

ORA Machine Learning

Michael J Kowalchuck

mkowalch@andrew.cmu.edu

IST institute for SOFTWARE RESEARCH

Carnegie Mellon

Center for Computational Analysis of Social and Organizational Systems http://www.casos.cs.cmu.edu/

Carnegie Mellon IST institute for SOFTWARE RESEARCH

Algorithms

- Decision Tree
- Random Forest
 - · A forest of decision trees
- JRip (coming soon)
 - Tree of rules

Decision Tree Overview

- Can be used for classification or regression problems
 - Ora's decision tree can only do Classification for now
 - Classification is where we are predicting a variable with discrete categories
- Still useful with unbalanced data (almost all positives or almost all negatives)
- Useful for finding the most important variables
- Weak learner
- Tends towards overfitting
- Walking up the tree from a leaf gives interesting subgroups

Carnegie Mellon

isf institute for SOFTWARE RESEARCH

Tennis Data

<u> </u>	Outlook	Temperature	Humidity	Windy	Play
	Sunny	Hot	High	FALSE	No
	Sunny	Hot	High	TRUE	No
	Overcast	Hot	High	FALSE	Yes
	Rainy	Mild	High	FALSE	Yes
	Rainy	Cool	Normal	FALSE	Yes
	Rainy	Cool	Normal	TRUE	No
	Overcast	Cool	Normal	TRUE	Yes
	Sunny	Mild	High	FALSE	No
	Sunny	Cool	Normal	FALSE	Yes
	Rainy	Mild	Normal	FALSE	Yes
	Sunny	Mild	Normal	TRUE	Yes
	Overcast	Mild	High	TRUE	Yes
	Overcast	Hot	Normal	FALSE	Yes

DT Algorithm

- Pick the splitting variable
 - Pick variable with highest information gain or gini impurity
- Break data set into subsets, one for each value splitting variable can take
- create child nodes for each subset and repeat the process for each child

Carnegie Mellon

Choosing the Splitting Variable

- Information gain
 - Difference in entropy between parent and entropy of all child nodes
 - Problem: if there are too many unique values for a variable
- Gini impurity
 - How accurate the current split is
 - Useful in regression
 - · Not gini coefficient that is something else

DT as Weak Learner

- Weak learners generally do not perform very well
 - Sometimes barely above random chance
- Decision trees performance can improve by picking the right parameters
- Weak learners can do well in bagging

Carnegie Mellon

IST institute for SOFTWARE RESEARCH

Decision Tree Paramters

- Minimum samples per node
- Maximum tree depth
- Without these the algorithm will perfectly overfit the data

Bootstrap

- If you have a sample of some population that is independent and identically distributed
 - Resample from your sample with replacement (so the same sample can be taken multiple times) until you get the a new sample of the same size as the original
 - For each resample calculate your statistic

Build Random Forest

- For every tree in the forest, create a subsample of the data with replacement
 - Size of the forest is a parameter to the algorithm
- For every subsample, create a decision tree
 - These trees are allowed to overfit
 - When deciding which variable to split on only a subset of available variables is considered
 - The size of this subset is sqrt(variable_count)
 - This is the difference from bagged decision trees and random forest

