twitter col package. The
twitter col is a package that I’ve written in Python to streamline
common collection strategies.

pip install --user --upgrade

git+git://github.com/dmbeskow/twitter_col.git

13/20 ,



Authenticate on Twitter API with Tweepy

import tweepy

consumer_key ="xxxxxxxxxxxxxxxxxx"

consumer_secret = "xxxxxxxxxxxxxxxxxx"

access_token ="xxxxxxxxxxxxxxxxxx"

access_secret = "xxxxxxxxxxxxxxxxxx"

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

auth.set_access_token(access_token, access_secret)

api = tweepy.API(auth, wait_on_rate_limit=True,

wait_on_rate_limit_notify=True)

14/20 ,



REST Scrape

Below is a basic script for a content related REST Scrape. This
script will take a list of terms (no limit in number) and individually
search twitter for any time these terms appear in the last week. It
will save these into separate files by term. Note that each file will
not contain duplicates, but that combining the files will create
duplicates. The ’prefix’ adds a string to the file names that allows
you to differentiate separate projects (i.e. ’NBA’ vs ’NFL’ scrapes).

from twitter_col import scrape

terms = ['#NBA','#basketball','#jordan']

scrape.rest_scrape(api, searchQuery = terms,

prefix = 'NBA')

15/20 ,



Setting up Virtualenv for Streaming

While all the rest of the normal functions are available even if you
aren’t in a virtual environment, the streaming command line
interfaces will only work with a virtual environment.

We will create the virtual environment from the terminal in Mac or
Linux or using the Windows Linux Subsystem (WSL) in Windows:

virtualenv -p python3 twitter-env

Then we activate the environment with the command

source twitter-env/bin/activate

16/20 ,



Setting up Keys for Streaming

Both of the command line interfaces require the user to provide
the path to a JSON file with their Twitter credentials. Having
created your Twitter credentials, place them in a json file with the
format below:

{

"consumer_key": "XXXXXXXXXXXXXXXXXXXXXXXXXXXX",

"consumer_secret": "XXXXXXXXXXXXXXXXXXXXXXXXXXXX",

"access_token": "XXXXXXXXXXXXXXXXXXXXXXXXXXXX",

"access_secret": "XXXXXXXXXXXXXXXXXXXXXXXXXXXX"

}

17/20 ,



Stream Based on Content

In this section I will introduce the stream content command line
interface (CLI) that facilitates easy access to the streaming API
with content filtering. This allows you to filter the Streaming API
by any token (hashtag, screen name, text, etc).

Let’s say I want to stream content during the Worldcup in regards
to Germany, France, and Spain. I could use their country hashtags
with the CLI command:

stream_content key.json '#GER,#FRA,#ESP'

This CLI tool will create a new file every 20K tweets.

In this case, the resulting file will be named
’#GER #FRA #ESP YYMMDD-hhmmss.json.gz’. In general I
find it is helpful to keep your search terms in the name of the file
so you can remember how you obtained the data.

18/20 ,



Stream Based on Geo

This allows you to filter the Streaming API by a rectangular
bounding box (city, state, country, region). If you need to find
bounding boxes for specific countries, I recommend
https://gist.github.com/graydon/11198540.

Let’s say we want to stream data for New York City. We could do
this with the following command

stream_geo key.json -74 40 -73 41 -tag nyc

which produces a file named ’nyc.YYMMDD-hhmmss.json.gz’

19/20 ,



Questions?

Carnegie Mellon University
Center for Computational Analysis of Social and Organizational Systems
Directed by Dr. Kathleen M. Carley

20/20 ,


	DEMO

