

Trails and Networks: Loom; Going from Trails to Networks and Networks to Trails

Mihovil Bartulovic mbartulovic@cmu.edu

Dr. Kathleen M. Carley kathleen.carley@cs.cmu.edu

IST institute for SOFTWARE RESEARCH

Carnegie Mellon

Center for Computational Analysis of Social and Organizational Systems http://www.casos.cs.cmu.edu/

Carnegie Mellon

Overview

- What is a trail?
- How do we get trail data?
 - Characterize trail as network data
- Trails and Loom
 - Visualization
 - Networks from trails
 - Finding similar trails

June 2019

CASOS Summer Institute 2019

____2

Carnegie Mellon
IST institute for SOFTWARE RESEARCH

What is a Trail?

- A trail is a trace of the movement of something over time
- For example, the movement of an attachment through a series of email communications creates a trail
- What are some other examples of trails?
 - People moving from place to place geospatial trails
 - Twitter hashtags

_

CASUS Pikit

June 2019

CASOS Summer Institute 2019

3

Carnegie Mellon

Geospatial Trails

- Usually geospatial trails represent agents travelling in continuous space and time.
- Network data: discrete node and discrete time.

Continuous space Discrete location node

Vs

Continuous time Discrete time

CASOS

June 2019

CASOS Summer Institute 2019

Trails visualization

- ORA Over-time visualizer
 - Benefit: Can see changes in network structure over time
 - Drawback: For sparse trail data, not very effective
- ORA GIS Visualizer
 - Benefit: Can see the spatial distribution of trails
 - Drawback: Lose the temporal information
- Loom
 - Benefit: Can see the temporal distribution and the places travelled to
 - Drawback: Spatial distances, where they exist, are not preserved

June 2019

CASOS Summer Institute 2019

CASOS

What we'll do

- Import a "DynamicMetaNetwork" with spatial information
- Visualization
 - Understand the benefits and drawbacks of different visualizations of trail data
 - ORA Over-time visualizer
 - ORA GIS visualizer
 - Loom
- Finding Similar trails
 - Use Loom to cluster trails
- Obtain networks from trails

June 2019

CASOS Summer Institute 2019

7

Carnegie Mellon

Import a dynamic meta-network

- Same as importing a regular meta-network
 - Drag-and-drop
 - File->Open Meta Network
- Import TrailsDataset.xml

June 2019

CASOS Summer Institute 2019

Trails and Loom

- Visualization over time is hard
 - State of the art revolves around animation
 - Loom allows us to visualize trails over time in a static, understandable environment
- Trails may have similar patterns, but these are difficult to observe
 - Loom allows us to cluster similar trails together
- We can get networks from trails, for example, who is connected by the given attachment?
 - Loom allows us to easily export such networks to ORA

June 2019

CASOS Summer Institute 2019

What we'll do

- Import a "DynamicMetaNetwork" with spatial information
- Visualization
 - Understand the benefits and drawbacks of different visualizations of trail data
 - ORA Over-time visualizer
 - ORA GIS visualizer
 - Loom
- Finding Similar trails
 - Use Loom to cluster trails
- Obtain networks from trails

June 2019

CASOS Summer Institute 2019

23

Why are we interested in trails and trail clustering? - Gain information by analyzing agents across space and time together. - Interested in grouping agents that display same behavior across time. E.g. visit the same locations across time.

Clustering of Trails using PFSA

- Each trail is now represented by a numerical feature vector, the state probability vector of the derived PFSA (the model of the generative process).
- To look at joint spatiotemporal behavior we now cluster the agent trails based on their feature vectors.
- This is done using a two step process.
 - A coarse clustering step: Trails are initially grouped coarsely according to the locations visited, irrespective of the frequency of the visits.
 - A cluster refining step: The coarse clusters are each then clustered using agglomerative clustering to derive groups of trails which visit "similar" locations with "similar" frequencies.

June 2019

CASOS Summer Institute 2019

What we'll do

- Import a "DynamicMetaNetwork" with spatial information
- Understand the benefits and drawbacks of different visualizations of trail data
 - ORA Over-time visualizer
 - ORA GIS visualizer
 - Loom
- Use Loom to cluster similar trails
 - The high level concept
 - The details
- Obtain networks from trails

June 2019

CASOS Summer Institute 2019

20

Carnegie Mellon

Generating Networks from Trails

 We can better understand how different cities relate via championships by getting networks out of them

What we'll do

- Generate the networks
- View them in ORA
- Use ORA Network Visualizer

June 2019

CASOS Summer Institute 2019

Summary

- We discussed what a trail was a trace of the movement of something through a network over time
- We used an example dataset and looked at trail data three different ways – in the Networks Over Time visualizer, the GIS visualizer and Loom
- We talked about how to find similar trails in Loom
- We looked at how we can get new, interested networks out of our trail data

June 2019

CASOS Summer Institute 2019

