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ABSTRACT 

Network data provides valuable insight into 
understanding complex organizations by modeling 
relational dependence between network agents. Detecting 
subtle changes in organizational behavior can alert 
analysts before the change significantly impacts the larger 
group. Statistical process control is applied to dynamic 
network measures of longitudinal data to quickly detect 
organizational change. The performance of 10 network 
measures and three algorithms are evaluated on simulated 
data. One of the algorithms and one of the network 
measures are used to demonstrate change detection on the 
Al-Qaeda terrorist network. There is no statistically 
significant difference in the performance of investigated 
algorithms, however, the cumulative sum control chart 
has a built-in estimate of the actual time a change may 
have occurred. 

1.    INTRODUCTION 

According to the National Research Council's 
Committee on Network Science for Future Army 
Applications (2005), Network Science is defined as, "the 
study of network representations of physical, biological, 
and social phenomena leading to predictive models of 
these phenomena. Initiation of a field of network science 
would be appropriate to provide a body of rigorous 
results that would improve the predictability of the 
engineering design of complex networks and also speed 
up basic research in a variety of applications areas. " An 
important step forward in improving the predictability of 
networks is Dynamic Network Change Detection. 
Underlying changes in physical, biological, and social 
phenomena may be observed in the networks of these 
"application areas". "The breakdown of a team's 
effectiveness, the emergence of informal leaders, or the 
preparation of an attack by a clandestine network may all 
be associated with changes in the patterns of interactions 
between group members. The ability to systematically, 
statistically, effectively and efficiently detect these 
changes has the potential to enable the anticipation of 

change, provide early warning of change, and enable 
faster response to change." (McCulloh and Carley, n.d.) 

Statistical process control is applied to dynamic 
network measures in a novel approach to the statistical 
analysis of networks. The area of statistical process 
control and quality engineering is as well established in 
academia as dynamic network analysis itself. The 
combination of these two disciplines is likely to produce 
significant insight into organizational behavior and social 
dynamics. Immediate applications to counter terrorism 
are obvious. There is also evidence that dynamic network 
change detection can enhance the command and control 
of friendly military units. 

Dynamic network change detection is applied to 
longitudinal observed network data to rapidly detect small 
persistent changes in the underlying structure being 
modeled. We assume that these structures are not fixed 
and that their relationships, attributes and composition 
may change over time. These changes may be gradual or 
rapid. The changes may represent normal network 
evolution or they may represent a fundamental shift or 
shock in the application area being modeled. While some 
degree of variability is expected in sequential 
observations of an unchanged network, the challenge of 
dynamic network change detection is to detect significant 
change in a background of noise. 

This paper will provide a brief background of 
longitudinal network analysis in network science. An 
overview of three dynamic network change detection 
methods is presented; the cumulative sum (CUSUM), the 
exponentially weighted moving average (EWMA), and a 
scan statistic (SS). Statistical process control is extended 
to dynamic networks and demonstrated on three 
longitudinal data sets. Findings suggest that the 
cumulative sum control chart is a good method for 
detecting changes in network behavior. Dynamic network 
change detection represents an exciting new area of 
research which will significantly push the frontier of 
network science. 
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2.    BACKGROUND 

Longitudinal network data may indicate different 
relationships at different points in time. While there may 
exist an underlying relationship that does not change, 
such as friendship, co-workers, mentorship, familial ties, 
the actual observance of a link may or may not be present 
at different points in time. Intuitively, every individual 
has a set of friends or acquaintances. The individuals do 
not communicate with all friends and acquaintances at all 
times. Therefore, the absence of a link in a single 
network does not mean that there is not a relationship 
between the nodes. It is also possible for a link to be 
present when there is no relationship. Examples include 
junk email, inadvertently hitting "reply to all" in email, or 
typing in a web address incorrectly. This is an important 
concept in understanding the longitudinal behavior of 
networks. 

Several methods have been proposed to model 
longitudinal networks. Exponential random graph models 
(ERGM) have been used (Snjiders, 2005; Schweinberger, 
2005). A link probability model (LPM) has been shown to 
resemble empirical data better than the ERGM in certain 
studies (McCulloh and Carley, 2008a; Baller, Lospinoso 
and Johnson, 2008). A multi-agent simulation based on 
constructural theory can add relational dependence into 
the LPM, creating more realistic longitudinal networks 
(McCulloh, Lospinoso, and Carley, 2008). Several 
methods for longitudinal analysis of networks have even 
been automated in software (Carley et al 2008; Snijders, 
2008). These methods present a useful framework, 
where methods of statistical process control can be 
investigated for their efficacy in detecting changes in 
longitudinal networks. 

Statistical process control (SPC) is a technique used 
by quality engineers to monitor industrial processes. 
They use SPC to detect changes in important quality 
characteristics by taking periodic samples from the 
process, calculating a statistic, and comparing the result 
against a decision interval. If the statistic exceeds the 
decision interval, a change in the process may have 
occurred and it is investigated. There are two risks for 
financial loss. One risk is in not detecting the process 
change quick enough, creating financial loss for the 
company by making substandard or wasteful product. 
The other risk is in stopping the process to search for a 
change that doesn't exist; a false alarm. SPC methods are 
usually optimized for their specific processes to increase 
their sensitivity for detecting changes, while minimizing 
the risk of false alarms. 

Three common SPC methods that we consider here 
are the CUSUM (Page, 1961), EWMA (Roberts, 1959), 
and the SS (Fisher and Mackenzie, 1922). These methods 
are used in quality engineering to detect small changes in 

a process (Montgomery, 1991; Ryan, 2000). Larger 
changes may be more obvious, therefore, we restrict our 
attention to identifying small subtle changes in network 
behavior. 

In this paper we posit that a network is ultimately the 
result of a stochastic process governing link formation 
within a network. SPC can be applied to measurements 
of a network in the same way it can be applied to 
measurements of quality characteristics of items produced 
on a manufacturing floor. In this manner, various 
measurements of a network will be used to calculate an 
SPC statistic and compared to a decision interval for 
significant change. A representative sample of network 
measures, SPC methods, magnitudes of change, and size 
of network is presented. A complete listing of these 
results would exceed the available space for this paper. 
For a more comprehensive report of change detection 
results, the reader is referred to McCulloh and Carley 
(2008a, 2008b). 

3.    METHOD 

Dynamic network change detection is applied to 
network metrics in the same way statistical process 
control charts are applied to quality metrics in a 
manufacturing process. Ten different network level 
measures are investigated for change detection 
performance, along with three different SPC methods 
using simulated data. When the network measures appear 
to have stabilized over time, the "in-control" mean and 
variance for the measures of the network are calculated by 
taking a sample average and sample variance of the 
stabilized measures. The subsequent, successive dynamic 
network measures are then used to calculate the statistics 
for the CUSUM, the EWMA, and the SS. These are then 
compared to decision intervals to determine when or if the 
method signals a change in the mean of the monitored 
network measure. Each of the SPC methods is calibrated 
to have the same sensitivity to false alarms using the 
simulated data. The sensitivity to false alarm is 0.01, 
which corresponds to a false alarm every 100 
observations on average. In order to continue running the 
control chart if a false alarm should occur, the in-control 
mean and variance of the monitored network measure are 
recalculated after the network measure has stabilized 
following the change. 

Network data is simulated using Construct, a multi- 
agent simulation based on constructural theory (Carley, 
1990; Carley 1995; Schrieber and Carley, 2004). The 
simulation models an Army Infantry company and has 
been validated and docked against C3TRACE and 
IMPRINT simulation models (McCulloh and Carley, 
2008a). Nodes are isolated in the network at a known 
point in time. The CUSUM, EWMA, and SS SPC 
methods are applied to the 10 network level measures 



taken on the network at each time step. The number of 
time steps between the actual change and the time that an 
SPC method signals a change will be recorded as the 
Detection Length. The Average Detection Length (ADL) 
over multiple independently seeded runs is then a measure 
of the SPC method's performance. The ADL will be 
compared for different magnitudes of change and for 
different network measures across three SPC methods. 

Once the ADL performances of the three SPC 
methods have been explored, they will all be applied to a 
real world data set. The real world data set will consist of 
network data on the Al-Qaeda terrorist network as 
reported by McCulloh, Carley, and Webb (2007). 

4.    RESULTS 

Certain network measures yield better change 
detection performance than others. Ten different network 
measures were investigated for use in network change 
detection. The ADL demonstrates the network measures' 
relative performance compared to other network 
measures. A lower ADL suggests that SPC run on that 
measure is more likely to detect a network change faster 
than using other network measures. The ADL results of 
the ten different network measures are displayed in Table 
1. For this particular change, the 10 person headquarters 
from the 100 person Infantry company was isolated in the 
simulation at time period 30. The ADL reports the 
average number of networks that were observed after time 
period 30, until the SPC method signaled that a change 
may have occurred in the network. 

Table 1. ADL Performance of Network Measures. 
CUSUM EWMA SS 

Avg Betweenness 11.16 11.08 9.96 
Max Betweenness 17.32 17.76 13.72 
St Dev Betweenness 18.08 19.40 17.36 
Avg Closeness 11.16 9.44 9.40 
Max Closeness 10.44 9.72 9.60 
St Dev Closeness 41.88 39.48 40.76 
Avg Eigenvector Cent 35.84 36.72 29.24 
Min Eigenvector Cent 16.00 17.96 13.60 
MaxEigenvector Cent 26.40 30.76 25.44 
St Dev Eigenvector Cent 10.40 10.72 6.44 

It can be seen that the average of the betweenness is a 
more effective measure of change detection than the 
maximum or the standard deviation of betweenness. The 
average and maximum of the closeness measures 
outperform the standard deviation of closeness. Finally, 
the standard deviation of eigenvector centrality also 
demonstrates excellent change detection properties. 

Changes were investigated for networks of size 9, 30, 
and 100, corresponding to an Infantry squad, platoon, and 

company. Various sizes of change were also explored to 
include isolating 1, 3, 10, 19, 30, and 40 nodes. Changes 
where nodes were added to the network were also 
explored. The ADL trends of the measures were 
relatively consistent across all of the measures. In many 
cases the maximum closeness measure did not perform as 
well as the other successful measures. For a more 
comprehensive presentation of the ADL performance of 
measures, see McCulloh and Carley (2008a). 

A reader should be cautioned against comparing the 
SPC methods across the rows of Table 1. There is no 
statistically significant difference in the values across 
rows. For example, the ADL for maximum betweenness 
under the CUSUM is reported as 17.32, which is better 
than under the EWMA at 17.76. However, for the same 
network change, the ADL for average betweenness is 
11.16 under the CUSUM, which is worse than the 11.08 
under the EWMA. There is a significant difference 
between the ADLs of the network measure average 
betweenness which is approximately 11 and maximum 
betweenness which is approximately 17 observations. 

The performance of the algorithms were investigated 
by comparing the ADL of each SPC method over 
increasing magnitudes of change. The magnitude of 
change presented here involve isolating 1, 3, 10, 19, and 
30 nodes corresponding to the company commander, 
command group, company headquarters, a squad with the 
company headquarters, and a platoon respectively. A 
random removal of nodes shows similar behavior, 
however, we have chosen to present the scenario based 
results here. Table 2 shows the ADL of the CUSUM, 
EWMA, and SS applied to the average betweenness for 
different magnitudes of change. The column on the left 
indicates the number of nodes removed from the network 
at time 30. The ADL is reported as the average number 
of networks observed after time period 30 until the SPC 
method signals that a change may have occurred. 

Table 2. ADL performance for magnitude of change 
Change CUSUM EWMA Scan 

0 106.13 103.85 107.27 
1 88.32 86.52 96.2 
3 22.49 21.34 25.51 

10 11.32 8.04 12.28 
19 2.44 1.72 1.60 
30 1.12 1.28 1.00 

It can be seen in Table 2 that the ADLs for all SPC 
methods are much smaller as more nodes are isolated 
from the network. This demonstrates the method's 
success at detecting change. Figure 1 displays a plot of 
the data in Table 2. There is no statistically significant 
difference in ADL performance for the three SPC 
methods for small changes of three nodes or less. For the 



10 node change, the EWMA outperforms the CUSUM, 
which outperforms the SS. For the 19 node change the SS 
outperforms the EWMA which outperforms the CUSUM. 
For the 30 node change the EWMA has the worst overall 
performance. These findings are consistent with the 
performance of these methods in single variable, 
independent and identically distributed applications 
(McCulloh, 2004). 

betweenness is very slight over the time frame between 
1994 and 2001. An SPC method can highlight 
organizational change more rapidly. 
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Figure 1. ADL Performance for Network Change. 

5.    AL-QAEDA EXAMPLE 

The Center for Computational Analysis of Social and 
Organizational Systems (CASOS) at Carnegie Mellon 
University collected and maintains social network data on 
the Al-Qaeda terrorist network. This data includes many 
different relationships to include communication, 
financial, physical, etc. The data set begins with 
intelligence collected in 1988 and includes consecutive 
years through 2004. Using this data and SNA methods, 
analysts are able to calculate and quantify the most 
influential terrorists in the network, the most 
knowledgable, individuals that connect separate 
subsections within the group, and much more. While it is 
important to understand terrorist organizations from an 
SNA perspective, it does not necessarily identify critical 
changes in social network structure over time. 

Social network measures were plotted over time for 
the number of agents, the average degree, the average 
betweenness, the average closeness, the average 
eigenvector centrality, and the density. Each of these 
network measures were increasing from 1988 until 1994. 
The measures then leveled off. There are many possible 
reasons for this burn-in period, the least of which is the 
quality of intelligence gathering on Al-Qaeda. For this 
reason, the average measure and standard deviation were 
calculated over five years beginning in 1994. The 
CUSUM control chart was used to monitor the five 
measures above from 1994 to 2001. Figure 2 displays the 
plot of the social network measure for the average 
betweenness of members in the Al-Qaeda network. It can 
be   seen   in   Figure   2   that   the   increase   in   average 

Figure 2. Average Betweenness of Al-Qaeda over time. 

Figure 3 displays the plot of the CUSUM control 
chart statistic from 1994 to 2004. The CUSUM used a 
reference value of 0.5 and was calibrated to have a false 
alarm rate of 0.01 or once every 100 observations. 

Average Betweenness 

1992  1994  1996  1998  2000  2002  2004  2006 

Figure 3. CUSUM Statistic for the Average Betweenness 
of Al-Qaeda. 

It can be seen that the CUSUM statistic in Figure 3 is 
a more dramatic indication of network change than simply 
monitoring the network measure in Figure 2. This is a 
result of the CUSUM statistic taking into account 
previous observations of the network. A single 
observation of a network measure that is slightly higher 
than normal may not indicate a change in the network. 
Multiple observations that are slightly higher than normal, 
however, may indicate a shift in the mean of the measure. 

Figure 3 also shows the CUSUM statistic exceeding 
the decision interval of 4 in 2000. This suggests that there 
mi exist an important change in the network structure of 
Al-Qaeda prior to 2000. This procedure would alert an 
analyst to a potential change in this terrorist organization 
prior to the terrorist attacks of September, 11 2001. 

In order for the analyst to determine the most likely 
cause of the change, he would need to look at events prior 



to the actual detection of the change. One method for 
identifying a likely change point, is to start investigating 
the last time that the CUSUM statistic was equal to 0. 
There is no similar test for the EWMA or SS, however, 
several methods for change point detection are available 
in the literature (Pignateillo and Samuel, 2001). For all 
network measures investigated, the change point is 
estimated as 1997. An analyst must therefore research 
events occurring in 1997 to determine the likely cause of 
change in the Al-Qaeda terrorist organization. 

Details of Al-Qaeda's activity in 1997 are outlined in 
McCulloh, Carley, and Webb (2007). "Several very 
interesting events related to Al-Qaeda and Islamic 
extremism occurred in 1997. Six Islamic militants 
massacred 58 foreign tourists and at least four Egyptians 
in Luxor, Egypt (Jehl, 1997). Coalition forces deployed 
to Egypt in 1997 for a bi-annual training exercise were 
repeatedly attacked by Islamic militants. The coalition 
suffered numerous casualties and shortened their 
deployment. In early 1998, Zawahiri and Bin Laden were 
publicly reunited, although based on press release 
timings, they must have been working throughout 1997 
planning future terrorist operations (Marquand, 2001). In 
February of 1998, an Arab newspaper introduced the 
"International Islamic Front for Combating Crusaders and 
Jews." This organization, established in 1997, was 
founded by Bin Laden, Zawahiri, leaders of the Egyptian 
Islamic Group, the Jamiat-ul-Ulema-e-Pakistan, and the 
Jihad Movement in Bangladesh, among others. The Front 
condemned the sins of American foreign policy and called 
on every Muslim to comply with God's order to kill the 
Americans and plunder their money. Six months later the 
US embassies in Tanzania and Kenya were bombed by 
Al-Qaeda. Essentially, 1997 was possibly the most 
critical year in uniting Islamic militants and organizing 
Al-Qaeda for offensive terrorist attacks against the United 
States." 

6.    CONCLUSION 

Statistical process control is an important tool in 
manufacturing and may be an important tool for quickly 
detecting network change. The Al-Qaeda example and 
the evidence from multi-agent simulations demonstrate 
that social network monitoring could enable analysts to 
detect important changes in networks over time. With the 
CUSUM, the most likely time that the change occurred 
can also be determined1. This allows one to allocate 
minimal resources to tracking the general patterns of a 

network and then shift to full resources when changes are 
determined. 

It is important to point out that the validity of these 
results on real world data has not been established. The 
Al-Qaeda example is used to demonstrate the importance 
of research in this area and provide an application context. 
The data was based on open-source, incomplete 
information. It is not clear that a complete or accurate 
representation of Al-Qaeda is contained in the data. 
However, identifying this key change in the data using a 
statistically sound approach is encouraging. It shows the 
promise of predictive methods for network analysis. 
Further evidence of the significance of the likely change 
point provides even greater support of dynamic network 
change detection success. The simulation results are thus 
validated in this context and are therefore likely to 
provide good estimates of change detection performance. 

The application of statistical process control to 
network science has many important applications. This 
method provides insight into policy decisions affecting 
network change. It provides a quantitative measure of 
system change in network structures. It also shows 
promise for predictive analysis of networks. This 
approach can also provide early warning of change, 
allowing senior military leaders to respond more 
effectively to threats and exploit success. Immediate 
applications to command and control, counter terrorism, 
and drug interdiction are obvious. As network science 
continues to develop, we will likely see more research in 
this exciting and promising field. 
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