
Assessing Team Performance from a Socio-technical Congruence Perspective

Li Jiang Kathleen M. Carley Armin Eberlein
School of Computer Science,

University of Adelaide,
Australia

li.jiang@adelaide.edu.au

Institute of Software Research
Carnegie Mellon University,

USA
kathleen.carley@cs.cmu.edu

Dept. of Computer Science & Engineering
American University of Sharjah,

UAE
eberlein@ucalgary.ca

Abstract—There are many factors that provide input into
the software development process, such as the values, beliefs,
norms, practices, skills, behaviors, knowledge and goals of
stakeholders. Research has shown that successful software
system development relies on alignment or congruence
between these factors. How to monitor the level of congruence
between these factors and how to use the congruence as an
indicator or a measure to monitor a software development
process is a challenge in software engineering. This paper
proposes a model that uses three congruence measures to
examine the levels of social-technical congruence in software
development processes. Using a controlled experiment with
seven student teams developing a robot project, this paper
demonstrates that the proposed congruence measures provide
results consistent with the assessment by the course lecturers.

Keywords-social-technical congruence; software
engineering process; team performance

I. INTRODUCTION
Software development has become an increasingly

complex process [1]. Most often, software development
involves teamwork and is embedded in a complex socio-
technical context [2]. The significance of socio-technical
factors, such as the values, beliefs, norms, practices, skills,
behaviors, knowledge and goals of stakeholders, has been
recognized as an important issue [3, 4]. Research has
shown that successful software-system development relies
on alignment or congruence between these factors [5-7].
However, how to measure the level of congruence between
these factors is a challenge. In the last several years, there
has been growing interest in addressing the impact of socio-
technical congruence on software development [3, 4, 8]. A
set of concepts, measures and methods has been developed
to address social-technical congruence in the areas of task
dependency and communication [9]. Typically, it appears
that, firstly, there are many dimensions to socio-technical
coordination and/or congruence, such as designer skill,
knowledge, values and ability to learn, which also have a
major impact on the product design and development
process [10]. Thus, the research in the area of socio-
technical congruence needs to address the issues of
congruence requirements according to the needs of people
sharing or improving knowledge. Secondly, socio-technical
congruence tends to change during the software

development process. It appears that the congruence level is
lower at the beginning of the project and then gradually
increases. However, our observation shows that the highest
level of congruence occurs about half way through project
development and lasts until the later parts of the project.
This is because team-building and establishing harmonious
working relationships in a team takes time. This is
especially true when the project requires a lot of skills and
knowledge that not all team members possess. Building on
the task-dependent congruence measure proposed by
Cataldo, et al.[9], this paper develops two additional
congruence measures: Knowledge-dependent congruence
and resource-dependent congruence measures. Together,
these three congruence measures are used in a three-
dimensional congruence measurement model that was
applied to assess the socio-technical congruence of student
teams that were involved in a semester-long software
project.

We measure the level of congruence between the actual
team communication and the communication required by
the task and skill dependencies between the team members
involved. We assume that the level of congruence of a
student team reflects the actual quality of the software
development process and is consistent with the
performance of the student team. To examine this
hypothesis, a case study is conducted with seven student
teams. In the case study, the evolution of these measures in
a software development team over time was also studied.

The rest of the paper is organised as follows: Section 2
presents related work. The measures are proposed in
Section 3. The dataset and methodology are provided in
Section 4. The results, observations and the threats to
validity are presented in Section 5. Conclusions and future
research comprise Section 6.

II. RELATED WORK
The idea of socio-technical coordination and/or

congruence of software development teams was proposed
by Conway in [6]. In [9], Cataldo et al. reported on their
work on calculating socio-technical coordination and/or
congruence of software development teams. They define
‘congruence’ as the matching of the communication and
task dependency within a software organisation. Most
importantly, Cataldo et al.’s paper proposed coordination

978-1-4673-2352-9/12/$31.00 c© 2012 IEEE ICSSP 2012, Zurich, Switzerland160

requirements based on the task-dependent relationships of a
project and examined the impact of congruence on task
performance. Anita et al. [11] further refined the
congruence concept as being a state in which an
organisation has aligned its coordination capabilities to
meet the coordination demands of the technical products
under development. They also discussed the nature,
dimension and broader implications of congruence. Valetto
et al. [12] described a model to compute socio-technical
congruence based on measures derived from social network
approaches. There is also some research exploring the use
of social network approaches to study the developers’
social network. For example, Madey and Freeh used social
network approaches to help analyse the links between
developers in an open source project [13]. Building on
social network and data-mining approaches, Wolf et al.
explored the collaboration issues of software teams in the
Jazz project [14].

Assessment of team performance is a difficult issue [15]
that is still not well-understood due to the intricate
complexity of the software development process and the
many uncertainties involved [16, 17]. In software
engineering, various models and standards have been
developed, such as CMM [18] (or CMMI [19]), ISO 9001
[20], ISO 12207 [21]. These standards and models provide
comprehensive assessment information for a software team.
Much research has been done that shows that a team
performs better if a team or organisation satisfies or passes
the assessment criteria required by these standards and
models [22, 23]. However, singular measures of team
performance are usually not adequate and measures from
multiple dimensions are needed [24]. Moreover, a software
system is a social-technical system as it involves both
technical and social aspects. This paper studies social-
technical congruence using a controlled case study of seven
student teams.

The major differences between the work presented in
this paper and the work discussed above are: Firstly, This
paper extends the concept of congruence by adding the two
dimensions of knowledge congruence and resource
congruence. Secondly, the original coordination
requirements proposed by Cataldo et al. [9] are based on a
task dependency matrix. However, we extended the
coordination requirements by including knowledge- and
resources-dependent coordination requirements based on

the computational social organisation network structure
proposed by Carley [4, 25],. We also examined the
relationships between the three types of coordination
requirements and demonstrated the differences of the
congruence measures in the case of the seven student
teams. Thirdly, we examined the evolution of socio-
technical congruence in a software project and the
correlation of these measures to the performance of the
student teams.

III. A THREE DIMENSIONAL MODEL TO MEASURE
CONGRUENCE

As discussed above, software development is a process
embedded in a dynamic and complex socio-technical
system. At the macro level, the system includes social and
technical components. At the micro level, numerous factors
are involved in each component. Technical components
include, e.g., the processes, tasks, techniques, knowledge
and tools used in the software project. Social components
include, e.g., people and their attitudes and behaviour, as
well as organisational norms, rules and culture. It would be
ideal to consider socio-technical congruence both at the
macro level and the micro level. However, at present, the
major focus of socio-technical congruence research is on
the congruence between task dependency and developer
interactions, that is, examining to what extent developer
interactions and communication fits the requirements from
the perspective of task dependency. For simplification of
discussion in the following sections, some notations will be
introduced to describe socio-technical coordination
requirements.

The relationships between the elements of social and
technical components are represented as a set of networks.
A network, N, consists of two sets of nodes, U and V, and a
set of edges, E ⊂ U × V. The element ei,j ∈ E indicates a
relationship or tie between the nodes ui ∈U and vj ∈V. A
meta-network refers to a set of networks with multiple
types of entities, such as people, knowledge, skills,
resources and locations. To implement measures and
calculate congruence, a network is represented as an
adjacency matrix. Given a network N=((U, V), E), the
cardinality of U and V is represented as |U| and |V|,
respectively. Figure 1 shows four examples of such
networks, with A1 to A3 representing agents 1 to 3, and T1
to T5 representing Tasks 1 to 5. An element ei,j =1 in the

Agent-Task Matrix (AT) Task-Task Matrix (TT) Task-Agent Matrix (AT)T
 (transpose of AT)

 Agent-Agent Matrix (CR(T))

T1 T2 T3 T4 T5
A1 0 1 0 0 1
A2 0 0 1 1 0
A3 1 1 0 0 0

 (a)

 T1 T2 T3 T4 T5
T1 0 0 1 0 0
T2 0 0 0 1 1
T3 1 0 0 0 1
T4 0 1 1 0 0
T5 0 0 0 1 0

 (b)

 A1 A2 A3
T1 0 0 1
T2 1 0 1
T3 0 1 0
T4 0 1 0
T5 1 0 0

 (c)

 A1 A2 A3
A1 0 2 0
A2 2 0 2
A3 1 2 0

 (d)

Figure 1 Examples of representation of the networks with matrices

161

Agent-Task Matrix (AT) (Figure 1(a)) represents the
relationship of an agent i having been assigned to task j.
Otherwise, ei,j =0 means that there is no such assignment
relationship.

According to Cataldo et al. [9], the socio-technical
coordination requirements (denoted as CR

T
) are defined as:

CR
T
=AT × TT × (AT)

T (1)
where TCR is an agent-to-agent communication

network (represented by [cri,j]m×n) and each cri,j represents
to what extent the two agents (i, j) are required to
communicate reciprocally, as imposed by the task
dependencies. The subscript T indicates that the
requirements are derived based on task dependency. Thus,
the coordination requirements are called ‘task-dependent
coordination requirements’ in this paper. Information about
AT, TT can be found in Table 1. TAT)(is the transpose of
AT. Those values can be binarised (e.g. 1 represents that
there is a communication requirement between two agents,
0 represents no communication requirement) in the
matrices if the focus is on whether or not there is a
dependency relationship.

Based on (1), a task-dependent congruence measure
was derived to calculate the socio-technical congruence as:

T

T
T CR

AACRdiffAACRCongruence),(1),(−= (2)

where AA is the actual communication matrix generated
from communication records or communication
observation of the project team; diff (TCR ,AA)=cardinality
{differences between TCR and AA | cri,j>0 & ai,j>0 } and |

TCR | = cardinality {cri,j>0}. Each element ai,j in AA
represents actual communication recorded between the two
agents i, j. The values of ai,j can be binarised (e.g. 1
represents that there was recorded communication between
the two agents i, j; 0 represents no communication between
the two agents).
For the purposes of this paper, the measures defined in [3]

were slightly modified as can be seen from equation (2)
above. For example, the number of differences between the
values cri,j and ai,j (at the same position i, j of the compared
matrix TCR and AA) is 5, and | TCR |=20, then,

),(AACRCongruence T =0.75.
As discussed above, the coordination requirements

proposed by Cataldo et al. [9] were based on task
dependency. However, the communication needs of
software teams are multi-dimensional [26]. Communication
between developers can be a result of the need to discuss
defects in code or requirements or design, to share or solicit
information from each other, to schedule meetings or share
resources. It can also be driven by a developer’s need to
obtain knowledge or learn specific skills necessary to
complete his/her tasks [27]. Communication and sharing of
knowledge between developers is necessary for software
teams [28]. For a mature software organisation,
communication and sharing knowledge between developers
is even more important, as the growing size and complexity
of software projects demands various skills and knowledge.
Thus, it is necessary to look at congruence from the
following perspectives:

• The communication needs that arise from sharing
knowledge/skills between developers and/or junior
developers obtaining desired skills from seniors to
complete assigned tasks.

• The communication needs that arise from
management perspectives, such as sharing resources,
scheduling meetings, etc.

Based on these two perspectives, the authors propose the
following two additional congruence requirements to
extend the task-dependent congruence model:

• Knowledge-dependent congruence: Knowledge-
dependent congruence can be calculated by using
the knowledge-dependent congruence requirements
matrix (denoted as KCR), which is defined in
equation (3).

• Resource-dependent congruence: Resource-
dependent congruence can be calculated by using
the resource-dependent congruence requirements
matrix (denoted as RCR) given in equation (4).

 CRK = AT × TKT)(× TAK)((3)
 CRR = AT × TRT)(× TAR)((4)

where
• KCR is an agent-to-agent communication network

with each entry cri,j representing the extent the two
agents (i, j) are required to communicate, imposed
by the knowledge required to complete the assigned
tasks. The subscript K indicates the requirements are
derived based on knowledge and task dependency.

• RCR is an agent-to-agent communication network
and each entry cri,j represents the extent the two
agents (i, j) are required to communicate, imposed

TABLE 1. NAME AND ABBREVIATION OF NETWORKS USED

Symbol Nodes: U Nodes: V Name and implication

AA Agent Agent Communication Network. Contains
information about who talks with whom.

AK Agent Knowledge Knowledge (Skill) Network. Contains
information about who knows what.

AR Agent Resource
Capabilities Network. Contains
information about who uses which
resource.

AT Agent Task
Assignment Network. Contains
information about who has been assigned
to do what.

KT Knowledge Task

Knowledge Requirement Network.
Contains information about what
knowledge/skill is required to complete a
specific task.

RT Resource Task
Resource Requirement Network. Contains
information about what resources are
required to complete a specific task.

TT Task Task Precedence Network. Contains information
about task dependencies.

162

by the shared resources required to complete the
assigned tasks. The subscript R indicates the
requirements are derived based on resources and
task dependency.

• Information about AT, KT, AK, RT, AR can be found
in Table 1. TAK)(, TKT)(, TRT)(, TAR)(are the
transpose of the corresponding matrices. Similarly,
we define the following congruence measures:

R

R
R CR

AACRdiff
AACRCongruence

),(
1),(−= (5)

K

K
K CR

AACRdiff
AACRCongruence

),(
1),(−= (6)

As discussed above, software development is a dynamic
process which involves various activities and tasks using
several resources during different stages of software
development, regardless of the selected process model.
Therefore, socio-technical congruence also likely evolves
in this dynamic process. Taking temporal information into
account, equations (1) to (6) are collectively reformulated
as:

T
T tATtTTtATtCR))(()()()(××= (7)

TT
K tAKtKTtATtCR))(())(()()(××= (8)

TT
R tARtRTtATtCR))(())(()()(××= (9)

)(
))(),((1))(),((

tCR
tAAtCRdifftAAtCRCongruence

T

T
T −= (10)

)(
))(),((1))(),((

tCR
tAAtCRdifftAAtCRCongruence

K

K
K −= (11)

)(
))(),((1))(),((

tCR
tAAtCRdifftAAtCRCongruence

R

R
R −= (12)

where t is a time parameter. It can represent a day, week,
month or any other time unit that is adequate within the
context. A week is used in this paper.

IV. DATA AND METHODOLOGY
This section briefly describes the background of the

software project and the data collected on the teams
involved in the project. The methods used to collect and
analyse the data are also presented.

A. Dataset
The data was collected from students enrolled in the

Software Engineering Group Project course in semester 2,
2010, at the University of Adelaide, Australia. The course
is an important course for students to complete their degree.
Three lecturers taught this course in that semester. Students
were in the third year of a computer science major. The
students were assigned to a team based on their marks of
computer science courses in their second year of study to
ensure a balance of capability and knowledge between each
team. The students were asked to complete a robot mining
project with about 50% of the requirements of the project
being given. The students needed to talk to clients
(lecturers) to gather more requirements to complete the

project based on their understanding and analysis of the
given requirements. The programming languages were Java
and lejos which is a Java-based firmware used for
programming on the LEGO Mindstorms NXT brick. Java
was used for programming of the host side (a standalone
PC) that contained GUI components (i.e., Map, Map
Editing, Control Robot) and Communication components
(establish links between host and robot, and control the
robot). Students were required to follow a software process
model selected by the team, such as Waterfall, XP, Scrum,
RUP or combination of some of these models that are
appropriate for the team. Students were also required to
manage their own configuration and quality assurance
process, and use software tools wherever feasible and
helpful for improving team productivity and product
quality. The students were required to spend 12 hours per
week on the course during a semester-long period. The
teams were required to meet with lecturers for 30 minutes
each week to report their progress and obtain feedback and
guidance. Several artefacts were required to be delivered,
including a software project management document
(SPMP); software requirements document (SRS) and
software design document (SDD). The SPMP included
detailed information about the task definition, the task plan
(with Gantt Chart), and other management-related
information. According to the course requirements, all
artefacts were required to be put into Subversion (SVN), a
revision (or version) control system, including code and
weekly journals by each individual team member. The
teams were composed of six students with mixed levels of
academic achievement. For each team, the dataset includes:

1) SVN Repository that Includes the Following
Components:

a) The SVN-Commits of all Members of the Team. Each
commit contained information about the revision
number, the ID of each team member, the time at
which the commit was made, a message about each
commit, the folder used for committing the file, the
type of action taken regarding the committed file, the
file name and its location, and files changed in each
commit. For instance, more than 747 revisions were
made from 9 August to 25 October 2010 by Team 1,
a span of ten weeks (the first two weeks were used
for team-building and understanding the
requirements of the project and the tools). From
these revisions, 2932 records were generated that
show the changes in the files, including programs,
data items and documents. An example of such
information is shown in Table 2 (the last column and
the generation of the task names will be discussed
later in this paper).

In order to ensure that the collected data was
relevant to the project, the dataset was first cleaned
up to obtain the information relevant to the overall
project. This included removing those commits or

163

records that were: 1) purely related to a delete
operation; or 2) related to individual work, such as
committing journals or commits made to the
branches that are not relevant to the project. Finally,
2265 (out of 2932) records were obtained that
contained SVN-commits meaningful to the project
work.

b) Journals of each Team Member for each Week.
Submitting a journal was part of the course
requirements stated at the beginning of the course.
The journal contained information about what each
team member had done, the hours they had spent,
and with whom they had worked. An example of a
team member’s partial journal information is given
in Table 5. The actual team members’
communication/interaction information can be
extracted from the information contained in the
journals and the information left in the message
column of the SVN-commits records created from
a).

2) Survey Data which Contains Information about the
Knowledge/Skills of each Team Member. Ten key
knowledge/skill assessment items were developed by the
course lecturers based on the course objectives. A survey of
all team members was conducted at the end of the semester
to assess their knowledge and skills. The reason for
assessing the team members’ skill at the end of the
semester is that each team member can give objective
assessment based on their peers’ actual capability and skills
demonstrated in the project. Each member was asked to fill
in the skill assessment form both for themselves and for the
rest of their team members. An example of such survey
results from a team member is given in Table 6, which
contains both the skill list and the survey result. The final
dataset related to the team members’ knowledge/skills was
generated based on the aggregation of the survey results of
all team members.

3) Student Discussion Forums. A student discussion
forum was created for each group where the group
members in each group could communicate with each
other. The communication information captured in these
forums and the weekly journal provide data about the actual
communication that occurred during the student projects.

In the research, the seven teams were randomly selected
out of 20 teams at the beginning of the course, and the
processes of these teams were observed and the data related
to these teams were analysed.

B. Methodology
1) Creating the Network Representation of the Data

Obtained. In this research, network approaches were
intentionally used—that is, all dynamic behaviour of team
members’ weekly activities were represented with networks
and their relationships. Thus, network measures and tools
could be used to help analyse the team members’ dynamic
behaviour in the project. Based on the data records
obtained, the following networks were developed:

a) Agent-to-Task Network (AT). To determine who
committed what information, each change was
mapped to a specific task based on the message
generated by each commit, each student’s journal,
and the software project plan made in the team’s
SPMP. A list of tasks defined in SPMP was used.
Two examples of such tasks are given in Table 2.
The information contained in AT in each meta-
network was different. An example of an AT
network from Week 4 of the team project is shown
in Table 7.

b) Agent-to-Resource Network (AR). The folders and
files used in SVN, as illustrated in Table 1, were
considered to be the immediate resources shared and
used by the entire team. The AR network was
developed from the information in columns 1 and 7
(see Table 2) across the entirety of the obtained
records.

c) Task-to-Task Network (TT). This network was
developed from the team’s project plan in SPMP,
where the detailed task list and task dependency
were presented. For more detailed information,
please refer to [29].

d) Resource-to-Task Network (TR). This network was
developed from the task and resources columns in
Table 2. Within the context of the paper, the
resources refer to the files and directories of the
SVN repository shared by the team.

e) Agent-to-Knowledge Network (AK). This network
was developed based on the survey of team
members’ skill/knowledge, as discussed above. This

TABLE 2. EXAMPLES OF RECORDS GENERATED FROM SVN REPOSITORY

Author
ID

Revision
number

Commit
date Message Actions

taken
Type

of files
Resource

name Task name

s78 298 2010-09-
12T02:07:23.627302Z

Working with XXX
Fixed the GUI bug, modified the layout of window M file /src/host/gui GUIDevelopment1

s05 325 2010-09-
13T14:31:40.951205Z

Edited pictures and updated contents on
SDD_HumanInterfaceDesign.tex and

SDD_ResourceEstimates.tex. However, pictures of
GUI yet to be updated.

M file /docs/SDD SDD1

Notes: For ethical reasons, the author IDs in the first column of the table are the codified IDs and the team member’s name mentioned in the
‘Message’ column is replaced with XXX.

164

network contained information about who had the
knowledge required by the project (see Table 6 for
more information).

f) Knowledge-to-Task Network (KT). This network was
developed by mapping each task defined in the
team’s SPMP to the actual knowledge/skill required
to complete the task. Readers can refer to [29] for
more information.

g) Agent-to-Agent Network (AA). This network was
developed based on students’ weekly journals (as
shown in Table 5) and student forums, in which the
information about each individual’s work was stated.
Moreover, the message of each SVN-commit also
provided a mechanism to verify that communication
occurred between the team members involved.

The collected data was organised on a weekly basis
according to the time stamp on each commit in SVN. All
seven networks described above were created for each team
for each week and a meta-network was created by
aggregating the seven networks for each team and for each
week. Finally, a dynamic network was formed for each
team by aggregating ten meta-networks (one meta-network
per week) of each team, as discussed above. In this
research, ORA [30], a dynamic network analysis tool, was
used to process some parts of the data obtained, such as
extracting data from Excel files, creating dynamic
networks, and computing some measures. As an example,
the dynamic network and the meta-network created with
ORA for Team 1 are shown in Fig. 2.

2) Developing a Set of Metrics to Measure Team
Performance. To examine the assumptions proposed in the
first section, a subset of the software processes proposed in
[21] were monitored and assessed for all seven teams
selected in the research. A set of metrics were defined to
assess the quality of these processes. The aggregation of the
metrics forms the team performance measure for each
week. The information about the assessment metrics,
artifacts and engineering activities of the seven teams are
illustrated in Table 8. The reason for selecting these metrics
and processes are: a) it is feasible to collect the data related
to these metrics during a semester-long project as all of the
artifacts and processes were part of course requirements
and/or assessment components; b) these metrics
collectively present information about the performance of
the teams and quality of the software processes used by the
teams.

3) Studying the Relationships between each of the Three
Congruence Measures and Team Performance. Adopting
the measures defined above, and the measures from
network science [31] and software process engineering
[32], the following research questions were investigated:

a) How do the three congruence measures change over
ten weeks?

b) Are these three congruence measures (dependent
variables) correlated with the overall performance of

each team in each week? (performance measures are
independent variables and defined in Table 8)

c) Which measure provides reliable information that
allows the assessment of the quality of the software
process of the teams?

V. RESULTS

A. Measuring Congruence and Team Performance
Based on the measures defined in (10) to (12), it was

possible to compute the three socio-technical congruence
measures of the teams over time. As an example, Figure 3
illustrates the three socio-technical congruence measures
calculated for Team 1 over the 10 weeks. As can be seen
from the figure, the values of congruence measures for the
team changed over the ten weeks. The authors believe that
these changes are reasonable; typically, when a new team
starts a new project, team-building and learning various
tools takes time, especially in the case of student teams.
This might also be true for a mature team that starts a new
project in which requirements are not entirely clear or new
knowledge and skills are required. Further analysis has
shown that the changes of knowledge-dependent
congruence and resource-dependent congruence present,
interestingly, a similar pattern. They both increase,
generally, over the time, even though the increments are
uneven. When examining and comparing the weekly

Figure 2. Parts of the dynamic network and an example of Week 11
meta-network

165

meeting records kept about all teams, it was found that the
changes reflected the performance changes of the teams,
which gradually matured, achieving more and progressing
faster.

We found that the changes in the pattern of task-
dependent congruence are different from those of
knowledge-dependent congruence and resource-dependent
congruence. Task-dependent congruence exhibits a slight
increase but high variability. An example of the changes of
the three congruence measures for Team 1 is illustrated in
Fig. 3. There are many possible causes for this variability;
for example, team members’ involvement in certain task
may not have been needed at the time when it is supposed
to be, due to changed circumstance; or some team members
may have been sick or a certain task may have been too big
and more resources had been allocated to the task; or some
team member might have been incapable of accomplishing
the task assigned. All these situations lead to a mismatch
between communication matrix and task dependent-matrix.
These, in turn, reduce the values of task-dependent
congruence.

Moreover, the task dependency might change due to
changes in requirements or a better understanding of the
requirements. Even though there are some differences, the
general consistency of these trends suggests that the overall
team socio-technical congruence did increase over time.

The knowledge congruence measure and performance
mark of the seven teams over ten weeks are shown in Table
3. The correlation relationships between the three measures
and each team's performance mark over the 10 weeks are
presented in Table 4. It can be seen from Table 3 and 4
that:

1) the correlation coefficients between the knowledge
congruence measure and the performance mark for all
teams are higher than those between the task
congruence measure and the performance mark.

2) the correlation coefficients between the resource
congruence measure and performance mark for all
teams are higher than those between the task
congruence measures and the performance mark.

3) the teams with higher correlation coefficients in all
three measures generally have better organized
processes, and better project assessment marks during
and at the end of the project. For instance, team 3, 5, 6,
and 7 have used better processes during the project,
and obtained better marks at the end of the project
compared to teams 1, 2, and 4.

4) All the correlation coefficients are statistically
significant even though some correlation coefficients
are low. For instance, the correlation between task
congruence and each team's performance mark for
teams 1 and 2 is weak; yet they are statistically
significant.

Overall, the knowledge-dependent congruence and
resource-dependent congruence measure provide better
pictures of the performance changes of the teams than that
of task congruence measure. These results are consistent
with our empirical observation on students group dynamic
during the project:

• A student team tends to communicate more to share
knowledge when the knowledge required to
complete the tasks are very demanding during a
certain period of time in the project based on our
seven teams’ performance records. This can be
seen from Fig. 3 where the knowledge congruence
measure changes over the ten weeks indicating the
changes of the communication.

• A student team tends to perform better if team
members communicate more to share knowledge,
discuss about using resources, coordinate tasks
effectively, and help each other frequently.

This conclusion also shows that our assumption made in
the first section is valid. Thus, it is reasonable to infer that
the three congruence measures collectively provide
convincing information about the quality of software
processes and team performance. Consequently, it is
possible to use these three measures as indicators for
assessing quality of the team processes and the
performance of the teams. Using the model to further
examine the performance of more teams is part of our
future research.

B. Threat to Validity
Although considerable effort was expended in

collecting information on the student teams, it is likely that
some interactions were missed. For example, although
student forums were provided for students to discuss the
project, students likely used email to discuss some project-

Figure 3. Comparisons of the three congruence measures over time

166

related issues and did not report this in the weekly journal.
This would impact the calculation of congruence. To
examine this, members of all teams were queried about
their email activity. The members of all teams confirmed
that the information provided in the weekly journal was
accurate except for two team members who were not
available to answer. This verification suggests that the
journals are a reasonable reflection of actual interaction. A
second validation issue is that SVN-commits might not
present the entire picture of who had done what; for
example, some tasks committed by an individual team
member might have actually been completed with help by
others.

We acknowledge that the scale of projects in industry is
different from student term projects even though a
controlled experiment approach was used and a rigours data
collection process was followed. There are also a number
of constraints for student teams to maximize
communication as students also have other courses at the
same time when they were doing the project. We believe
that professional software developers have a much higher
level of communication among team members resulting in
a higher level of social-technical congruence. However, it
should be mentioned that the results reported in the
research were achieved with student teams. The
generalisation of these conclusions to industry requires

more rigorous investigation and is subject to future
research.

VI. CONCLUSION AND FUTURE WORK
This paper proposed using socio-technical congruence

measures to analyse software process quality and the
performance of student teams. Two new socio-technical
congruence measures: knowledge-dependent congruence
and resource-dependent congruence were proposed based
on the task-dependent congruence measure proposed in
literature [3, 4]. Data was collected from seven student
teams working on a semester-long project. Ten meta-
networks were created, one per week, for all seven teams.
Each meta-network contained all the records of team
members’ weekly SVN-commits; weekly interactions and
task completion information; resources used information;
and team members’ knowledge/skill information.
Congruence measures defined in the research were
calculated for each team over the ten weeks. Using this
data, team dynamics were examined and it was found that
the increase in knowledge and resource congruence was not
reflected in an increase in task congruence, and that the
congruence measures are correlated to the teams’
performance. This research has four main contributions:

1) Two new socio-technical coordination requirements
matrices were proposed to supplement task-
dependent congruence: knowledge-dependent

TABLE 3. KNOWLEDGE CONGRUENCE MEASURE AND PERFORMANCE MARKS OF EACH TEAM IN EACH WEEK (OVER 10 WEEKS)

Weeks
Knowledge congruence measure for each team Team performance marks

Team
1

Team
2

Team
3

Team
4

Team
5

Team
6

Team
7

Team1
mark

Team
2 mark

Team
3 mark

Team
4 mark

Team
5 mark

Team
6 mark

Team
7 mark

Week3 0.1053 0.0937 0.0842 0.0828 0.0854 0.1032 0.1000 5.21 6.00 5.20 6.90 5.90 6.76 7.00
Week4 0.3793 0.3258 0.0910 0.3179 0.3063 0.3870 0.2560 5.21 6.60 6.90 7.00 6.20 7.14 7.00
Week5 0.3200 0.3168 0.9980 0.2918 0.3067 0.3393 0.3147 9.44 9.35 9.23 8.00 9.05 8.48 9.00
Week6 0.1379 0.1429 0.1472 0.1683 0.1572 0.2000 0.1708 7.08 7.33 7.55 8.00 8.07 8.80 8.77
Week7 0.2273 0.2250 0.2627 0.2170 0.2538 0.2593 0.2283 8.89 8.80 9.00 9.00 9.93 8.00 8.93
Week8 0.2143 0.2571 0.2546 0.2156 0.2973 0.2357 0.2188 10.00 9.50 9.00 9.70 9.00 10.00 10.00
Week9 0.2857 0.2543 0.2711 0.3021 0.3011 0.2860 0.3371 6.67 5.94 7.00 7.00 7.03 7.01 7.87
Week10 0.3478 0.2783 0.3249 0.3826 0.3373 0.3409 0.4162 8.26 8.80 8.00 9.00 10.67 8.82 9.88
Week11 0.2857 0.2417 0.2923 0.0279 0.2997 0.3086 0.3467 9.44 8.90 9.00 9.00 10.00 9.72 9.00
Week12 0.4286 0.3823 0.4766 0.5057 0.4847 0.4671 0.4320 10.00 9.00 10.00 10.00 10.00 10.90 10.00

TABLE 4. CORRELATION BETWEEN TEAM'S MARK AND MEASURES OF KNOWLEDGE CONGRUENCE, RESOURCE CONGRUENCE, AND TASK CONGRUENCE

Team 1 Team 2 Team 3 Team 4 Team 5 Team 6 Team 7
Correlation between knowledge

congruence and each team's weekly
mark (over 10 weeks)

Correlation 0.3112 0.4609 0.592 0.2689 0.5608 0.451 0.5453

 p-value 1.67 E-07 6.82 E-06 2.66 E-06 1.17E-09 4.15E-08 6.26E-09 1.68 E-07

Correlation between task congruence
and each team's mark in each week

(over 10 weeks)

Correlation 0.004 0.0745 0.6394 0.1037 0.3959 0.2712 0.3713

 p-value 1.54E-07 7.32E-06 1.60E-06 1.07E-09 3.47E-08 5.87E-09 1.60E-07

Correlation between resource
congruence and each team's mark in

each week (over 10 weeks)

Correlation 0.3812 0.3585 0.7052 0.2899 0.6625 0.4327 0.4741

 p-value 1.65E-07 7.21E-06 2.30E-06 7.94E-10 3.87E-08 5.15E-09 1.61E-07

167

congruence and resource-dependent congruence
requirements matrices.

2) It was demonstrated that examining changes in these
congruence measures provides insight into the
project life cycle and the evolution of software
development processes.

3) It was found that knowledge- and resource-
dependent congruence has similar trends over time
and can be at odds with that of task congruence.

4) The three congruence measures are correlated to the
quality of the processes and performance of the
teams over the ten-week project. This indicates that
the measures provide reliable information about the
quality of software processes and the performacne of
teams.

The authors’ future work will focus on:
• using the congruence measures as indicators to

monitor and assess the quality of software
processes of more student teams.

• applying the congruence model to an industry
project to validate the model.

• developing an effective tool to support mining
SVN data, computing and analysing the
congruence measures.

REFERENCES
[1] A. Fuggetta, "Software process: a roadmap," in Proceedings of the

Conference on The Future of Software Engineering. Limerick,
Ireland 2000, pp. 25-34.

[2] M. Jirotka, "Requirements engineering: social and technical issues,"
London: Academic Press., 1994.

[3] M. Cataldo, et al., "Socio-technical congruence: a framework for
assessing the impact of technical and work dependencies on
software development productivity," in Proceedings, Second ACM-
IEEE International Symposium on Empirical Software Engineering
and Measurement Kaiserslautern, Germany, 2008, pp. 2-11.

[4] M. Ashworth, and Kathleen M. Carley, "Who you know vs. what
you know: The impact of social position and knowledge on team
performance," Journal of Mathematical Sociology, vol. 30, pp. 43-
75, 2006.

[5] L. McLeod and S. G. MacDonell, "Factors that affect software
systems development project outcomes: A survey of research,"
ACM Computing Surveys (CSUR), vol. 43, p. 24, 2011.

[6] M. E. Conway, "How do committees invent?," Datamation, vol. 14,
pp. 28-31, 1968.

[7] E. S. Raymond, The new hacker's dictionary: The MIT Press, 1996.
[8] R. M. Burton, et al., Strategic organizational diagnosis and design:

Developing theory for application: Kluwer Academic Pub, 1998.
[9] M. Cataldo, et al., "Identification of Coordination Requirements:

Implications for the design of collaboration and awareness tools,"
presented at the Conference on Computer Supported Cooperative
Work, Banff, Alberta, Canada, 2006.

[10] R. P. Bostrom and J. S. Heinen, "MIS problems and failures: a

TABLE 5. AN EXAMPLE OF A TEAM MEMBER’S WEEKLY JOURNAL IN
WEEK 8 AND WEEK 11

Name Person1 Group No. 1
ID 49778
Week
No. Activities Duration/

time (hours) Details

…… …… …… ……
8 Meetings 2

 SDD design 5 explain the Architecture of our
System to Person2 and Person3

 SDD Writing 5 Write the SDD documentation for
‘Class Diagram’ section

 SDD proof reading 8 Proof reading with Person2 for SDD
chapter 4, 5, 6

 maintain the svn 2.5
maintain the SVN folder, add draft2
folder for SPMP and final folder for
other documents

 back up the
milestone 1.5 back the milestone, some compile

problem occurs
…… …… …… ……
11 Meetings 2

 SDD re-write 4 Work with Person2 and Person3
produce the final version of sdd

 rewrite the delete
nogozone function 2 rewrite the delete nogozone function,

and change the behaviours of it

continue working
on the manual
operation of robot

9
working with Person4 to implement
the behaviour of robot's manual
control. Mine detecting and marking

 assembling the
whole project 5

assembling the whole project,
implement the build file to each
aspects. Make sure every make file is
working.

 write the jar
commands 3 package the whole project into an

executed jar file
Notes: (1) The content is presented as it was in the original document, with no

grammar correction and no content modification except for font adjustment
and substituting team members’ names with Person1 to Person4.
(2) SDDs are mapped to SDD1 or SDD2 according to the time scheduled in
the team’s SPMP document, where SDD1 represents the first draft and
SDD2 represents the final version of the document.

TABLE 6. RESULTS OF KNOWLEDGE/SKILL SURVEY

Skills St1 St2 St3 St4 St5 St6

Programming 9 5 5 7 7 4
Problem analysis 8 7 7 8 7 6
Architecture design 9 7 7 7 7 6
Robot design 7 7 9 8 7 8
Interface design 9 6 6 5 6 4
Testing 8 7 7 7 9 6
Using Tools (Make, Ant, SVN, Eclipse,
testing tools, etc.) 10 8 8 7 7 7

Communication (including social skills) 7 9 7 8 5 4
Writing (documentation) 7 9 8 6 7 6
Capability of learning 8 8 8 8 8 8

Note: Each team member, (represented as St1 to St6 in the table) was asked to
enter numbers 1 to 10 in the cells above. Number 1 represents that the team
member (including himself/herself) had the lowest skill, and number 10
represents that the team member had the highest skill.

TABLE 7. AN EXAMPLE OF AGENT-TO-TASK NETWORK IN WEEK 4

 s49778 s49780 s64836 s74493 s80109 s80205

ManagementTask 10 1 0 1 7 0
SRS1 6 8 8 1 0 9
SPMP1 2 0 0 0 0 0
GUIDevelopment1 10 0 0 4 3 0
RobotMove1 3 0 0 3 3 0
RobotMove2 0 0 0 0 0 0
ArchDesign 5 0 0 5 0 0
MapDesign 0 0 0 0 0 0
CommunicationDevelop 0 0 0 0 0 0
SDD1 2 0 0 8 0 0

Note: (1) For the purpose of presenting the table effectively, the task-to-agent
network from Week 4 is presented, which is the transpose of the agent-
to-task network from Week 4.

 (2) The number in each cell represents how many changes were made
by each team member with respect to the tasks.

 (3) Only the tasks relevant to Week 4 are presented in the table.

168

socio-technical perspective, part II: the application of socio-
technical theory," MIS quarterly, pp. 11-28, 1977.

[11] A. Sarma, et al., "Challenges in measuring, understanding, and
achieving social-technical congruence," in Proceedings of Socio-
Technical Congruence Workshop, In Conjuction With the
International Conference on Software Engineering, Leipzig,
Germany, 2008.

[12] G. Valetto, et al., "Using software repositories to investigate socio-
technical congruence in development projects," in Proceedings of
the Fourth International Workshop on Mining Software
Repositories 2007, p. 25.

[13] G. Madey, et al., "The open source software development
phenomenon: An analysis based on social network theory," in
Proceedings of the Americas Conference on Information Systems
(AMCIS2002), 2002, pp. 1806-1813.

[14] T. Wolf, et al., "Mining task-based social networks to explore
collaboration in software teams," Software, IEEE, vol. 26, pp. 58-
66, 2009.

[15] C. F. Kemerer, "An agenda for research in the managerial
evaluation of computer-aided software engineering (CASE) tool
impacts," 1989, pp. 219-228 vol. 2.

[16] R. L. Glass, "The ups and downs of programmer stress,"
Communications of the ACM, vol. 40, pp. 17-19, 1997.

[17] S. Sawyer and P. J. Guinan, "Software development: Processes and
performance," IBM Systems Journal, vol. 37, pp. 552-569, 1998.

[18] M. C. Paulk, The capability maturity model: Guidelines for
improving the software process vol. 441: Addison-Wesley Reading,
MA, 1995.

[19] R. CONSTANTINESCU and I. M. IACOB, "Capability Maturity
Model Integration," Journal of Applied Quantitative Methods, vol.
2, p. 187, 2007.

[20] R. Tricker, et al., ISO 9001: 2000 in Brief: Butterworth-Heinemann,
2001.

[21] IEEE, "Software life cycle processes," in (ISO/IEC 12207)
Standard for Information Technology, ed, 1998.

[22] G. H. Subramanian, et al., "Software quality and IS project
performance improvements from software development process

maturity and IS implementation strategies," Journal of Systems and
Software, vol. 80, pp. 616-627, 2007.

[23] J. Y. C. Liu, et al., "The impact of software process standardization
on software flexibility and project management performance:
Control theory perspective," Information and Software Technology,
vol. 50, pp. 889-896, 2008.

[24] S. Sawyer, et al., "Social interactions of information systems
development teams: a performance perspective," Information
Systems Journal, vol. 20, pp. 81-107, 2010.

[25] K. M. Carley, "Smart agents and organizations of the future," in The
Handbook of New Media, L. Lievrouw, and Sonia Livingstone, Ed.,
ed Thousand Oaks, CA: Sage, 2002, pp. Chapter 12, 205-220.

[26] C. B. Seaman and V. R. Basili, "Communication and organization
in software development: an empirical study," IBM Systems
Journal, vol. 36, pp. 550-563, 1997.

[27] M. Hertzum, "The importance of trust in software engineers'
assessment and choice of information sources," Information and
Organization, vol. 12, pp. 1-18, 2002.

[28] T. Chau, et al., "Knowledge sharing: agile methods vs. Tayloristic
methods," in Proceedings of Twelfth IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative
Enterprises, 2003. WET ICE 2003, 2003, pp. 302-307.

[29] L. Jiang, et al. Measuring team performance using socio-technical
congruence, Technical Report [Online]. Available:
http://cs.adelaide.edu.au/~ljiang/Publications_TechnicalReport.htm

[30] K. Carley, et al. (2010, 5 March 2011). ORA User's Guide 2010.
Available: http://www.casos.cs.cmu.edu/publications/papers/CMU-
ISR-10-120.pdf

[31] S. Wasserman and K. Faust, Social Network Analysis: Methods and
Applications. Cambridge: University of Cambridge Press, 1995.

[32] J. Lonchamp, "A structured conceptual and terminological
framework for software process engineering," in Second
International Conference on the Continuous Software Process
Improvement, 1993, pp. 41-53.

TABLE 8. METRICS USED TO ASSESS THE TEAMS’ PERFORMANCE IN THE SOFTWARE DEVELOPMENT PROCESSES

No. Metrics Assessment Artefacts and/or Assessment
Time Activities

Processes
Defined in ISO

12207

1

Number of open-ended questions asked, number of close-ended
questions asked

Weekly meetings (mainly at the first two
weeks) with lecturers Requirements

elicitation
Acquisition
process Number of requirements presented in SRS, and the number of

requirements has high level of clarity and are correct in the SRS;
percentage of requirements presented in the SRS (completeness)

The quality of requirements in software
requirements specification (SRS).

2

Percentage of functional requirements covered in the architecture design
and detailed design; percentage of non-functional requirements covered
in the architecture design and detailed design.

Architecture design, and detailed design in
software design document (SDD) Design

Development
process

Lines of code committed and quality of code measured by the level of
conformance of the code to the coding convention and coverage of
system functionality implemented by the code.

Code in SVN Coding,
integration,

Number of testing cases executed and the ratio of system requirements
covered by the testing cases; the level of using testing tool in the testing. Testing cases committed in SVN Testing

3
Level of addressing version convention issue, and change management
issues in SPMP; level of using SVN measured by the frequency and
adequacy of using the tool in each week.

Configuration management plan in software
project management plan (SPMP) and SVN
commits made in each week.

Configuration
identification,
control and
evaluation

Configuration
management
process

4 Number of lines of code reviewed by the team members by following
code review procedure and using code review template

Code review documents in SVN on weekly
basis Quality review

Quality
assurance
process

5
Number of function requirements implemented correctly in the demo in
each week; quality of the demo measured by the successful rate and
failure rate of the functionality presented.

Software demos in weekly meeting with
lecturers

Code verification
and integration
verification.

Verification
process

6
The quality of the SRS,SDD, SPMP measured by the marks given to
these documents. (There is a rubric for each document, and each
document is assessed twice for the draft version and the final version)

 SRS(assessed in weeks 4, 5, 12),
SPMP(assessed in weeks 6,7, 12), SDD
(assessed in weeks 8, 9, 12),

Documentation
activities

Documentation
process

7 The effectiveness of the team organisation measured by the
presentation mark of each team assessed by lecturers in each week

Weekly meetings and timely delivery of the
required artifacts

Management
activities

Management
process

169

