
CASOS

1

Center for Computational Analysis of 
Social and Organizational Systems

http://www.casos.cs.cmu.edu/

Fourier Analysis and
Change Detection

Prof. L. Richard Carley

carley@ece.cmu.edu

Copyright © 2019 Kathleen M. Carley – Director CASOS, ISR, CMU June 2019 2

Dynamic Network Analysis

• Key focus – Networks change over time
• Summary statistics – typically average all data 

– Useless for seeing changes over time
• Longitudinal Networks and Change

– Getting longitudinal networks from communications logs
– Stability, Evolution, Shock, Mutation

• Statistical Models of Networks to Detect Change
– Link Probability Model (LPM) for Stability
– Actor-Oriented Models for Evolution
– Multi-Agent Simulation for Evolution, Shock, and Mutation

• Network Change Detection Algorithms
• Fourier Analysis to remove periodic variations
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Basic Issue

• Real Social Networks are not time independent
• Over time the set of nodes change

– Agents die, agents are born
– If data set has limited geographic focus,

• Agents can enter region under study
• Agents can leave region under study

• Network connections between agents can change
– A network link between two agents can disappear

• Two family members have a fight and refuse to talk to each other
– A new network link can be created

• People meet new people and form new relationships
• Advertising campaigns can convince people to follow companies
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Types of Changes in Network Data

• Stability: Relationships remain statistically 
the same over time
– If you are a signal processing person, the Network is “Ergodic”

• Evolution:  Interaction among agents cause the relationships 
to change over time.
– All link weights / costs are evolving over time during obervations

• Shock: Change is exogenous to the social group.
– E.g., like an earthquake hits Southern California

• Mutation:  A shock stimulates evolutionary behavior.
– E.g., after earthquake, people form many new links trying to survive
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 Identifying central nodes in a 
network

Dynamic Metrics on 
Over-Time Data

Dynamically 
Changing 
Network 

Structure!!!T1 T2
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Proxy for Network Data
• Ideal approach – directly sample network each time period

– E.g., have every member of society fill out survey every time period
– Limited to very small societies

• Or, tracking changes over time using communications data
– Communication is “proxy” for a network tie
– Taking large amounts of communication data gives an approximate 

picture of the underlying social network (with some concerns)
– Can use it to find Key Agents and other Social Structure measures

• Communication log data available from many sources
– Cell Phone Service Providers – call logs, txt logs
– E-mail Data logs – available within organization
– Twitter, Facebook, FourSquare, etc.
– Building Sensors, Cell Phone Sensors, RFID Tags, etc.
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Example: Temporal Social Network

• ACM Hypertext 2009 Conference
– Badges with RFIDs

• Close Range Face-to-Face Contact
– 1 - 1.5 meters of one another
– Human body acts as an RF shield

• Collect sensor data every 20 seconds for 2.5 days
– 20,818 real time data updates
– 113 participants, 2196 undirected, weighted links 

New 
Interactions

Stronger
Relations

Different
Interactions
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44/113 have 0 betweenness
at end of Conference

Are they all the same?

Socio-Patterns:
Betweenness Centrality Distribution
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Socio-Patterns:
Betweenness Over-Time Trends

4 examples with 0 at end
note huge differences if you 
can afford to look over time
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Changes in Network Data

• Various measures of a network are taken for a window at 
each time point.

• Change detection: quickly determine that a change occurs. 
• Change point identification: when did the change occur.

A

B C

D

E

today
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Change Detection

• Goal: Rapidly detect that a change has occurred
• Detect shocks, not evolutionary changes

– Evolutionary change: change due to interaction among actors in 
a network

• Example: change of interaction patterns over time among new 
students as they get to know each other

– Shock: change reason is exogenous to the network
• Example: change of interaction patterns among students after they 

graduate
– Another way to say it: detect “fast” change not “slow” change

• Another goal is to identify change point
– Likely time when change occurred
– Limits the scope of explanation for network change 
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Statistical Process Control (SPC)

• Change detection based on SPC
• Statistical Process Control

– Used in manufacturing to maintain quality control
– Monitors a process to detect potential changes
– Calculates a statistic from observed measurements of a process 

and compares it to a decision interval
– If the statistic exceeds the decision interval, it is said to “signal”, 

that a potential change may have occurred
– A quality engineer will then begin to search for the specific 

cause of change
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Statistical Models of Networks
Link Probability Model (LPM) for Stability

• LPM is a model for a network in Stability
• The probability that an email is sent from i to j within some 

period of time t is:

– (p, as a function of t, is a CDF: f is the PDF that best fits cell ij in an NPM)

• LPM can be used to simulate stable longitudinal networks
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Statistical Models of Networks
Link Probability Model (LPM) for Stability

LPM simulated networks are compared to empirical 
networks and are shown to represent the network well.

M 8 N 60000

e_mean e_stdev s_mean s_stdev t-val p

409.2857 38.5604 358.0939 12.77466 3.754923 0.00

365.8571 18.2978 320.0974 12.7394 7.073195 0.00

365.8571 29.04266 320.1638 12.79331 4.449958 0.00

377.8571 38.24669 330.6744 12.77289 3.489244 0.00

375.2857 36.10039 328.3765 12.79551 3.675254 0.00

349.8571 38.15944 306.0783 12.7845 3.244918 0.00

373.8571 48.45076 327.0728 12.82622 2.731135 0.01

362.4286 55.63529 317.1509 12.77754 2.301849 0.02
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Probability Background

• Consider a normal distribution with μ=0 and σ=1.
• 95% of the time, observations are between ±1.9597
• When an observation occurs in the tail, we don’t believe 

it and think that something unusual might be going on.
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Statistical Process Control

• Manufacturing processes are: stochastic, dependent, non-
ergotic, complex, and involve human interaction.

• Shewhart (1927) X-bar Control Chart proposed to monitor 
change of any process

• Calculate Zt transform value for each time-period, t.

• Calculate a control limit, L, based on 
risk for false alarm.

• Chart Signals when Z exceeds 
control limit, L.
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The Shewhart X-Bar Chart

• Overview
– Fit normal distribution on “control period” (early observations)

> assumed to represent the “normal state”
– Signal change if a subsequent observation is outside confidence 

interval
• Simple Example of technique
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The Shewhart X-Bar Chart

• Parameters
– # observations used to fit distribution (the “normal” period)
– False positive risk or decision interval

• Trade-off between False positive risk & detection speed
• Assumption

– Observations are normally distributed as independent random vars
• Shewhart X-Bar chart used even when assumption is violated. 

However, false positive risk probability may be inaccurate
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Statistical Process Control (cont.)

• Newer approaches detect change in fewer observations subject to 
the same rate of false positives.

• Scan Statistic  (Fisher, 1934)

• Exponentially Weighted Moving Average (EWMA) (Roberts, 1959)
– Good at detecting small changes in mean over time
– Performs well on time series with closely spaced data samples

• Cumulative-Sum (CUSUM) Control Chart  (Page, 1961)
– Good at detecting small changes in mean over time
– Built-in change point detection
– Two Charts (To Detect Increase and Decrease)
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Cumulative Sum (CUMSUM)
• Cumulative-Sum Control Chart

– Good at detecting small changes in mean over time
– Built-in change point detection

• Calculate Zt transform for each time-period, t

• Two Charts (To Detect Increase and Decrease)

• Chart Signals when C+ or C- statistic exceeds decision interval

• Sensitivity in CUSUM due to discrete integration of error
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Comparison of Change Detection Approaches
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Comparison of Change Detection Approaches

CUSUM
k = 0.5

EWMA
r = 0.1

EWMA
r = 0.2

EWMA
r = 0.3

Scan 
Statistic

Average Betweenness 9.32 8.24 10.16 11.52 6.76

Maximum Betweenness 14.36 14.72 15.72 17.08 13.24

Std Dev. Betweenness 16.44 16.24 16.92 18.52 15.24

Average Closeness 10.68 9.08 13.60 17.52 10.48

Maximum Closeness 8.76 6.00 10.60 37.96 8.64

Std Deviation Closeness 34.48 34.72 34.52 35.68 27.08

Average Eigenvector 31.28 31.28 31.28 31.28 24.00

Minimum Eigenvector 14.36 14.36 14.28 15.56 14.88

Maximum Eigenvector 5.24 5.40 5.80 7.52 4.00

Std. Dev Eigenvector 5.92 4.88 6.40 6.96 3.64
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Network Change Detection: 
Analysis of Real World Data

# Nodes Time 
Periods

Method of 
Collection

Type of 
Relation

Design Known 
Change

Fraternity 17 15 Survey Ranking Fixed Yes
Leav 07 68 8 Survey Rating Free Yes
Leav 05 158 9 Survey Rating Free None
Al-Qaeda 62-260 17 Text Rating Free Yes
Winter C 22 9 Observation

& Survey

Rating Fixed Yes

Winter A 28 9 Observation

& Survey

Rating Fixed Yes

IkeNet 2 22 46 Email Count 
Msg

Free Yes

IkeNet 3 68 121 Email Count 
Msg

Free Yes
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Network Change Detection: 
Analysis of Real World Data

Fraternity         Leavenworth 2007    Leavenworth 2005 Al-Qaeda

Winter A Winter C IkeNet 2 IkeNet 3
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There is a trade-off between false positive and rapid detection

Summary of Change Detection Across Data Sets

0 5 10 15 20 25 0 5 10 15 20 25 tt
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2
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3
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Ct Ct

Low risk of false alarm
Longer to detect change

High risk of false alarm
Faster to detect change

False alarm risk set by dec interval

False alarm 
Faster

Detection
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Too little risk may prevent change detection all together

Summary of Change Detection Across Data Sets

Data Change α = 0.05 α = 0.02 α = 0.01 α = 0.005 α = 0.001

Fraternity 8 10 10 10 13 Never

Leav 07 3 5 5 5 Never Never

Leav 05 None No F.A. No F.A. No F.A. No F.A. No F.A.

Al-Qaeda 1997 1999 1999 2000 2000 Never

Winter C May Sept Sept Oct Oct Never

Winter A May Aug Sept Sept Sept Oct

IkeNet 2 25 26 26 27 27 27

IkeNet 3 14 15 18 19 19 20
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Change Detection Hands-On 

• Based on Roger Federer 2010 data
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Change Detection Hands-On 

• Analysis uses
over-time 
changes in
“measures”
based on the
network
data
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Select The Metanetwork

Copyright © 2019 Kathleen M. Carley – Director CASOS, ISR, CMU June 2019 30

Custom Measure Selection
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Use Search to Find Measure
Hint:  Click Select Box at bottom to deselect all measure, 

Then use search to find the ones you want
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Two measures selected to run

Add Measure – Agent Based Measure – select “Centrality, Total Degree”
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Now Select Display

First step is to select type of variables to display 
– AGENT Level in this case

Then click on “Add Measure” to add a new plot line
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Select Agent for Measure
Click on the “Click to choose ….” button

and select second agent for analysis (Federer is always primary) 
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Add Another Agent Measure Plot 
Click on Add a Measure button again to add another line
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Change Detection Hands-On
The Shewhart X-Bar Chart

# of networks used to 
fit normal distribution

False positive 
probability

Obama

Nadal

Change detected 
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Change Detection Hands-On
CUMSUM Method

The ߜ	parameter

Change detected 

Copyright © 2019 Kathleen M. Carley – Director CASOS, ISR, CMU June 2019 38

Fast Fourier Transform (FFT)

• Goal: detect periodicity in over-time data
• Examples

– Weekly periodicity in email data
– Time of the day effects

• Fourier’s theorem
– Any time signal can be represented by a sum of sinusoidal 

functions with different frequencies, amplitudes and phase shifts
• Fourier transform finds sinusoids that decompose a signal

– Analogy: given a dish, find the ingredients
– Sinusoids have the advantage that they are orthogonal
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Sinusoidal Function

• A sinusoidal function                                   has
– amplitude
– frequency     (          is the period)
– phase

Time t
-4
-3
-2
-1
0
1
2
3
4

-4 -2 0 2 4

A=3

T = 4

A sin(ϕ)

y = 3 sin(2(0.25)(t + 0.5)) 
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Frequency Domain:  The FFT

• Fast Fourier Transform (FFT)
• Decompose time

waveform into
sum of
sinewaves



CASOS

21

Copyright © 2019 Kathleen M. Carley – Director CASOS, ISR, CMU June 2019 41

FFT Example: Sum of Sinusoids

-1
-0.5

0
0.5

1

0 5 10
0

0.05
0.1

0.15
0.2

0.25
0.3

0 0.25 0.5Time (days)

y
Amplitude

Cycles / day

FFT

Period = 4 Period = 1/0.25 = 4

Over-time signal FFT

• Fast Fourier transform of sinusoidal function is a spike at 
the sinusoidal frequency

• Example ݕ ൌ ሻݐ	0.25	ߨ	ሺ2	݊݅ݏ
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FFT Example 2
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Period = 1/0.25 = 4

Period = 1/0.3 = 3.33
FFT

FFT

• FFT finds periodicities that may be unclear in over-time signal

days

Hidden “recipe”: over – time signal computed as 
y(t) = 2 sin(2 pi 0.25 t) + 3 sin(2 pi 0.3 t + 0.2) + noise 



CASOS

22

Copyright © 2019 Kathleen M. Carley – Director CASOS, ISR, CMU June 2019 43

Fourier Analysis Example 3

• 24 cadets in a regimental chain of command agreed to 
have their email monitored to form a social network data 
set known as IkeNet3.

• The betweenness was calculated based on the e-mail 
communications observations over the first month in their 
duty positions.

5 10 15 20 25 30

0.0005

0.0010

0.0015

t

btwn
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Fourier Analysis – Example 3

5 10 15 20 25 30
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0.0002

0.0004
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ω

A

Fourier transform
Symmetric around the midpoint

3 main components (in terms of magnitude)

That is why we typically only display from origin up to midpoint
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Digital Signal Processing

Time Sampled Input
sampling period TS

FFT Sum of Sinusoids
(Amplitude, frequency, phase)

Inverse
FFT

Sum of Sinusoids
(Amplitude, frequency, phase)

Time Sampled Input
sampling period TS

Digital Signal
Processing (DSP)

(e.g., emphasize some
frequencies and attenuate

other frequencies)
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One Key Issue:  Aliasing Sampling Limits

If we want DSP to work unambiguously, we choose to limit 
maximum input frequency to  ≤  1 / (2 TS) = FS / 2 = “Nyquist Frequency”
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Digital Signal Processing

5 10 15 20 25 30

�0.0008

�0.0006

�0.0004

�0.0002

0.0002

0.0004

0.0006

ω

A

Fourier transform
Symmetric around the midpoint

3 main components (in terms of magnitude)

That is why we typically only display from origin up to midpoint

How do we use this?

One possible approach – big peaks are periodic “background”
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Filtering

5 10 15

�0.0008

�0.0006

�0.0004

�0.0002

0.0002
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A

e.g., identify 3 main (high magnitude) components 
keep them and remove FFT components

at all other frequencies 

ω
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Inverse Fast Fourier Transform

5 10 15 20 25 30

�0.0004

�0.0002

0.0002

0.0004
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0.0008

btwn

This is the inverse Fourier transform of just the 3
selected components, which are then reconverted to time waveform

There is a weekly, two week and three week cycle

t
Days
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Anomaly Detection

5 10 15 20 25 30

0.0005

0.0010

0.0015

btwn

The filtered pattern has been subtracted from the original
The red is what is left – the anomalies

t
Days
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FFT Example Hands-On

• IkeNet data (IkeNet3-dynamic.xml)
– Email exchange data among mid-career officers in a one-year 

graduate program at Columbia University
– Granularity: day;   Duration: month
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Over Time Measures 

Again View Measures Over Time
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Selecting MetaNetwork
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Selecting Measures
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Selecting Measures to Plot
Density, Weighted    &  eagent2eagent
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Run Shewhart to Detect Change

Run Change Detection
Shewhart
10 points for basis
0.05 for false positives

Lots of apparent events
That could be Change

All upward changes
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FFT Can Help with Periodic Patterns
Network Level / Density, Weighted / eAgent2eAgent
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FFT Power Spectral Density

“window effects”

weekly
4 day

3 day
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FFT Power vs. Period

Adjust Power
Threshold to just select
“background” periodic
variations to be
removed

NOTE – viewing the
Dominant Periods
is often more
intuitive than PSD

The long period values
are artifact of finite
length of data
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Original vs. FFT subtracted data

Remaining FFT
components are
converted back to time
values (inverse FFT) 
and subtracted

This removes some of
the periodic patterns
covering up the 
fundamental changes
to be detected
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Shewhart on FFT subtracted data

Now use the Filtered
Data

Run Change Detection
Shewhart
10 points for basis
0.05 for false positives

Only 1 + event and
2 – events

Open Question – is this
better than original or not?
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Shewhart on original data

Run Change Detection
Shewhart
10 points for basis
0.05 for false positives

Lots of apparent events
That could be Change

All upward changes
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Fourier Analysis to Handle Periodicity

• Fourier  analysis can effectively identify periodic trends 
in longitudinal network data.

• Identification of periodic trends can allow the analyst to 
aggregate relational data over the period to remove 
over-time dependence.

• The inverse Fourier transform of the significant period 
can be used to subtract off periodicity from longitudinal 
network data measures over time.

• Further exploration of wavelets may produce greater 
insights in to network dynamics.
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Scalability

• The change detection algorithm is linear, thus the time 
consuming part is calculating network measures.

• Networks with less than 20 nodes tend to have a higher 
variance in over time measures.  When a link is added or 
removed, it affects (n-1)(n-2) triads.

• Requires at least 3 time periods: >2 to determine typical 
behavior and 1 to compare at each time point.  In 
practice, 10+ network time points are preferred. 

• No difference in number of required networks for each 
technique: CUSUM, EWMA, Scan Statistic, x-bar, etc.

• Wavelet/Fourier based approach needs many more time 
periods and complexity grows roughly as #T(log(#T))
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Limitations

• View findings on data with caution
• Slicing and dicing can distort conclusions
• Examine errors associated with technique through 

extensive simulations.
• Investigate more real world data sets.
• Investigate the degree to which network measures are 

correlated to understand the effects of compounding 
error.

• Investigate multi-dimensional network properties such as 
the cosine similarity between the triad census at 
different time periods.
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Summary of Change Detection

• Rapid change detection may allow an analyst to get 
inside a decision cycle and shape network evolution.

• Simulation is important for modeling longitudinal 
network behavior.

• Isolating when networks change enables more focused 
study on the causes of evolution, shock, and mutation, 
which may lead to future predictive analysis.

• Statistical process control is a useful tool for 
understanding social behavior. 
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FFT Hands On Session

File – Fourier-Example-3.xml

Walk through analysis on screen and on your laptops
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FFT Example Hands-On (1/4)

• IkeNet data (IkeNet3-dynamic.xml)
– Email exchange data among mid-career officers in a one-year 

graduate program at Columbia University
– Granularity: day
– Duration: month
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FFT Example Hands On (2/4) 
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FFT Example Hands On (3/4)
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FFT Example Hands On (4/4)

“window effects”

weekly
4 day

3 day

Copyright © 2019 Kathleen M. Carley – Director CASOS, ISR, CMU June 2019 72

Fourier Analysis to Handle Periodicity

• Fourier  analysis can effectively identify periodic trends 
in longitudinal network data.

• Identification of periodic trends can allow the analyst to 
aggregate relational data over the period to remove 
over-time dependence.

• The inverse Fourier transform of the significant period 
can be used to filter out periodicity from longitudinal 
network data.

• Further exploration of wavelets may produce greater 
insights in to network dynamics.
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Scalability

• The change detection algorithm is linear, thus the time 
consuming part is calculating network measures.

• Networks with less than 20 nodes tend to have a higher 
variance in over time measures.  When a link is added or 
removed, it affects (n-1)(n-2) triads.

• Requires at least 3 time periods: 2 to determine typical 
behavior and 1 to compare.  In practice, 10+ network 
time points are preferred. 

• No difference in number of required networks for each 
technique: CUSUM, EWMA, Scan Statistic, x-bar, eyeball

• Wavelet/Fourier based approach needs many more time 
periods
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Limitations

• View findings on data with caution.
• Examine errors associated with technique through 

extensive simulations.
• Investigate more real world data sets.
• Investigate the degree to which network measures are 

correlated to understand the effects of compounding 
error.

• Investigate multi-dimensional network properties such as 
the cosine similarity between the triad census at 
different time periods.
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Summary Results

• Rapid change detection may allow an analyst to get 
inside a decision cycle and shape network evolution.

• Simulation is important for modeling longitudinal 
network behavior.

• Isolating when networks change enables more focused 
study on the causes of evolution, shock, and mutation, 
which may lead to future predictive analysis.

• Statistical process control is a useful tool for 
understanding social behavior. 
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Conclusions

• Change detection
– Detect occurrence of shocks i.e. change due to reasons 

exogenous to the network

• Fourier analysis
– Detect periodicity in over-time data


