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Dynamic Network Analysis

-
Key focus — Networks change over time

Summary statistics — typically average all data

— Useless for seeing changes over time

Longitudinal Networks and Change

— Getting longitudinal networks from communications logs
— Stability, Evolution, Shock, Mutation

Statistical Models of Networks to Detect Change

— Link Probability Model (LPM) for Stability

— Actor-Oriented Models for Evolution

— Multi-Agent Simulation for Evolution, Shock, and Mutation
Network Change Detection Algorithms

Fourier Analysis to remove periodic variations
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Basic Issue

¢ Real Social Networks are not time independent

e QOver time the set of nodes change
— Agents die, agents are born
— If data set has limited geographic focus,
e Agents can enter region under study
¢ Agents can leave region under study
e Network connections between agents can change
— A network link between two agents can disappear
e Two family members have a fight and refuse to talk to each other
— A new network link can be created
¢ People meet new people and form new relationships
o Advertising campaigns can convince people to follow companies

Carnegie Mellon
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Types of Changes in Network Data

o Stability: Relationships remain statistically
the same over time
— If you are a signal processing person, the Network is “Ergodic”
e Evolution: Interaction among agents cause the relationships
to change over time.
— All link weights / costs are evolving over time during obervations
e Shock: Change is exogenous to the social group.
— E.g., like an earthquake hits Southern California
e Mutation: A shock stimulates evolutionary behavior.
— E.g., after earthquake, people form many new links trying to survive

S
lSl




CASOS

Carnegie Mellon
S

Dynamic Metrics on
Over-Time Data
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Proxy for Network Data

I
¢ Ideal approach — directly sample network each time period
— E.g., have every member of society fill out survey every time period
— Limited to very small societies

¢ Or, tracking changes over time using communications data
— Communication is “proxy” for a network tie

— Taking large amounts of communication data gives an approximate
picture of the underlying social network (with some concerns)

— Can use it to find Key Agents and other Social Structure measures
e Communication log data available from many sources
— Cell Phone Service Providers — call logs, txt logs
— E-mail Data logs — available within organization
— Twitter, Facebook, FourSquare, etc.
ﬂﬂ— Building Sensors, Cell Phone Sensors, RFID Tags, etc.
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Example: Temporal Social Network

TN
e ACM Hypertext 2009 Conference
— Badges with RFIDs

¢ Close Range Face-to-Face Contact
— 1 - 1.5 meters of one another
— Human body acts as an RF shield
e Collect sensor data every 20 seconds for 2.5 days
— 20,818 real time data updates
— 113 participants, 2196 undirected, weighted links

New ey, | Stronger || Different
eAs0s Interactions Relations Interactions
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Socio-Patterns:
Betweenness Centrality Distribution
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Socio-Patterns:
Betweenness Over-Time Trends
I
900
—Agentl —Agent2
800
8 —Agent3 —Agent4
El 700
> o h 4 examples with 0 at end
o note huge differences if you
g 500 I can afford to look over time
§ 400 kﬂ
T 300 | f“" f‘\-L
=]
o
E 200 Ar ==
g L
oL Ly RS
AL OMNMMN~N AL OO~ AL OINOM~ AT AN MO oW M~
B BERGE8R3F 8885528888582
ANNAYIRCORES AR RASHAEEEEEE
U

Number of Update

Carnegie Mellon

[
Changes in Network Data

e Various measures of a network are taken for a window at
each time point.

e Change detection: quickly determine thata change occurs.
e Change point identification: when did the change occur.

g
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Change Detection

e Goal: Rapidly detect that a change has occurred

e Detect shocks, not evolutionary changes
— Evolutionary change: change due to interaction among actors in
a network

e Example: change of interaction patterns over time among new
students as they get to know each other

— Shock: change reason is exogenous to the network

e Example: change of interaction patterns among students after they
graduate

— Another way to say it: detect “fast” change not “slow” change

e Another goal is to identify change point
— Likely time when change occurred
— Limits the scope of explanation for network change

]
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e Change detection based on SPC

e Statistical Process Control

— Used in manufacturing to maintain quality control

— Monitors a process to detect potential changes

— Calculates a statistic from observed measurements of a process
and compares it to a decision interval

— If the statistic exceeds the decision interval, it is said to “signal”,
that a potential change may have occurred

— A quality engineer will then begin to search for the specific
cause of change
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Link Probability Model (LPM) for Stability
T—

e LPM is a model for a network in Stability
e The probability that an email is sent from /7to jwithin some

period of time tis: p = I(:fzy(x 16, )dx

— (p, as a function of t, is a CDF: fis the PDF that best fits cell /in an NPM)
e LPM can be used to simulate stable longitudinal networks

ay @, . a,

a 2
A=

a, a, q,
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Statistical Models of Networks
Link Probability Model (LPM) for Stability
B

LPM simulated networks are compared to empirical
networks and are shown to represent the network well.

M 8 N 60000

e_mean | e_stdev s_mean | s_stdev t-val P
409.2857 | 38.5604 358.0939 | 12.77466 3.754923 0.00
365.8571 | 18.2978 320.0974 | 12.73% 7.073195 0.00
365.8571 | 29.04266 320.1638 | 12.79331 4.449958 0.00
377.8571 | 38.24669 330.6744 | 12.77289 3.489244 0.00
375.2857 | 36.10039 328.3765 | 12.79551 3.675254 0.00
349.8571 | 38.15944 306.0783 | 12.7845 3.244918 0.00
373.8571 | 48.45076 327.0728 | 12.82622 2.731135 0.01
362.4286 | 55.63529 317.1509 | 12.77754 2.301849 0.02
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Probability Background

e Consider a normal distribution with =0 and o=1.
e 95% of the time, observations are between £1.9597
e When an observation occurs in the tail, we don't believe

it and think that something unusual might be going on.

IS [ Feat

Statistical Process Control

e Manufacturing processes are: stochastic, dependent, non-
ergotic, complex, and involve human interaction.

e Shewhart (1927) X-bar Control Chart proposed to monitor

change of any process

e Calculate Z; transform value for each time-period, &

Zt = (xt —/JO)/O'

e Calculate a control limit, £, based on
risk for false alarm.

f f(X)dx =«

e Chart Signals when Zexceeds
control limit, L.

Shewhart X-bar (closeness)

network
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The Shewhart X-Bar Chart

e Qverview
— Fit normal distribution on “control period” (early observations)
> assumed to represent the “normal state”

— Signal change if a subsequent observation is outside confidence
interval

e Simple Example of technique
4 Signal
e 3 / change
2 ,| Fitnormal distribution. /
e
© Hereu=0,0=1
g1 -
2, -
a 07
o, ! 2 6 10
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The Shewhart X-Bar Chart

e Parameters
— # observations used to fit distribution (the “normal” period)
— False positive risk or decision interval
¢ Trade-off between False positive risk & detection speed

e Assumption
— Observations are normally distributed as independent random vars

e Shewhart X-Bar chart used even when assumption is violated.
However, false positive risk probability may be inaccurate

| # observations = 7 | /

Observation
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Statistical Process Control (cont.)

e Newer approaches detect change in fewer observations subject to
the same rate of false positives.

e Scan Statistic (Fisher, 1934)

e Exponentially Weighted Moving Average (EWMA) (Roberts, 1959)
— Good at detecting small changes in mean over time
— Performs well on time series with closely spaced data samples

w, = //Lft + (1 _ﬂ‘)wt—l Hy iLCTX(zfl [1_(1_/1)”])91/2

e Cumulative-Sum (CUSUM) Control Chart (Page, 1961)
— Good at detecting small changes in mean over time
— Built-in change point detection
— Two Charts (To Detect Increase and Decrease)

,m C'=max{0,Z, —k+C',} C’

=max{0, - Z, —-k+C_}

t

IE;:;i;e.\'lellon
Cumulative Sum (CUMSUM)

Cumulative-Sum Control Chart

— Good at detecting small changes in mean over time
— Built-in change point detection

Calculate Z, transform for each time-period, ¢

Zt = (xt —,Llo)/O'
Two Charts (To Detect Increase and Decrease)
C’ =max{0, Z, —§+ C}

Chart Signals when C* or C statistic exceeds decision interval
C, =max{0, -Z, —g+ C .}

t

“s"Sensitivity in CUSUM due to discrete integration of error
Q) ®,
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Comparison of Change Detection Approaches
.
No Change Change
Sver |-l | -
Time 5 A REINY
Meas | .. L ‘

Baseline Avg. Betweenness Isolation of HQ Avg. Betweenness
25 @
o
H 260
Ss 5
. g $ 3
Statistic | : | \ 5
a s
F
B
H
H
3

— |
w1l 0
A L :

1317 21 25 20 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89

15 9 1317 2125 29 33 37 41 45 49 53 57 61 65 69 73 77 B1 85 89

‘
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Comparison of Change Detection Approaches
T
CUSUM EWMA EWMA EWMA Scan
k=0.5 r=0.1 r=0.2 r=0.3 Statistic

Average Betweenness 932 8.24 10.16 11.52 6.76
Maximum Betweenness 14.36 14.72 15.72 17.08 13.24
Std Dev. Betweenness 16.44 16.24 16.92 18.52 15.24
Average Closeness 10.68 9.08 13.60 17.52 10.48
Maximum Closeness 8.76 6.00 10.60 37.96 8.64
Std Deviation Closeness 34.48 34.72 34.52 35.68 27.08
Average Eigenvector 31.28 31.28 31.28 31.28 24.00
Minimum Eigenvector 14.36 14.36 14.28 15.56 14.88
Maximum Eigenvector 504 5.40 5.80 7.52 4.00
Std. Dev Eigenvector 5.92 4.88 6.40 6.96 3.64
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Network Change Detection:
Analysis of Real World Data

TN
#Nodes | Time | Method of | Type of | Design | Known
Periods | Collection | Relation Change
Fraternity 17 15 Survey Ranking | Fixed Yes
Leav 07 68 8 Survey Rating Free Yes
Leav 05 158 9 Survey Rating Free None
Al-Qaeda | 62-260 17 Text Rating Free Yes
Winter C 22 9 Observation | Rating Fixed Yes
& Survey
Winter A 28 9 Observation | Rating Fixed Yes
& Survey
IkeNet 2 22 46 Email Count Free Yes
Msg
IkeNet 3 68 121 Email Count Free Yes

Qﬂrnegie Mellon
1S et -
= Network Change Detection:

Analysis of Real World Data

s R sy G

[T ——

Winter A Winter C IkeNet 2 lkeNet 3
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Summary of Change Detection Across Data Sets

NN
There Is a trade-off between false positive and rapid detection
C, C,
° °| _ False alarm risk set by dec interval

/ °
. L Faster
False alarm Detection

e see—sosees® ot s 10 15 20 st

Low risk of false alarm High risk of false alarm
Longer to detect change Faster to detect change

Carnegie Mellon

Summary of Change Detection Across Data Sets

NN
Too little risk may prevent change detection all together

Data Change | a =0.05 | a =0.02 | @ =0.01 |a =0.005|a =0.001
Fraternity 8 10 10 10 13 Never
Leav 07 3 5 5 5 Never Never
Leav 05 None NoFA. | NoFA. | NoFA. | NoFA. | NoFA.
Al-Qaeda 1997 1999 1999 2000 2000 Never
Winter C May Sept Sept Oct Oct Never
Winter A May Aug Sept Sept Sept Oct
IkeNet 2 25 26 26 27 27 27
IkeNet 3 14 15 18 19 19 20
eAsd:

I
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Change Detection Hands-On

e Based on Roger Federer 2010 data

ORA3.08.971
Cenerate Networks _Analysis _Simulatis i System _Help

# 0| k- Dynamic-Meta-Network: Roger Federer 2010 #

Name  Roger Federer 2010
Filename /Users/Irc/Dropbox /DATA_LRC_SI-2018/Roger Federer 2010-Dates Fixed.xml
18 Generste Reports.. | “tra visvaize | | I MeasureCharts.. | | [ ViewTras...
Keyframes and deltas time stamped by: = Date  Period

Statistics:
Keyframe count: 12

Deltacount: O
Earliest date:  2010-01-01 00:00:00
Latestdate:  2010-12-01 00:00:00

Carnegie Mellon

Change Detection Hands-On

es and deltas tin  Network Block...
® GeoSpatial Networks...
— Region Viewer...
2 T View Trails...
b View Trails in GIS...
010-01-01 00:(__View Networks

'010-12-01 00:00:00

T
- ORA 3.0.9.9.71
°
Analysis USES " g jrions |EEERIERRY svstem _Helo
over-time E Measure Charts...
changes in parvprommrmrm 0, View Measures Over Time...
“ " = 28 View Networks Over Time... =
measures d 2010 1 23 View Networks Over Time in 3D... L
based on the it - View Network Distance over Time...
. Vector Maps
rc/Dropbox /DA xed
network &% Network Drill Down... i
data rate Reports... é?' Node Cloud... awT
| Color Grid... B
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Select The Metanetwork

Start: | 2010-01-01 00:00:00 | Skip:

- SV}
thagi e Measures Over Time

Select Meta-Networks | |
Select the meta-networks in which to compute measures.

» @ 33E- Roger Federer 2010

:
!
|
:

Run Close < Back Next >

Carnegie Mellon

Custom Measure Selection

?E Computation Parame_ .u

Choose which measures to compute, and whether to combine and transform
datasets using the controls below.

The meta-networks will be identified by date.

Measures | Aggregate | Select ITransﬂ)rm

() All measures
() Only fast measures
() Centrality measures

Click to select.

(@) Custom
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Use Search to Find Measure

Hint: Click Select Box at bottom to deselect all measure,
Then use search to find the ones you want

Computed Meas [ ] L Select Measures

Select the measures to compute:

1 )-s.het-uusu;] Set Measure Inputs |

O, total degree Contains

Rl

Measure Title v Network ... ¥ Node Level ¥ Computa... ¥ Use
Average Neighbor, Total-Degree false true fast true|
Centrality, Total-Degree false true fast true|
Network Centralization, Total Degree true false fast true
Twitter, Total Mentions Degree false true fast true|| |

Carnegie Mellon

Two measures selected to run

s @ ® Select Measures

7 Select the measures to compute:

i m Set Measure Inputs ‘

i
B
Q, total degree Contains B
Measure Title * Network ... ¥ Node Level ¥ Computa... * Use %
" | Average Neighbor, Total-Degree false true fast true|| &
Centrality, Total-Degree false true fast true F
Network Centralization, Total Degree true false fast true|| —
Twitter, Total Mentions Degree false true fast true

Add Measure — Agent Based Measure — select “Centrality, Total Degree”
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Now Select Display

First step is to select type of variables to display
—AGENT Level in this case

[ XoX ] Measures Over Time
1| Recompute Measures Save Computed Measures
Measure Selector # X I 0O x| Restrictor & x ]

4 [~AGERT el
KNOWLEDGE Level AGENT Level > start: | 2010-01-01 00:00-00

Use the Add and Clear buttons below to display
measures.

Charts & x |
Add Measure Clear Measures

[Chessure vaives 8

1.05
i

Then click on “Add Measure” to add a new plot line

Carnegie Mellon
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RESEARCH

Select Agent for Measure

Click on the “Click to choose ....” button
and select second agent for analysis (Federer is always primary)

S . S a2t reue N ange weeun Lo i
AGENT-AGENT B a

0.80
Click to choose statistics and node values ‘

Select statistics to display:

Minimum Maximum Mean Stddev
n
Select nodes to display: 3 o
a, Contains 2
Name = |Maximum = Mean = Minimum = Count X i : | VIR
ROGER FEDE... 1 1 1 12 X n
RAFAELNADAL 0.777778  0.529173  0.19403 12 » -
BARACK OBA.. 0.171429  0.105745  0.014925 9
MARIA SHAR... 0.333333  0.187722  0.025641 11
MICHAELJO... 0.222222  0.111273  0.029851 8 \
NOVAK DJO... 0.444444 0301648  0.134328 12 A

TIGER WOODS  0.611111 0.309955 0.148148 12
BENJAMIN N... 0.085714 0.079221 0.072727 2

VENUSWILLL.. 0.388889  0.245961 0.128205 12 o
SERENAWILL.. 0.490909  0.297292 0.142857 12
Select/Clear All Select/Clear Visible 1/ 194 Selected, 194 / ...

e ‘ ! Date

& Centrality, Total-Degree : AGENT-AGENT (RAFAEL NAD:
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Add Another Agent Measure Plot

Click on Add a Measure button again to add another line

. n -
Centrality, Total-Degree ¢ 0,831 5
-
AGENT-AGENT .60
a8 0.55 "
Click to choose statistics and node values : \
| \ w " ;

Select statistics to display: - o
Minimum Maximum Mean Stddev

Select nodes to display:

\
Contains [ |\ /
»

Name * Maximum <~ Mean * Minimum ~ Count
ROGER FEDE... 1 1 i 12 X
RAFAEL NADAL 0.777778 0.529173 0.19403 12 w

BARACK OBA... 0.171429 0.105745 0.014925 9 P N _./’-"."’"’-f—\_,,.
MARIA SHAR... 0.333333 0.187722 0.025641 1 il ~—
MICHAEL JO... 0.222222 0.111273 0.029851 8 /
NOVAK DJO... 0.444444 0.301648 0.134328 12 "
TGERWOODS; 0.6L111 0303935 Oc145245 12 Feb-2010 Mar-2010 Apr-2010 May-2010 Jun-2010 Jul-2010 Aug-2010 Sep-2010 Oct-2010 Now-2010 Dec-2010
BENJAMINN... 0.085714 0079221 0072727 2 Date
VENUSWILLL.. 0.388889 0.245961 0.128205 12 Degree - AGENT_AGENT (RAFAEL NADAD)
SERENA WILL... 0.490909 0.297292 0.142857 12 Degree : AGENT-AGENT (BARACK OBAMA)
Select/Clear All Select/Clear Visible 1/ 194 Selected, 194 / ... |

- W ST ETeT TS T VATES . - - Save Chart As... Date markers... Close

CarnegieMellon
=% Change Detection Hands-On
The Shewhart X-Bar Chart

Charts 2 x |

Measure values

Shewhart X-Bar B

Use filtered Fourier val...

Fast Fourier Transform [EEEGTTEsACIdd]]

‘ Change detected

Networks in control:

Risk:
0.1 °

# of networks used to
fit normal distribution

Value

False positive
probability
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CUMSUM Method

CusuM %] 3,25
Use filtered Fourier val... 3.001
2751

Networks in control:
2.501|

a | ‘ Change detected ‘

ized Change 2.001 \l
The 6 parameter |[—> 1 175 /)

R 1501}
Set sensitivity to false alarm: !
1.254f A
e
1.001 A L y
T B 0.75{ i o e A
© Risk: .1 os0ll Py e ]

Observations: J 0.251 e
0.00 {F——

.25
-0.504|
0.751|
-1.004|
-1.251
-1.504|
-1.75

Decision interval:

Value

15:00:00.005 19:00:00.010
Date

-#- Centrality, Total-Degree : AGENT-AGENT (RAFAEL NADAL) decrease

- Centrality, Total-Degree : AGENT-AGENT (RAFAEL NADAL) increase
s Centrality, Total-Degree : AGENT-AGENT (BARACK OBAMA) decrease

e‘ s' Centrality, Total-Degree : AGENT-AGENT (BARACK OBAMA) increase

Carnegie Mellon

Fast Fourier Transform (FFT)

I
e Goal: detect periodicity in over-time data
e Examples
— Weekly periodicity in email data
— Time of the day effects
e Fourier’s theorem

— Any time signal can be represented by a sum of sinusoidal
functions with different frequencies, amplitudes and phase shifts

Fourier transform finds sinusoids that decompose a signal

— Analogy: given a dish, find the ingredients

— Sinusoids have the advantage that they are orthogonal
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Sinusoidal Function
C—
o Asinusoidal function ¥ = Asin(2rft+¢) has
— A amplitude 1
- [ frequency (T = 7 is the period)
— ¢ phase

y = 3 sin(2r(0.25)(t + 0.5))

Qarnegie[\"lellnn
Frequency Domain: The FFT
I
e Fast Fourier Transform (FFT)
 Decompose time
waveform into LA

sum of
sinewaves

/ frequency
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FFT Example: Sum of Sinusoids
NS

e Fast Fourier transform of sinusoidal function is a spike at
the sinusoidal frequency

e Example y = sin(2m 0.25t)

Period = 4 Amplitude Period = 1/0.25 = 4
yl
0.5 FFT
0 ——)
-0.5 5 10
-1
Time (days) 0 0.25 0.5
Cycles / day
Over-time signal FFT
[{HLD

Qarnegie[\"lel lon

FFT Example 2

NS
e FFT finds periodicities that may be unclear in over-time signal

Period = 1/0.25 = 4

Period = 1/0.3 = 3.33
1 T L /
_5 $ 5 10 T T T f !
days 0 0.1 0.2 03 0.4 05

Cycles / day
Over-time signal FFT

= =

o un o wun
M
M
\4
Amplitude

Hidden “recipe”: over — time signal computed as

HS“ y(t) =2 sin(2 pi 0.25 t) + 3 sin(2 pi 0.3 t + 0.2) + noise
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Fourier Analysis Example 3

e 24 cadets in a regimental chain of command agreed to
have their email monitored to form a social network data
set known as IkeNet3.

¢ The betweenness was calculated based on the e-mail
communications observations over the first month in their
duty positions.

btwn

0.0015 -

0.0010

0.0005

Carnegie Mellon

Fourier Analysis — Example 3

0.0006 | \ |
I\ I
\ |
0.0004 | \‘ \\ ’J \
| |
|\ I
0.0002 [ | \ = ~_ A —\ |
\ | I
|\ | 1.
T - 10 15 20 25 5ol | w
\ 1P / \ ‘P [\
0.0002 | / | | | | \
\ [ |
0.0004 [ \\ ] | | \
| \ | |/ \
0.0006 [ \/ \| H \
! I I |
0.0008 [ | |

Fourier transform
Symmetric around the midpoint
3 main components (in terms of magnitude)

That is why we typically only display from origin up to midpoint
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Digital Signal Processing
T
Time Sampled Input
sampling period Tg FFT Sum of Sinusoids
(Amplitude, frequency, phase)
Digital Signal (e.g., emphasize some
Processing (DSP) frequencies and attenuate
other frequencies)
Sum of Sinusoids — | Inverse |, Time Sampled Input

sampling period Tg

(Amplitude, frequency, phase) FFT

(‘drne'rie Mellon

151 EEoet
One Key Issue: Aliasing Samplmg Limits

(‘c\m()ng Fi'z‘?, Fe = 1Ok H=
1~ i

x 107"
c‘s'; If we want DSP to work unambiguously, we choose to limit
maximum input frequency to < 1/ (2 TS) = FS /2= Nqust Frequency”
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Digital Signal Processing
i
A
0.0006 | ‘\\\ /’\‘
ot |\ |
A L w

sooonl \\\ // \5 10 15 20 25 Em/ \\
= | \/ \/ \

Fourier transform
Symmetric around the midpoint
3 main components (in terms of magnitude)
That is why we typically only display from origin up to midpoint

How do we use this?

e [T 0s One possible approach — big peaks are periodic “background”

Carnegie Mellon

Filtering
i

0.0006 |-

A 0.0004 —

0.0002 |-

0.0002 |-
0.0004 |-

0.0006 |-

0.0008 [

e.g., identify 3 main (high magnitude) components
keep them and remove FFT components
GAS“ at all other frequencies

15
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Inverse Fast Fourier Transform
NN
btwn
0.0008
0.0006
0.0004
0.0002 DayS
5 10, 15 2‘0 25 Sb t
£0.0002
[0.0004
This is the inverse Fourier transform of just the 3
selected components, which are then reconverted to time waveform
There is a weekly, two week and three week cycle
JHL Y y

Carnegie Mellon

0 institute for
et

Anomaly Detection

I
btwn

0.0015 -
0.0010 -

0.0005 -

t

‘ ‘ ‘ i ‘

5 10 15 25 Days

The filtered pattern has been subtracted from the original
The red is what is left — the anomalies
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FFT Example Hands-On

o IkeNet data (IkeNet3-dynamic.xml)

— Email exchange data among mid-career officers in a one-year
graduate program at Columbia University

— Granularity: day; Duration: month
File Edit Preferences Data Management Generate Networks Analysis Simulations Visualizations System Help

RNEIHEARCIRE Y Y1k s

| = 0O] 1:f- Dynamic-Meta-Network: Roger Federer 2010 # _

Meta-Network Manager 2

R R oo recerer 2010)
Name Roger Federer 2010
Filename /Users/Irc/Dropbox/DATA_LRC_SI-2018/Roger Federer 2010-Dates Fixed)
|3 Generate Reports... 28, Visualize E Measure Charts... 7 ViewT|
[ XN | Open [
[ DATA_LRC_SI-2018 B
© Load everything Name ~  Date Mo.
- . Flightpaths.good.xml| Friday...
Load some things: B IkeNet3-dynamic.xml Wedn...
¥| Load sources [ matrix Data Mond...
7| Load networks Raiders of the Lost Ark - Dynamic.xml  Tuesd...

Carnegie Mellon

Over Time Measures

Again View Measures Over Time

0@ ORA 3.0.9.9.71
File Edit Preferences Data Management Generate Networks Analysis Simulations System Help
RAIE R AR NN E Measure Charts

KX &

Name IkeNet3

(2 View Measures Over Time... !
23 View Networks Over Time...
23 View Networks Over Time in 3D...
View Network Distance over Time...
Vector Maps
& Network Drill Down...

L&) Generate Reports... | = Node Cloud. awTraf
= = | Color Grid... F
Keyframes and deltas tin ~ Network Block...
® GeoSpatial Networks...

Meta-Network Manager # - Dynamic-Meta-Network: lkel

> 13-

Filename /Users/Irc/Dropbox/DA

rStatistics: ~  Region Viewer... I
Keyframe count: 30 f’ View Tra_ils._.
Delta count: 0 View Trails in GIS...

Earliest date: ~ 2008-09-01 00:( View Networks >

Latest date: 2008-09-30 00:00:00
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Selecting MetaNetwork

= S |
Cha =
eCe Measures Over Time

| Select Meta-Networks F
| Select the meta-networks in which to compute measures.

> TR - IkeNet3

Qarnegi Mellon
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Selecting Measures

ChE = = = ;
o0 e Measures Over Time

J Select Parameters F
Select the measure calculation parameters.

Choose which measures to compute, and whether to
"J combine and transform datasets using the controls below.

The meta-networks will be identified by date.

5} = = Nodesets and Networks >

Al measures

¢ Only fast measures

| Centrality measures

' " Custom Click to select...

Geodesic measure options:
~ Compute regular measures

Compute inverted measures

Ci k-centrality with radius:
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Selecting Measures to Plot

Density, Weighted & eagent2eagent_

Use the Add and Clear buttons below to display
measures.

Select a measure and input: Charts # % | =

Density, Weighted

|_eAgent2eAgent

o

Add Measure

Clear Measures

)

Value

Fast Fourier Transform

Change Detection

Color Crid

0.070

0.065

0.060

0.0551

0.0501

0.045

0.0404

0.035

0.0301

0.0251

0.020

0.015

0.010

0.005

0.000

11-5ep 18-5ep 25-5ep
Date

Carnegie Mellon
[ e
Measure values  Fast Fourier Transform Color Grid
Shewhart X-Bar B 75
__) Use filtered Fourier val... e
Networks in control: e [ ]
10 ° o “
Risk: Z; I‘.‘
0.05 % 45 r.td
40 J |
Run Change Detection 35 i
Shewhart P . A
10 points for basis £ 20 g i | e
0.05 for false positives e ' \ I
1.0 " 4 i ]
0.5 1 = = L] 5 7
Lots of apparent events 0.0 [opfimol NN f T
05{ / -/
That could be Change ol = J J v
-1.5 o
All upward changes o
4-Sep 11-Sep 18-Sep 25-Sep
e‘s's Date
= Density, Weighted : eAgent2eAgent
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o
Dreadty, Row : enatiagent py
[ complexity -
|Count, Cok 0.0625
[l Count, Column. l2agent 00575 »
|Count, Row : eAgent2eAgent 00528 /T
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[Clpens " 00425 ! / f
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FFT Power Spectral Density

“ORA-NetScenes 309936

—

A3 A A3

File Edit Preferences Data Management Generate Networks Analysis Simulations Visualizations Help

£8 Measures Over Time.

@333 20080930

|
Heasure Selector & x | # 0 x| Restrictor & x rox

o tevd Starts | 2008-03-0100:00:00 B | | 2006 09,2, 00:00.00, =
Use the Add and Clear buttons below to display measures. - :
e - —
T

— B || [esmre vaes] FostFouner Transom | [coor ]
Add Measure. Clear Measures. = 3 H ff ”
== i) )~ “‘window effects

Power threshald: 0.0566520128645...

9 Dominant Frequenies:
©) Dominant Periods

3 day

Power

030 035 040 085 050
Frequency

ensity, Weighted : sAgent2eAgent

Display ptons...

Sovecataen ]

=0

Date modifiec

L compesciGipenroser | Sae 2810

Date createc: 4/2/2016 324 PM
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FFT Power vs. Period

Charts # x |

[V CRC LTl Fast Fourier Transform | Change Detection  Color Grid

Power Spectral Density

. 0.1151
AdJUSt POWer i Maximum: 0.111737 0.1101
Threshold to just select e b |
« » . . td.dev: 0. -1004
background” periodic 0.095
variations to be gy
removed 00801
0.0751 |
0.0701
NOTE — viewing the B o]
Dominant Periods Power threshold: 0.055857 S 00551 1
. L 0.050 |
is often more — , 0.045 |
. e ominant Frequencies Il
intuitive than PSD S el | |
Dominant Values 0.0304 { | ‘
The long period values Filered Values bpesd N 11
are artifact of finite R = A pted | -
riginal an ilteres eee b 1 |
length of data ’ 0005 L]
0.000

2 4 6 8 10 12 14 16 18 20 22 24 2
Period in original time units

— Density, Weighted : eAgent2eAgent
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Original vs. FFT subtracted data

Charts rxi‘ *0x

[ Measure values | Fast Fourier Transform | Change Detection | Color Grid

() Power Spectral Density 0.070 - e :
Remalnlng FFT Maximom: 0. 111737 0.065{ | ‘
components are e I |
converted back to time oss] ‘
values (inverse FFT) 0.050] |
and subtracted 0.005 ] }
@
= 0.040{
. >
This removes some of g oos| }
the periodic patterns oo R é 030 |
covering up the Dominant Frequendes 0.025 |
fundamental changes *) pamnant penads 0.020{ |
to be detected 2] 0.015 |
() Filtered Values ‘
0.0101
Griginal Values \
6 Onginal and Fitered values 1001 ‘
0.000*

4Sep 11-Sep 18-Sep 25-Sep
Date

c ‘ s ' s Density, Weighted : eAgent2eAgent original ‘

— Density, Weighted : eAgent2eAgent fitered
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Charts # x |

10 points for basis
0.05 for false positives

Only 1 + event and
2 —events

Open Question — is this
better than original or not?

Now use the Filtered ;ﬁ;:smvm ’
Data Networks in control: -
Run Change Detection ' L0615
Shewhart

Value

5.0
45
4.0

1.0

Shewhart on FFT subtracted data

Measure values | Fast Fourier Transform | Change Detection ‘C\ithd

+Sep 11-Sep

18-

Date

Sep 25-Sep

& Density, Weighted : eAgent2eAgent

Carnegie Mellon

Shewhart X-Bar B

_| Use filtered Fourier val...
Networks in control:
10 °
Risk:
0.05 T

Run Change Detection
Shewhart

10 points for basis
0.05 for false positives

Value

Lots of apparent events
That could be Change

All upward changes

Measure values

7.5
7.0
6.5
6.0
55
5.0
4.5
4.0
35
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.5
1.0
-1.5
2.0
-2.5

Shewhart on original data

Fast Fourier Transform Color Grid

4-Sep

11-Sep
Date

18-Sep

25-Sep

= Density, Weighted : eAgent2eAgent
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Fourier Analysis to Handle Periodicity

e Fourier analysis can effectively identify periodic trends
in longitudinal network data.

 Identification of periodic trends can allow the analyst to
aggregate relational data over the period to remove
over-time dependence.

e The inverse Fourier transform of the significant period
can be used to subtract off periodicity from longitudinal
network data measures over time.

e Further exploration of wavelets may produce greater
THLD insights in to network dynamics.
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Scalability

The change detection algorithm is linear, thus the time
consuming part is calculating network measures.
Networks with less than 20 nodes tend to have a higher

variance in over time measures. When a link is added or
removed, it affects (n-1)(n-2) triads.

Requires at least 3 time periods: >2 to determine typical
behavior and 1 to compare at each time point. In
practice, 10+ network time points are preferred.

No difference in number of required networks for each
technique: CUSUM, EWMA, Scan Statistic, x-bar, etc.

Wavelet/Fourier based approach needs many more time
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Limitations

¢ View findings on data with caution

¢ Slicing and dicing can distort conclusions

e Examine errors associated with technique through
extensive simulations.

e Investigate more real world data sets.

e Investigate the degree to which network measures are
correlated to understand the effects of compounding
error.

¢ Investigate multi-dimensional network properties such as
the cosine similarity between the triad census at
different time periods.
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Summary of Change Detection

e Rapid change detection may allow an analyst to get
inside a decision cycle and shape network evolution.

e Simulation is important for modeling longitudinal
network behavior.

e Isolating when networks change enables more focused
study on the causes of evolution, shock, and mutation,
which may lead to future predictive analysis.

o Statistical process control is a useful tool for
$08, understanding social behavior.
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FFT Hands On Session

File — Fourier-Example-3.xml

Walk through analysis on screen and on your laptops

Carnegie Mellon

1S Fetect
FFT Example Hands-On (1/4)

o IkeNet data (IkeNet3-dynamic.xml)

— Email exchange data among mid-career officers in a one-year
graduate program at Columbia University

— Granularity: day
— Duration: month

File Edit Preferences Data Management Generate Metworks Analysis Simulations (Visualizations| Help

R BER AR B e crarss
Meta-Network Manager # x a0 x | B3f- Dynamic teta| 2 ViewM Over Time...
23 View Networks Over Time... =
ERY Giiatiets | View Measures Ovi
223 20080201 D TheMet3 28 View Networks Ovel
&3 20080902 Filename |C:\Jsers\ghita & Network Drill Down...
-§3% 20080503 Select the date ﬁgﬂ Node Cloud... =
1221 2008004 0 Color Grid.
=-33% 20080905 Timeline o ;
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FFT Example Hands On (2/4)

5 conmin e
Choose which measures to compute, and whether to combine and transform

datasets using the controls below.
The meta-networks will be identified by date.

Measures | Aggregate | Select | Transform

) All measures

@ Dnly fast mea:

() Centrality measures

® Custom | Click to select.

Carnegie Mellon

FFT Example Hands On (3/4)

Recompute messres_ Save Computed Vessures

Heasure selector ¢ x |
Hetorklove |

EALLevel

Selsctone o more messures to depiay:

s0x|

w0 -

Restrictor # x 20ox

Strt Mon Sep 0100:00:00 EDT 2008 s

End: Tue Sep 30 00:00:00 0T 2008 =

JBreadh, Colun £ AGENTZEMAL

agent2eagent
ik Coun, Pooked : ehgent2eAgent
Count, Sequential  eAgentzedgent
Load, Knowiedge : AGENTZENATL
Netvork Centakzaton, Com Degree : AGENTZENALL

Network Cenraizaton, Colum Degree : emat2agent

SO

chans £ x|

Measure vales |Fast Fourer Transform | Chenge Detecton | Cor G|

Value
-

Date

[ 7] Show scaled measure values

Save Chart s,

(o= )
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FFT Example Hands On (4/4)
[ “oranetscenes 30593 ~— EICINE) &) |
o
[ color G| -
- “window effects”
“? weekly 3 day

4 day
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Fourier Analysis to Handle Periodicity

e Fourier analysis can effectively identify periodic trends
in longitudinal network data.

 Identification of periodic trends can allow the analyst to
aggregate relational data over the period to remove
over-time dependence.

e The inverse Fourier transform of the significant period
can be used to filter out periodicity from longitudinal
network data.

e Further exploration of wavelets may produce greater
u“sinsights in to network dynamics.
®,
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Scalability

The change detection algorithm is linear, thus the time
consuming part is calculating network measures.
Networks with less than 20 nodes tend to have a higher

variance in over time measures. When a link is added or
removed, it affects (n-1)(n-2) triads.

Requires at least 3 time periods: 2 to determine typical
behavior and 1 to compare. In practice, 10+ network
time points are preferred.

No difference in number of required networks for each
technique: CUSUM, EWMA, Scan Statistic, x-bar, eyeball

Wavelet/Fourier based approach needs many more time
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Limitations

View findings on data with caution.

Examine errors associated with technique through
extensive simulations.

Investigate more real world data sets.

Investigate the degree to which network measures are
correlated to understand the effects of compounding
error.

Investigate multi-dimensional network properties such as
the cosine similarity between the triad census at
different time periods.
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Summary Results

e Rapid change detection may allow an analyst to get

inside a decision cycle and shape network evolution.

e Simulation is important for modeling longitudinal

network behavior.

¢ Isolating when networks change enables more focused

study on the causes of evolution, shock, and mutation,
which may lead to future predictive analysis.

o Statistical process control is a useful tool for
understanding social behavior.
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Conclusions

e Change detection

— Detect occurrence of shocks i.e. change due to reasons
exogenous to the network

e Fourier analysis
— Detect periodicity in over-time data




