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The Impact of Countermeasure Propagation
on the Prevalence of Computer Viruses

Li-Chiou Chen, Member, IEEE, and Kathleen M. Carley

Abstract—Countermeasures such as software patches or
warnings can be effective in helping organizations avert virus
infection problems. However, current strategies for disseminating
such countermeasures have limited their effectiveness. We propose
a new approach, called the Countermeasure Competing (CMC)
strategy, and use computer simulation to formally compare its rel-
ative effectiveness with three antivirus strategies currently under
consideration. CMC is based on the idea that computer viruses
and countermeasures spread through two separate but interlinked
complex networks—the virus-spreading network and the counter-
measure-propagation network, in which a countermeasure acts as
a competing species against the computer virus. Our results show
that CMC is more effective than other strategies based on the
empirical virus data. The proposed CMC reduces the size of virus
infection significantly when the countermeasure-propagation
network has properties that favor countermeasures over viruses,
or when the countermeasure-propagation rate is higher than the
virus-spreading rate. In addition, our work reveals that CMC can
be flexibly adapted to different uncertainties in the real world,
enabling it to be tuned to a greater variety of situations than other
strategies.

Index Terms—Computational modeling, computer security,
computer virus, netwrok topology, simulation.

I. INTRODUCTION

COMPUTER virus1 infection problem has imposed signif-
icant financial losses as well as the loss of productivity for

organizations even though most of these organizations have in-
stalled antivirus software. CSI/FBI Survey [8] estimates that the
average annual loss due to virus infections is about 283 thousand
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1A computer virus is a segment of program code that will copy its code into
one or more larger “host” programs when it is activated. A worm is a program
that can run independently and travel from machine to machine across network
connections [7], [23]. In this paper, the term computer virus will refer to both
computer viruses and worms since most malicious programs today can propa-
gate themselves in both ways.

dollars per organization, 90% of which have installed antivirus
software. ICSA Survey [13] reports that virus infections have
caused server down time, loss of productivity and loss of data for
organizations, 92% of which have installed antivirus software.
This evidence implies that installing antivirus software alone
cannot resolve the computer virus infection problem effectively
unless such software is implemented in the context of a more
comprehensive security strategy. If virus countermeasures, such
as software patches or new virus definition files, have not been
installed on vulnerable computers, these computers can still be
infected by new variants of old viruses that exploit the same
software vulnerability. How can virus countermeasures be dis-
seminated and installed more effectively than they currently are
so that fewer organizations will suffer virus infection problems?

In an attempt to solve this virus infection problem, three an-
tivirus strategies have been proposed. They are 1) the random
immunization strategy (RANDOM), 2) the targeted immuniza-
tion strategy (TARGET) [9], [18], [21], and 3) the kill-signal
strategy (KS) [14], [16]. Both RANDOM and TARGET origi-
nate from the study of immunization of human populations to
prevent epidemics [10]. Neither strategy explains how counter-
measures for computer viruses are disseminated. In contrast, KS
considers how countermeasures spread but assumes that coun-
termeasures only spread to computers that already have been in-
fected. However, in real-world situations, countermeasures may
spread at different rates and through different means of contact
than do computer viruses. Further, countermeasures may spread
to both infected and uninfected computers thus serving as a pre-
emptive strategy. In order to provide a more effective method
for countermeasure propagation in such real situations, we pro-
pose an antivirus strategy called the countermeasure competing
strategy (CMC).

In this paper, we describe our model for CMC and examine
the effectiveness of this strategy by comparing it with the three
current antivirus strategies using computer simulation. Note, we
conceptualize countermeasures as competing species that act
to suppress the spread of computer viruses. Decision makers
(representing either people or antivirus software programs) who
receive the countermeasures will adopt them (e.g., install new
software patches) at a certain rate and spread them with a cer-
tain probability.

The rest of the paper is outlined as follows. Section II reviews
the theoretical background of our model, gives a brief descrip-
tion of the three current antivirus strategies, and explains our
proposed strategy (CMC) in more detail. Section III describes
the models for CMC and the simulation tool we have devel-
oped. Section IV presents the results from analyzing empirical
virus reporting records. Section V describes virtual experiments
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to compare the effectiveness of the four antivirus strategies and
discusses the results. Finally, contributions and limitations are
discussed.

II. BACKGROUND

The spread of computer viruses is an example of a nonlinear
dynamic system, similar to the spread of epidemics in human
populations [14], [21]. The Susceptible-Infected-Removed
(SIR) model has been widely used to model the spread of epi-
demics and to study immunization strategies [1], [2], [10]. The
SIR model2 is a “population-level” description of the epidemic
diffusion process that categorizes the entire population into
three states: susceptible (S), infected (I), and removed (R). In
this model, a portion of the susceptible population is infected
at a certain rate through contact with the infected population.
At the same time, some of the infected population recover at
a certain rate and will not be infected again. The limitation
with the SIR model is that it only describes the state changes
of the population over time and there are no explicit network
assumptions in the SIR model. However, implicitly the SIR
model assumes that the population is well-mixed. Namely,
everyone is connected to everyone else. This is usually not
the case in either human or computer networks. Moreover,
previous studies have shown that the spread of epidemics and
the spread of computer viruses are dramatically affected by
the topology of the underlying networks [1], [15], [17]–[21].
Thus, the SIR assumption that the topology is a fully connected
network is likely to result in an overestimation of the rate at
which epidemics, or in this case, computer viruses, spread. To
counter this overestimation, the SIR model requires increasing
the number of model variables to account for variations in
network structure.

Three antivirus strategies that add network consideration
to the SIR model have been proposed: 1) the random immu-
nization strategy (RANDOM), 2) the targeted immunization
strategy (TARGET) [21], and 3) the kill-signal strategy (KS)3

[14]. RANDOM proposes to immunize a certain portion of
randomly selected nodes so that the virus will not prevail
because the immunized nodes cannot be used to spread viruses.
TARGET proposes a similar strategy but immunizes nodes
that have high connectivity. Both strategies have been studied
for controlling the spread of epidemics in human populations
[1] and for controlling the spread of computer viruses through
complex networks [9], [18], [21], [24]. KS proposes that once
a virus infection is found in a computer, the computer will
disseminate countermeasures to other infected computers.

In contrast to these three strategies, we propose the counter-
measure competing strategy (CMC). The CMC is based on the
hypothesis that the countermeasure for a new computer virus
can be spread through a countermeasure-propagation network.
The spread of countermeasures is similar to the spread of com-
puter viruses; but, unlike computer viruses that propagate them-

2In this model, � denotes the infection rate of susceptible population and 
denotes the recovery rate of infected population. Changes of populations in the
three states over time can be represented mathematically as ((dS)=(dt)) =
��SI , ((dI)=(dt)) = �SI � I , ((dR)=(dt)) = I .

3Here we use the same terminology “RANDOM,” “TARGET,” and “KS” as
they are used in [19]–[21].

selves, countermeasures act to suppress the spread of computer
viruses. This can be thought of as having two viruses spreading
at the same time: a “good” virus and a “bad” virus. Factors that
influence the spread of the good one over the bad one enable the
overall system to become less vulnerable to the bad virus. The
types of countermeasures depend on how CMC is implemented.
A common example is a warning disseminated via e-mails that
ask people to be aware of new computer viruses or new soft-
ware vulnerabilities. Another example is to create an automatic
mechanism for spreading new software patches. Users who like
to adopt the automatic mechanism can install a software pro-
gram on their computers to authenticate and install the software
patches. A similar mechanism has been implemented in most
current antivirus software products,4 but these products only
allow a server to disseminate countermeasures to its client com-
puters, which at this point are not able to further distribute the
countermeasures. We will not further discuss the specific imple-
mentation details of countermeasures since they are beyond the
scope of this paper.

All four strategies hold several of the same assumptions about
disseminating viruses, which are derived from the SIR model.
These are 1) nodes disseminate viruses to neighboring nodes in
the network once they are infected and stop once the infection is
discovered and 2) viruses will not infect nodes that have adopted
countermeasures.

What distinguishes CMC from the other three strategies is
its method of disseminating countermeasures. Both RANDOM
and TARGET assume that a certain portion of preselected
nodes (immunized nodes) adopt countermeasures, but these
nodes do not further spread countermeasures. In contrast, both
KS and CMC assume that only a very small portion of nodes
are preselected and these nodes are able to further spread
countermeasures. There are three different assumptions about
how countermeasures are disseminating between KS and CMC.
First, KS assumes that the adoption of countermeasures is
mandatory. CMC assumes that the adoption of countermeasures
is probabilistic (modeled by a rate of adoption) which provides
a more accurate model of how countermeasures spread in the
real world. For example, it is uncertain whether users would
actually adopt countermeasures after receiving information
about them. Secondly, KS assumes that countermeasures only
spread to the nodes that have been infected, but CMC assumes
that countermeasures may spread to both susceptible nodes
and infected nodes. Again, this assumption allows CMC to set
the model closer to real-world situations. The rational for KS
excluding susceptible nodes from adopting countermeasures
is based on the idea that only infected nodes have a reason to
search for adopting countermeasures. In reality, some users are
able to and desire to preemptively adopt countermeasures. For
example, users may warn friends and associates about an e-mail
virus even though they themselves have not encountered it.
Those friends and associates may then take preemptive action.
Finally, KS assumes that countermeasures and viruses spread
through the same network—the network linking computers
(and so their users). In contrast, CMC assumes that coun-

4For example, Symantec, McAfee and Sophos all have products to support
this functionality.
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TABLE I
NOTATIONS OF MODEL PARAMETERS

termeasures spread through a distinct network—the network
linking users (and so their computers); whereas, the viruses
spread through the network linking computers (and so their
users).5 Note, we are assuming a one-to-one mapping between
users and computers, but two types of relations—the computer
network and the social network (which may use means other
than the computer backbone). In the real world, users often
learn about a new virus and its countermeasure through friends,
the news media, or their system administrators, not just from
the virus victims. In many cases, victims’ systems are down
and are not capable of warning others of the virus. Although
this separate network assumption increases the complexity of
the model, it is more realistic for modeling the countermeasure
dissemination. In the next section, we will explain our model
for CMC.

III. MODELING THE DYNAMICS OF COMPUTER

VIRUS PROPAGATION

This section describes the model for CMC and the simulation
tool for comparing CMC with the three antivirus strategies de-
scribed above. Table I lists the notation and meaning of param-
eters used in the model. Our goal is to model the computer virus
infection problem in the real world at an abstract level that can
generate useful policy conclusions. We are not trying to create
an exact model of the real world.

A. Model for CMC

We define the virus-spreading network as the network
for spreading viruses, and the countermeasure-propagation
network as the network for spreading countermeasures.

5Note, it is functionally equivalent in this case to treat these as two networks
versus a single multiplex network (one network with two types of ties). We refer
to it here as two network simply for the sake of clarity of exposition.

Both and are undirected graphs. In the real world,
both networks can represent either physical networks (con-
necting computers/programs) or social networks (connecting
people/groups). The real world representation of depends on
the vulnerabilities that the virus exploits. For example, if a com-
puter virus, such as Love Letter,6 spreads through e-mails or
mailing lists, is a social network because the virus exploits
the social/organizational connections among people/groups
that are built upon e-mail communications, in which the virus
spreads from one e-mail account (representing one person or
one group) to another e-mail account. In contrast, a computer
virus such as Nimda exploits specific software vulnerabilities
in order to propagate itself without user intervention. In
this case, is a physical network connected by vulnerable
computers/programs. Similarly, the real world representation
of depends on the implementation of antivirus policies.
On the one hand, is a social network if countermeasures
are implemented as e-mail warnings. On the other hand, is
a physical network if countermeasures automatically spread
through antivirus programs that have been installed by system
administrators on computers beforehand. In summary, the
differences between these two complex networks in the model
are not exactly the differences between a physical network and
a social network. Whether or is a social network or a
physical network depends on the vulnerability/information that
the virus/countermeasure utilizes in order to spread.

In this paper, we make two simplifying assumptions that fa-
cilitate evaluating the effectiveness of CMC. These assumptions
can be relaxed in future applications of our model. First, we as-
sume that countermeasures have only a positive effect and no
negative effects on the action of decision makers. For example,
a software patch is authentic and is not another computer virus.
This assumption should be investigated in a future evaluation of
CMC because countermeasure propagation can become a com-
puter virus problem if the countermeasures have negative ef-
fects. Secondly, we assume that each node in maps to one
node in . That is, the two-network model can be though as
a network where the nodes are connected by different types of
links (that is, a multiplex network).

The changes in each node of these two complex networks are
described as state machines. Each node in changes over time
among three states: “susceptible (S),” “infected (I),” and “re-
moved (R)” due to the spread of computer viruses, as illustrated
in the state machine in Fig. 1. In the meantime, each node in
changes among three states: “unwarned (U),” “warning (WG),”
and “warned (WD)” due to countermeasure propagation, as il-
lustrated in the state machine in Fig. 2. Since we assume that
each node in maps to one node in , we can think of each
node as one system being described by two variables: its com-
puter virus state and its countermeasure state. That is, one node
can be in either one of the nine cases (3 3, one of three states in

one of three states in ). For example, a node can be both
“susceptible” and “unwarned.” The transition from one case to
another is described in the following sub-sections as state tran-
sition rules. The two state machines interact with each other

6This virus propagates itself to other e-mail accounts only when e-mail recip-
ients click on the malicious e-mail attachments.
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Fig. 1. State machine for computer-virus spreading.

through these rules. Here we describe the two state machines
separately for clarity.

In each state machine, circles represent states and arrows rep-
resent state transition rules. We label each arrow with the name
of the state transition rule and a Greek letter representing the
probability of change for each node from one state to another
state. All probabilities in state transition rules are in range [0,1].
We describe these states and rules in details as follows.

1) State Machine for Computer-Virus Spreading: As in
Fig. 1, each state in the state machine for computer-virus
spreading represents an observable fact of a node. A state is
a Boolean variable of value either “true” or “false.” The state
machine is revised from the SIR model, which includes three
states:

1) Susceptible (S): A node has the software vulnerability
that the computer virus can exploit.

2) Infected (I): A node is infected by the computer virus,
which means the node can infect its neighbors with this
virus, and the virus has not been removed from the node.
For example, computers that receive a Melissa Virus are
in the “infected” state only if the users click on the e-mail
attachments and only if the computers can spread this
virus.

3) Removed (R): A node that has installed a detection tool
that identifies and removes a computer virus, or a node
that has installed a software patch to eliminate the soft-
ware vulnerability exploited by a virus.

There are three state transition rules for spreading viruses:

1) Propagating viruses: A node in the “susceptible” state
will change to the “infected” state with the probability
only if one of its neighbors is infected, where is the birth
rate7 of the computer virus. Since the decision makers
for this node have not adopted countermeasures (the node
is susceptible), the state of the node for countermeasure
propagation does not matter in this case.

2) Patching computers from susceptible: A node in the
“susceptible” state will change to the “recovered” state
at the probability if the corresponding node in is
in either the “warning” state or the “warned” state. de-
notes the countermeasure adoption rate and represents the
probability that decision makers will adopt the counter-
measure.

3) Patching computers from infected: A node in the “in-
fected” state will change to the “removed” state at the

7The terms “birth rate” and “death rate” of computer viruses have first been
used in [14]–[16].

Fig. 2. State machine for countermeasure propagation.

probability if the corresponding node in is in
either the “warning” state or the “warned” state. The “in-
fected” node will change to the “removed” state at the
probability otherwise. The death rate of the computer
virus represents the probability that decision makers
discover the virus infections and patch the computers.
Comparing to the previous rule, this rule implicitly as-
sumes that the “infected” nodes are more likely to adopt
countermeasures than the “susceptible” nodes

. In order to discuss how fast a virus can spread pre-
emptively when no countermeasure is applied, we define
the virus-spreading rate .

2) The State Machine for Countermeasure Propagation: As
in Fig. 2, each state in the state machine of countermeasure prop-
agation represents whether or not a decision maker has adopted
and spread countermeasures. This state machine includes three
states:

1) Unwarned (U): The node has not received countermea-
sures and will not be influenced by countermeasures.

2) Warning (WG): The node has received countermeasures
and would further spread the countermeasure at a certain
probability.

3) Warned (WD): The node has received countermeasures
but does not further spread countermeasures anymore.

There are two state transition rules for spreading counter-
measures:

1) Propagating countermeasures: A node in the “un-
warned” state will change to the “warning” state with the
probability if one of its neighbors is in the “warned”
state, where is the birth rate of the countermeasure.

2) Stopping countermeasures spreading: A node in the
“warning” state will change to “warned” state at the prob-
ability , where is the death rate of the countermeasure.
We assume that a node stops spreading the countermea-
sure with a certain probability for two reasons. First, if
the countermeasure represents an e-mail warning, people
who have received the e-mails may not keep propagating
the e-mails all the time. Secondly, if the countermeasure
represents a software patch sent by an automatic mecha-
nism, the death rate will prevent the patch spreading from
saturating the computer network. This setting eliminates a
possible negative effect caused by countermeasure propa-
gation. In order to discuss how fast a countermeasure can
spread, we define the countermeasure-propagation rate

.
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Fig. 3. Simulation of antivirus strategies.

B. Simulation of Antivirus Strategies

The simulation is designed to be flexible enough so that it can
examine the effectiveness of the four different antivirus strate-
gies on various network topologies using Monte-Carlo sampling
techniques. The four strategies include RANDOM, TARGET,
KS, and CMC, as described in Section II. Fig. 3 illustrates the
input parameters, the state machines, and the output parameters
for each one of the four antivirus strategies.8

Using this simulation tool, we conduct several sets of virtual
experiments, as described in Section V. Each virtual experiment
stops when the dynamic system converges to a steady state. In
our simulation, the steady state means that no nodes are in the
“infected” state or all nodes have been infected. The outputs in-
clude the duration of the virus infection and the size of the
virus infection .9 refers to the time that the system con-
verges. refers to the number of nodes that have been infected
divided by the total number of nodes in the network.

IV. ANALYSIS OF VIRUS REPORTING RECORDS

In this section, we calibrate and based on empirical
virus reporting records using The Wild List10 (TWL). The data
set we analyze is from January 1996 to September 2002, which
includes 106 reporting sites and 958 computer viruses across
71 reporting11 time periods. TWL was originally published in

8We refer to the model used by KS as the KW model [14], which adds an
additional state to the SIR model to represent the spread of kill signals (such as
virus warnings).

9The terms here are borrowed from “duration of the epidemic” and “size of the
epidemic”, which are commonly used in epidemiological literature. “Duration
of the epidemic” refers to the time between the epidemic starts and it converges
to a steady state and “size of the epidemic” refers to the fraction of individuals
who have been infected with the disease over time.

10The Wild List is available at www.wildlist.org. It is also accessible from
the Virus Bulletin (www.virusbtn.com/resources/wildlists/index.xml). The Wild
List is a cooperative listing of viruses reported as being in the wild by virus infor-
mation professionals. ICSA, Virus Bulletin and Secure Computing are currently
using The Wild List as the basis for virus testing and certification of antivirus
products [12].

11From 1996 to 1998, The Wild List reported the records every two months.

one-month chucks. It reports the name of the viruses that have
been discovered in each reporting site (a site refers to a company
or a reporting center) over time but does not report the number
of infected computers in each site. For this reason, this data set
is only enough to investigate the prevalence of computer viruses
among organizations but not within an organization.

We first estimate using the TWL data set. We calculate the
size of the virus infection and the duration of the virus in-
fection for each virus in TWL data set, and then calibrate
for CMC to match and using the simulation tool described
in Section III-B. Based on the data,

and is around 90 days (three months) because viruses
have infected an average of 80% of the sites when the system
converges in the first three months of the duration of the virus
infection. In this range, the calibrated is between 0.01 and 0.2

. Since both and do not vary significantly
with the way that the viruses propagate, we decide not to further
categorize viruses and to use the maximum calibrated
( where and ) as a base case for later
virtual experiments. Appendix A is a detailed description of the
analysis. The calibrated from this data set may be underes-
timated for two reasons. First, the TWL data set is an observed
virus prevalence record in which it is possible that some virus
infection incidents are not reported because they have not been
discovered. Secondly, the observed prevalence records may be
a result of applying some antivirus strategies. For this reason,
we examine the variation of in the virtual experiments in
Section VI.

We then infer the topology of the virus-spreading network
from the TWL data set. In order to infer , we assume that
two reporting sites have a link to each other if one site reports a
virus during the current time period and the other site reports the
same virus the first time during the next time period. We code the
reporting records for each virus as a network and then obtain a
conjunction network from these networks. We call this conjunc-
tion network the TWL network (labeled as TWL). Appendix B
describes the details of inferring the TWL network from the data
set. In the later virtual experiments, the virus-spreading network
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TABLE II
EXPERIMENT DESIGNS

is set to the TWL network as a base scenario. calculated
from this method represents the worst possible case of computer
virus spreading which we will use to examine the lower bound
of the four antivirus strategies.

V. VIRTUAL EXPERIMENTS

A. Experiment Design

We design four sets of virtual experiments to compare CMC
with other three strategies. Table II lists the values of parameters
in each set of experiments. For each experiment, unless it is
specified, we use and network
as a base scenario, which is estimated from the TWL data. Each
experiment is run iterations so that the standard deviations
and the mean values of outputs converge. One starting infected
node is randomly selected each run.

Experiment 1 compares the four strategies by varying
so that we can investigate how these strategies perform when
viruses spread at various rates. Experiment 2 varies and in
CMC and KS, and varies in RANDOM and TARGET. The
purpose is to realize the constraints for using these strategies.
Experiment 3 compares the four strategies using six different
networks (for both and ) so that we can understand how
these strategies differ under various network topologies. The
six networks include two empirical networks and four theoret-
ical networks. The two empirical ones are the TWL network
(TWL), which has 106 nodes and is inferred from the virus data,
and an Internet autonomous system network topology12 (AS),
which has 11 716 nodes and is used to examine how the number
of nodes modeled on the effectiveness of the four strategies.

12Available at “http://moat.nlanr.net/AS/”, downloaded on August 2001.

The four theoretical ones include a scale-free network (SF),13 a
lattice (LAT)14 , a random network (RG), and a fully connected
network (FULL). The four theoretical ones are calibrated to be
the same size and have approximately the same number of links
as TWL.15 In experiment 4, we concentrate on investigating
what properties of the countermeasure-propagation network
influence the effectiveness of CMC. In this experiment, we fix

to one of the empirical networks and vary to one of the
four theoretical networks. All theoretical networks have the
same number of nodes as the corresponding empirical network
but are designed to have varying network properties for com-
parison purposes. Properties of networks used in experiment 3
and 4 are listed in Table III.

We will discuss the results from experiment 1 and 2 in
Section V-B and the results from experiment 3 and 4 in
Section V-C. Results are reported in either or . is
calculated as the average value of runs. is calculated as
the ratio of based on one strategy to without any antivirus
strategy. For clarity of presentation, the antivirus strategies are
labeled with their model parameters in the next two sub-sec-
tions. They are 16 , , ,
and . A model parameter is labeled with an
asterisk to represent an independent variable in the analysis.
“No strategy” means no antivirus strategy is applied.

B. Result Discussions: The Impact of Model Parameters

First, we are interested in comparing CMC to the three
antivirus strategies under various virus-spreading rates. Fig. 4
(from experiment 1) shows how much each antivirus strategy
reduces the size of virus infection when virus-spreading rate
is varied. When is in the range estimated from the TWL
data (between 0.01 and 0.2), the order of reducing from the
most to the least is

. Once increases past
0.15, CMC(10,0.5) reduces more than RANDOM(50%).

Although TARGET(50%) reduces the most across , im-
munizing 50% of nodes in the population could be costly in the
real world. Fig. 5 (from experiment 2) shows how varies in
both TARGET and RANDOM when varies. Comparing Fig. 5
with Fig. 4, we find that CMC(10,0.1) reduces more than
TARGET and RANDOM when only 20% of nodes are immu-
nized. To further investigate CMC with different parameter set-
tings, Fig. 6 illustrates how varies in both KS and CMC when

varies. Comparing Fig. 6 with Fig. 4, we find that CMC re-
duces more than RANDOM(50%) only when and

.
In summary, each of the four strategies has its strength

and weakness. It is important to realize the constraints before
applying them to the computer virus infection problem. Both
RANDOM and TARGET require a few nodes to be immunized

13All scale-free networks are generated based on the algorithm in [4].
14We use the Small-World network algorithm in [26] to generate the lattice

(with reconnecting probability = 0), and the random network (with the
reconnecting probability = 1).

15The number of links cannot be exactly the same due to the topology of the
network. In particular, the fully connected network cannot have the number of
links.

16For example, CMC(10,0.1) represents CMC has countermeasure-propaga-
tion rate 10 times of virus-spreading rate, and countermeasure adoption rate 0.1.
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TABLE III
PROPERTIES OF NETWORKS USED IN SIMULATION EXPERIMENTS

Fig. 4. Effectiveness of CMC comparing with KS, RANDOM, and TARGET
when � varies.

before a virus infects them. In the real world, immunizing a
large portion of nodes could be costly. Although TARGET
can reduce the size of the virus infection to the same level
as RANDOM does by immunizing fewer nodes, as shown
in Fig. 5, it is hard to determine which nodes have high
connectivity because computer viruses operate through many
different networks where one node may be highly connected in
a network but not in another network. In this aspect, RANDOM
is more applicable to the real world than TARGET.

In contrast to RANDOM and TARGET, both KS and CMC
focus on distributing countermeasures for a virus without
immunizing a large portion nodes beforehand. The idea of
propagating countermeasures through a network gives both
KS and CMC an advantage over TARGET where one must
identify highly connected nodes before the attack. At the same

, CMC reduces more than KS does because of the different

Fig. 5. Effectiveness of RANDOM compares with TARGET when n varies.

Fig. 6. Effectiveness of CMC compares to KS when � and � vary.
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Fig. 7. Effectiveness of CMC comparing with KS, RANDOM and TARGET
when the network topology varies (G = G ).

assumptions described in Section II. Based on these assump-
tions, CMC incorporates uncertainty in how susceptible nodes
are immunized and how countermeasures are spread into the
strategic response to virus attacks. In addition, CMC identifies
two limitations of using the spread of countermeasures to
suppress the spread of computer viruses. One limitation is that
countermeasures have to spread faster than computer viruses

and another limitation is that the probability of
adopting countermeasures at each node must be greater than
0.1 ( , explicitly, KS assumes ).

C. Result Discussions: The Impact of Network Topology

The topology of may vary from one virus to another. For
example, for a virus spreading through e-mails is different
from for a virus spreading through web browsing. Similarly,
the topology of may vary from one antivirus policy to an-
other. For example, for sending e-mail warnings is different
from for sending software patches by system administrators.
The variation of networks in the real world is the reason why we
need to study the impact of network topology on the effective-
ness of the four antivirus strategies.

First, we ask how the network topology influences the ef-
fectiveness of CMC comparing to the other strategies. Fig. 7
(from experiment 3) compares CMC(10,0.1) and CMC(10,0.5)
with KS(10), RANDOM(50%), and TARGET(50%) for six dif-
ferent network topologies. CMC(10,0.5) reduces the most
for FULL and the second for TWL and AS. CMC performs the
worst under LAT and RG topologies among the strategies. The
results imply that the effectiveness of CMC may be dependent
on some properties of the networks. To further confirm this ob-
servation, we run experiment 4 to correlate the effectiveness of
CMC to a set of network properties.

As in experiment 4, we vary . in order to investigate what
properties in a countermeasure-propagation network actually
influence the effectiveness of CMC. As in Table IV, we correlate
the properties of networks to and find that the correlation
varies with both and the properties of networks.

Among the properties we calculated, epidemic threshold has
the highest positive correlation to when is larger than

TABLE IV
CORRELATIONS BETWEEN PROPERTIES OF COUNTERMEASURE-PROPAGATION

NETWORKS (G ) AND RELATIVE SIZE OF THE VIRUS INFECTION (RS)

. Epidemic threshold is defined as the minimal
epidemic spreading rate that an epidemic can prevail [1]. In a
complex network, epidemic threshold varies with the edge dis-
tribution of networks17 [19]. Applying this property on counter-
measure propagation, we find that the countermeasure-propaga-
tion network with a lower epidemic threshold is more effective
in reducing the size of the virus infection than networks with
higher epidemic thresholds.

In addition, density18 has a negative correlation with .
This result implies that our strategy is more effective if the con-
nectivity of is larger. Moreover, the effectiveness of CMC
increases with clustering coefficient19 (negatively correlated
to ), and decreases with average path length (positively
correlated to ). This result confirms the finding in [26] about
epidemic spreading across a network with the Small-World
property. Finally, we found that the effectiveness of CMC
increases when the degree centralization20 [25] of a network
increases. However, the correlation is smaller comparing to
other properties.

In summary, we find that CMC is more effective than the
other three antivirus strategies when the countermeasure-propa-
gation networks are highly connected (as such FULL) or highly
centralized (with a lower epidemic threshold, a higher clustering
coefficient, or a shorter average path length). If the topology of

can be determined, we can design as the network that can
spread countermeasures faster than the computer viruses, such
as a network with a lower epidemic threshold. If the topology of

cannot be determined, increasing or is another way to
reduce the size of the virus infection because the effectiveness
of CMC increases when either of the two variables increases.

17When an epidemic spreads on a complex network, the epidemic threshold
can be estimated by � = (hei=he i) where hei denotes the average
number of edges and he i denotes the average square of edges [19].

18Density measures the connectivity of a network, which is defined as the
number of edges of a network divided by the largest possible number of edges
of this network [25].

19Clustering coefficient measures the cliquishness of a network. Node clus-
tering coefficient is defined as the connectivity of the neighbors of a node. Clus-
tering coefficient is the average of node clustering coefficients in a network [26].

20Degree centralization measures the differences of the connectivity among
nodes, which takes the average of the difference of individual node connectivity
and the average node connectivity [25]. Degree centralization can be used as an
index only if it is larger than 1 because all graphs that have the same number
of edges per node have degree centralization = 1. For example, both a fully
connected network and a lattice network have degree centralization = 1. For
this reason, this index cannot distinguish edge distribution among nodes well
when it is equal to 1.
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VI. CONCLUSIONS

In this paper, we propose a new antivirus strategy—the
countermeasure competing strategy (CMC)—for mitigating
the severity of impact of computer-virus infections. We inves-
tigate the effectiveness of this strategy by comparing it, via
computer simulation, with three antivirus strategies previously
discussed in the literature—RANDOM, TARGET and KS. Our
results demonstrate that CMC is the most effective strategy in
general and when the networks are constrained to match the
empirical data on virus spreading. CMC is based on the idea
that countermeasures against computer viruses can spread as
competing species on a separate network from the network
used to spread computer viruses. By using CMC, we find the
size of the virus infection can be reduced significantly only
when countermeasures spread faster than computer viruses.

How can virus countermeasures be disseminated and in-
stalled more efficiently than they currently are so that fewer
organizations will suffer virus infection problems? We believe
our analysis provides several insights into this problem. First,
one of the reasons that CMC is more effective than KS is
that CMC spreads countermeasures to both susceptible nodes
and infected nodes. In real-world responses to outbreaks of
computer viruses, antivirus companies or computer incident
response teams should spread warnings (behavior counter-
measures) or software patches to their customers as soon as
possible whether or not they have been infected. Secondly,
when highly connected nodes in a virus-spreading network
can be easily identified, TARGET is more effective because
it distributes countermeasures preemptively from one central
point. However, when the topology of the virus-spreading
network cannot be determined, CMC is more practical because
it relies on a separate network to distribute countermeasures.
This separate network can be established before the outbreak
of computer viruses. Thirdly, CMC is effective when the coun-
termeasure-propagation rate is higher than the virus-spreading
rate. In the real world, this result implies that CMC is ef-
fective when the decision makers are more likely to spread
countermeasures to their neighbors than to spread computer
viruses, or if decision makers are more likely to discover
virus infections than to stop spreading countermeasures. To
achieve this goal when implementing CMC-like products or
mechanisms, antivirus companies should provide incentives
for customers to spread countermeasures or, alternatively, they
should target customers who use computers most frequently
(since they may discover the virus infection earlier than other
users). Finally, CMC is most effective when the topology of
the countermeasure-propagation network is such that counter-
measures spread faster than computer viruses. For example, a
network with a lower epidemic threshold has this property. A
network having a few nodes with high connectivity exhibits
this property as well. Based on this result, antivirus companies
should utilize the social network of their customers (mailing
lists consisting of organization representatives, for example), or
set up a countermeasure-propagation network in which nodes
can further spread countermeasures and some nodes are highly
connected to others, similar to a peer-to-peer network21 for
distributing music files.

21Such as Napster (www.napster.com) and Gnutella (gnutella.wego.com).

The possible negative effects of CMC should be further
studied before the strategy is completely implemented. Because
countermeasures can propagate like computer viruses to cause
router congestion or to deliver false information, CMC should
be implemented in a way that can avoid these negative effects.
Authentication processes to verify countermeasures or a death
rate setting (as described in Section III-A) for slowing down
the spread of countermeasures may reduce possible negative
effects, but these methods need to be further studied while
CMC is implemented.

Future work could be done based on our model. For example,
the model and the simulation framework developed in this paper
can be extended to describe a more complicated application
with more states by revising the state machines. Additionally,
our model simulates the spread of countermeasures and viruses
through two separate complex networks. This model can be ap-
plied to other problems where there are two competing conta-
gious agents, such as the effect of spreading rumors on the diffu-
sion of correct information. Finally, the comparison of the four
antivirus strategies has analogs to the choices for the immuniza-
tion of epidemics. The current policy debate on smallpox vacci-
nation provides a particular example for the further application
of our simulation.

In summary, our approach clarifies the uncertainty of virus
spreading and countermeasure propagation through different
network topologies. Not only does our CMC strategy have the
effectiveness that equals or exceeds the three antivirus strategies
currently under consideration, but it also incorporates a richer
set of variables for describing the uncertainty associated with
disseminating countermeasures. In the future, we expect to
further apply this network modeling approach to understand the
diffusion and defenses for other classes of security incidents.

APPENDIX

A. An Analysis on TWL Data Set

We categorize viruses in TWL data set into two types:
one-to-one and one-to-many. One-to-one refers to the virus that
is designed to infect one target during one infection process
that is triggered by a certain user behavior, such as a MS macro
virus. One-to-many refers to the virus that is designed to infect
multiple targets during one infection process that is triggered
by the virus automatically, such as the Melissa virus [5] or the
Love Letter virus [6]. Table V lists minimum, mean, maximum,
and standard deviation of 22 and 23 for the two types of
viruses.

From this analysis, we have found the following characteris-
tics of computer virus spreading.

1) On average, one-to-many viruses spread faster than
one-to-one viruses (the average is higher and the
average is shorter). However, the fastest spreading
one-to-one virus can spread as fast as one-to-many
viruses and the variations of between the two types

22Size=the number of sites that have reported a virus/ the total number of
reporting sites.

23Duration=the last time period that a virus was shown on the list-the first
time period that the virus was reported.
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TABLE V
SIZE AND DURATION FROM TWL DATA SET

Fig. 8. Example of inferring the virus-spreading.

are similar ( and 0.14
respectively).

2) Although the variation of is relatively large (more than
a year), we find that viruses spread much faster in the first
three months of their lifetime. In the first three months of
the duration of a virus, one-to-many viruses have infected
an average of 83% of the total sites that are eventually
infected, and one-to-one viruses have infected an average
of 77% of the total infected.

B. Inferring the Virus-Spreading Network From TWL Data set

In order to infer for each virus, we investigate which sites
discovered that virus for each time period. We code the reporting
records for each virus as a network. The data coding assumes
that two reporting sites have a link to each other if one site re-
ports a virus during the current time period and the other site
reports the same virus the first time during the next time period.
This assumption implies that the virus is spread from one site
to another either directly from this site or indirectly through an-
other sites during this time period. Fig. 8 shows an example that
illustrates three continuous reporting periods ( , , and )
for a virus. Comparing sites in and , we assume that a link
exists between A and B, and A and C since B and C were re-
ported in the next time period after A was reported. We obtain

for this computer virus by applying the same assumption to
all time periods. A similar approach to investigate the time evo-
lution of networks has been used in social network analysis [3].

By applying this coding approach to all virus records in the
TWL data set, we obtain a set of virus-spreading networks

. Each graph in contains the ob-
servable nodes that a virus actually infects but does not contain
the nodes that are susceptible to the virus. should be larger
than the observable one. For this reason, we calculate as the
conjunction of graphs in , in which a link exists only if the
link is observed at least in networks in . In the social net-
work analysis, this method has been used to find a central graph
from a set of networks [22]. We set which is the largest
possible network that has been used by at least two viruses.
calculated from this method represents the worst possible case
of computer virus spreading.
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