

Trails and Networks: Higherorder networks, Trail Clustering

Mihovil Bartulovic

mbartulovic@cmu.edu

IST institute for SOFTWARE RESEARCH

Carnegie Mellon

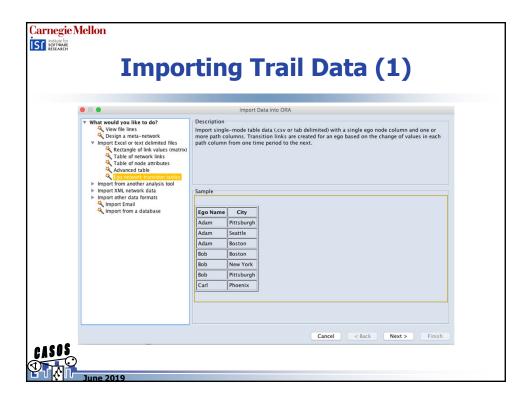
Center for Computational Analysis of Social and Organizational Systems http://www.casos.cs.cmu.edu/

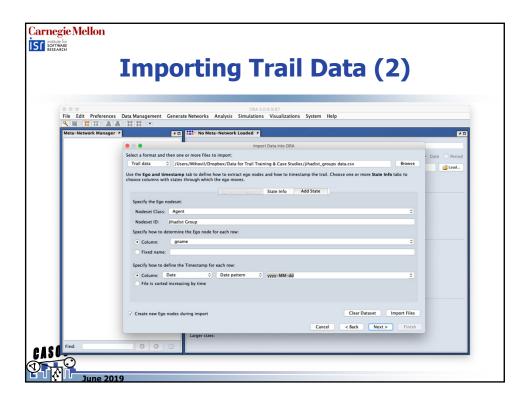
Carnegie Mellon

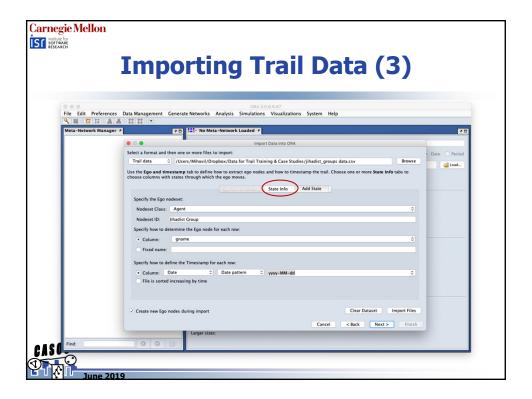
What are trails? (1)

- Graph theory: A trail in a walk with no repeated edge.
 The length of a trail is constrained by the number of edges.
- Trail is a path of an ego through time and space
 people, ideas, diseases etc.
- It is a time-ordered sequence, i.e., a sequence of observations taken at different times.

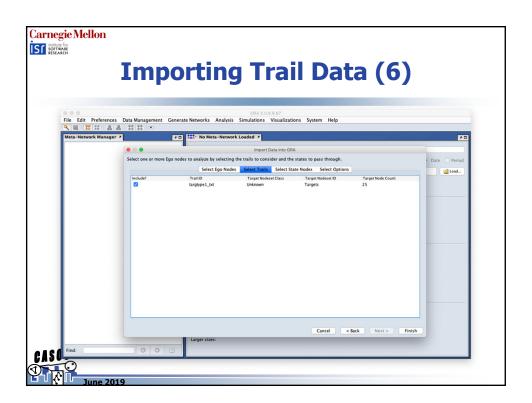
What are trails? (2) Question 1: How can networks be generated from trail data? Question 2: Can we always use classic network metrics on networks created from trails?

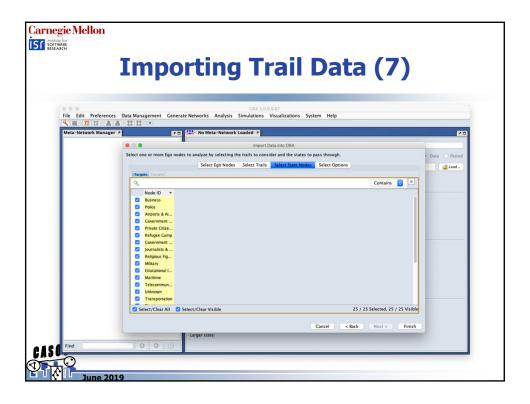


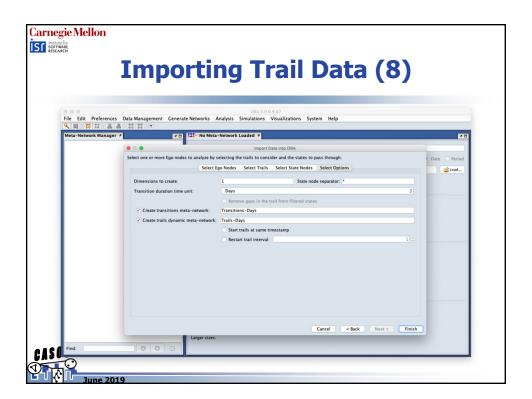












Carnegie Mellon

IST institute for SOFTWARE RESEARCH

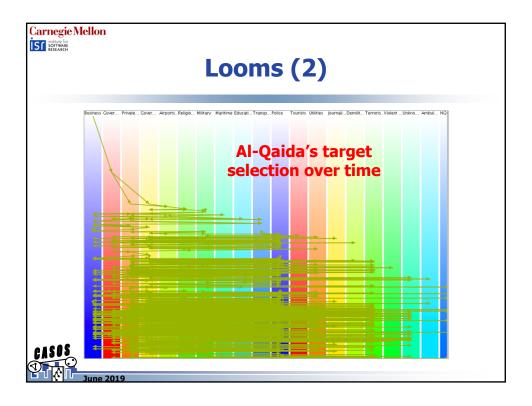
Importing Trail Data (9)

- Data is imported both as a sequence of "per time slice" networks and aggregated transitional networks (number of transitions ego has between two nodes)
 - "Per time slice" networks → Looms
 - Aggregated transitional networks → Markov Chains

Carnegie Mellon

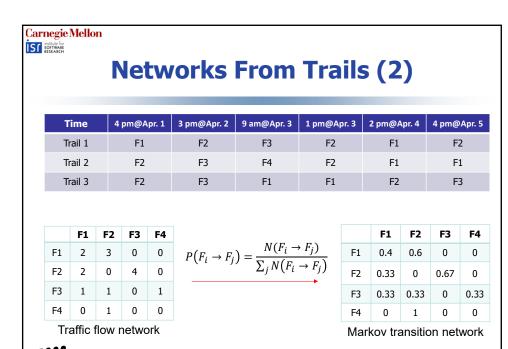
Looms (1)

- Visualization depends on what we wish to observe
- · Good indicator of timeline
- · Sometimes cluttered



Networks From Trails (1)

- Question 1: How can networks be generated from trail data?
 - Markov Chains network of transitional probabilities (or cumulative weights) among nodes i.e. each node represents a location or an individual



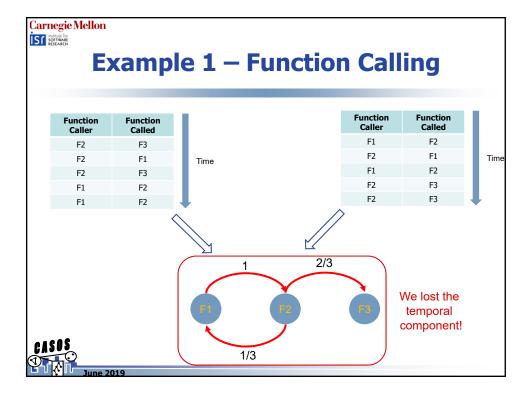
From Trails to Transitional Networks

- Observe ego's transitions from one state to another
- Aggregate the observed transitions
- Create probabilities from the aggregated values

IST institute for SOFTWARE RESEARCH

Why do we care about high dimensional networks?

- Both sequential and "memory" property of the data has to be accounted for
 - network-analytic methods make the fundamental assumption that paths are transitive, i.e. the existence of paths from a to b and from b to c implies a transitive path from a via b to c.



IST institute for SOFTWARE RESEARCH

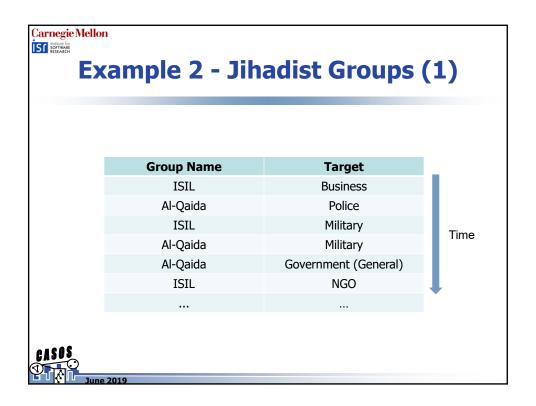
Why do we care about high dimensional networks?

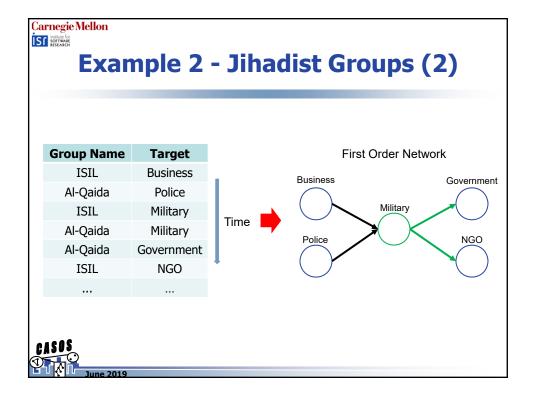
- Agent's paths and previous actions matter
 - First-order network is built by taking the number of transitions between pairs of nodes as edge weights (or scaled to transitional probabilities)

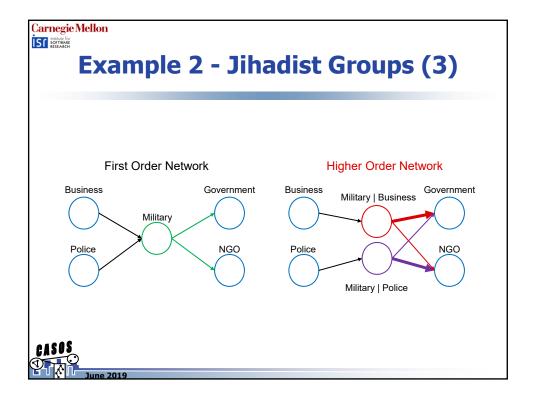
Carnegie Mellon

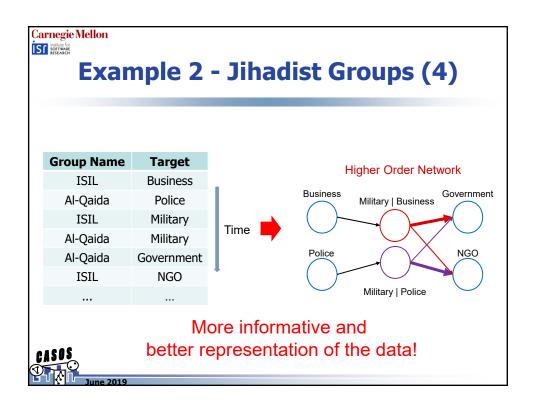
Why do we care about high dimensional trails?

- Agent's paths and previous actions matter
 - First-order network is built by taking the number of trails between pairs of nodes as edge weights (or scaled to transitional probabilities) > PROBLEM!!
 - Same nodes could be used by different entities coming from different nodes following their own path
 - Solution → splitting the "crossroad" nodes
 - We care about where ego comes from
 - More accurate simulation of movement patterns observed in the original data









Higher Order Networks (1)

- Rethinking the building blocks of a network:
 - Instead of using a node to represent a single entity, we break down the node into different higher order nodes that carry different dependency relationships (each node can now represent a series of entities)
 - Military | Business and Military | Police → the edges can now involve multiple different targets as entities and carry different weights → second-order dependencies.

una 2010

Carnegie Mellon

Higher Order Networks (2)

• Out-edges are in the form of $i|h \rightarrow k$ instead of $i \rightarrow k$, transitional probability from node i|h to node j is

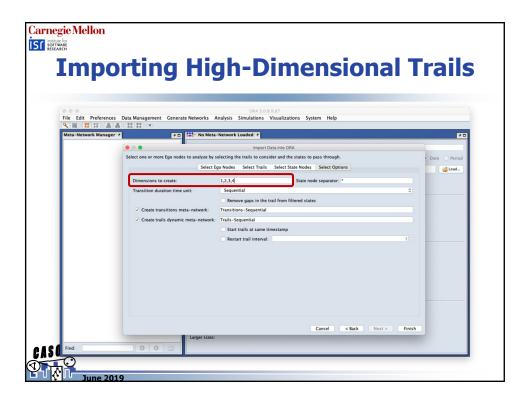
$$P(X_{t+1} = j | X_t = (i|h)) = \frac{N(i|h \to j)}{\sum_k N(i|h \to k)}$$

 Movement depends on the current node and on one or more other entities in the new network representation

une 2019

Higher Order Networks (3)

- This new representation is consistent with conventional networks and compatible with existing network analysis methods
 - We need to be careful when using the network metrics and have full graph of how network is created and what edges represent!
- PROBLEM How to determine optimal order of the **Higher Order Network?**
 - Statistical analysis, Maximum likelihood, ...



Trail Clustering (1)

- Data from domains such as protein sequences retail transactions intrusion detection and web logs have an inherent sequential nature
- Clustering of such data sets is useful for various purposes
 - For example clustering of sequences from commercial data sets may help marketer identify different customer groups based upon their purchasing patterns

une 2019

20

Carnegie Mellon

Trail Clustering (2)

- Let us have a dataset of n trails to be clustered
- Let us have a set $C=\{c_1,c_2,\dots,c_k\}$ of k corpora with $\left|\mathbf{c_j}\right|=\mathbf{N_j}$ trails within each corpora
- A trail will be denoted by i (i = 1, ..., n). Each trail is characterized by a sequence of states x_i from a finite set X.
- Let $x = (x_1, ..., x_n)$ denote a sample of size n. Let x_{it} denote the state of the trail i at position t.
- We assume discrete time from 0 to T_i ($t = 0,1,...,T_i$).
- Thus, the vector x_i denotes the consecutive states x_{it} , with $t = 0, ..., T_i$. The sequence $\mathbf{x}_i = (\mathbf{x}_{i0}, \mathbf{x}_{i1}, ..., \mathbf{x}_{iT_i-1}, \mathbf{x}_{iT_i})$ can be extremely difficult to characterize and describe, due to its varying dimension $(T_i + 1)$.

June 2019

30

Trail Clustering (3)

 $\begin{aligned} & \underset{c_{j} \in \mathcal{C}}{\text{arg min}} & & \mathcal{D}(c_{j}, \mathbf{x_{i}}) \\ & \text{subject to} & & \mathcal{C} = \left\{c_{1}, c_{2}, ..., c_{k}\right\}, \\ & & & x_{i, \mathcal{T}_{i} - t} \in \mathcal{X}, t \in \left\langle0, \mathcal{T}_{i}\right\rangle \end{aligned}$

• $D(\cdot,\cdot)$ cost function taking form of inverse similarity coefficient or distance metric

ıne 2019

21

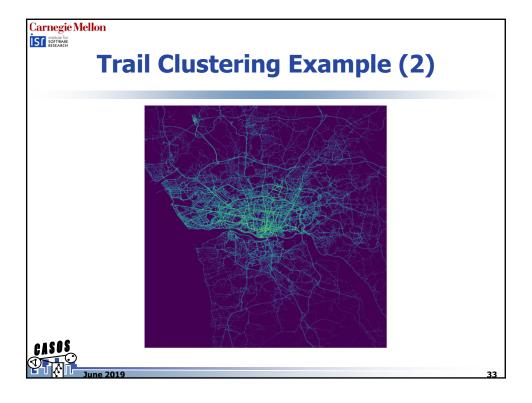
Carnegie Mellon

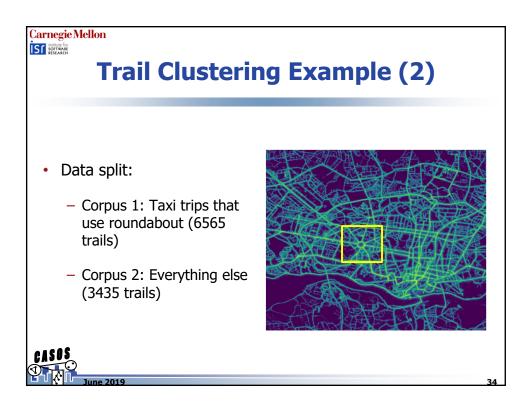
Trail Clustering Example (1)

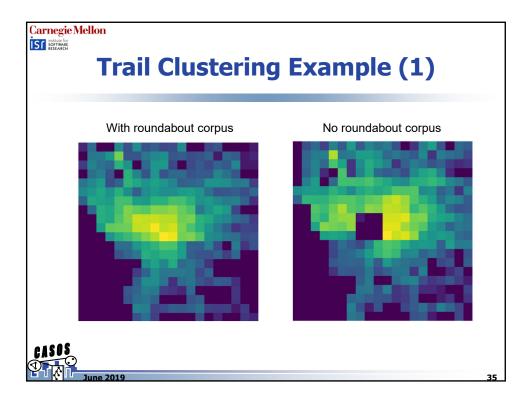
- Taxi trip location data from Porto, Portugal
- (Latitude, Longitude) pairs over time per taxi trip

June 2019

32







Trail Clustering Example (1)

- Cost functions:
 - Damerau–Levenshtein distance (DL)
 - Hamming Distance (HD)
 - Jaro–Winkler distance (JW)
 - Needleman–Wunsch algorithm (NW)
 - Smith–Waterman algorithm (SW)
- Test data:
 - 320 trails to cluster

June 2019

36

