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Abstract    

Closeness and betweenness are among the most important metrics in 

social network analysis. They are essential to the evaluation of 

various research problems such as viral marketing, network stability 

and network traffic predictions, which play an important role in 

social media research. However, both of these metrics are expensive 

to compute. We propose an efficient online algorithm framework to 

handle both closeness and betweenness in the situation where 

network structure changes frequently. Whenever a link change is 

received as the input, the algorithm utilizes existing facts about the 

calculation to update centrality values with minimal effort. 

Experimental results on data sets collected from online social media 

websites show that our approach is 4-7 orders of magnitude faster for 

closeness and 2-4 orders of magnitude faster for betweenness 

calculations over baseline methods. We also show how those two 

metrics share some common calculations so that the running time can 

be dramatically reduced when calculated together. To the best of our 

knowledge, this is the first work to improve the running time when 

those two algorithms are calculated at the same time on streaming 

network data. 

Keywords: betweenness; closeness; streaming network data; 

social network; real-time network analysis; centrality; fast metrics 

 

1. Introductions 

Social networks consist of agents and their connections to each 

other. In social network analysis, the assessment of node 

position plays an important role in understanding various 

research questions such as information diffusion [1], network 

dynamics [2], behavior analysis [3] and community detection 

[4]. Multiple metrics to assess node level performance have 

been proposed [5-7]. Among all these assessments, two 

particular network metrics are particularly interesting because 

of their relationships to the shortest path problem, which 

usually represents the optimal way to reach an objective in a 

network. The first one, closeness [5], evaluates the difficulties 

for a node to reaching other nodes through shortest path in the 

network. The second metric, betweenness [5] measures the 

importance of a node based on the number of shortest paths 

pass through it in the network. These metrics have seen 

abundant applications in various research topics [8-10]. 
Despite the usefulness of closeness and betweenness, the 

practice of applying those two important metrics on streaming 
network data faces great challenges. In streaming network data, 
information that modifies the network (e.g. by adding a link, 
deleting a link, or by modifying link weights) is organized into 
data streams. Unfortunately, state of the art algorithms are 

designed to work on static networks and perform poorly on 
streaming data. Take betweenness for example, it takes 
              time for the most widely used 
algorithm[11] to calculate,  where V and E are the number of 
vertices and the number of links in the network, respectively. 
Given the fact that social networks usually have millions of 
users and connections, it’s impossible for these algorithms to 
respond to streaming network data in real time.  

In this paper, we build an efficient online algorithm 
framework to handle the calculations of both closeness and 
betweenness on streaming network data that contains link 
changes organized in a streaming fashion. The algorithm has 
the merits of responding to streaming data efficiently by 
avoiding unnecessary calculations that have already been done 
in the previous time steps. We divide the calculation of both 
metrics into a unified two-step process: Convergence and 
Aggregation. In the convergence step, a calculation process 
will be repeated until the shortest path is converged. In the 
aggregation step, those shortest path calculations will be 
aggregated into closeness and betweenness centralities. Both of 
the steps will be updated incrementally and are optimized for 
streaming network data. We also show that the most part of the 
convergence steps of both the betweenness and closeness 
algorithms can be shared and only the aggregation steps need 
to be done separately. This further decreases the running time 
if those two metrics are calculated together. To the best of our 
knowledge, this is the first paper to improve the running time 
of the two metrics when they are calculated together on 
streaming data. 

The rest of the paper is be organized as follows: Section 2 
will introduce background information of the paper. Section 3 
will detail the methodologies. Section 4 is the experimental 
section where we compare the running time of our algorithms. 
Section 5 will conclude our paper. 

 

2. Preliminary 

2.1 Definitions 

In a network with V nodes and E edges, the closeness of 
specific node k, noted as       is defined in Equation (1) to 

be the inverse of the sum of shortest paths      from node   to 

some other node t. Closeness measures the average cost to 
reach other nodes in a network through shortest path. The 
higher this measure is, the less it costs for a node to reach the 
rest of the network. 
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 (1) 

Betweenness utilizes shortest path information in a 
different way. It is defined in Equation (2) to be the sum of the 
ratio of the number of shortest paths passing through node  . 

Here       is the number of shortest path from s to t and         
is the number of shortest paths from s to t that go through k. 
Nodes with high betweenness are typically the hubs of the 
network due to their central positions. Removing those nodes 
will result in changing a significant amount of shortest paths 
in the network.  

        
       

    

   

           

   

       

 (2) 

2.2 Algorithms for Static Networks 

The use of closeness and betweenness is significantly 
limited by the complexity of the calculations. To calculate 
closeness for a static network, the best algorithm requires at 
least            time to compute [12] [13] by utilizing the 
all pairs shortest path algorithms. The calculation of 
betweenness is more complicated since it requires not only the 
correct computation of shortest paths but also correct number 
of paths that pass through each node. To calculate 
betweenness for a static network, the best algorithm in general 
case is Brandes’ approach [14], which avoids many 
unnecessary calculations by using a special sequence. Brandes 
introduced a quantity         which is defined in equation (3). 

         
       

    

   

           

 (3) 

This quantity can be calculated in a recursive fashion in 
equation (4). This is done by fixing each s and applying 
equation (4) to calculate         according to the non-

increasing order of the shortest path distance from s to k. 

         

                                                   

 
    
    

                     

           

  (4) 

Here      is the set of all in neighbors of s that are on the 

shortest paths from s to t. After         is calculated, the 

betweenness centrality can be acquired by summing all the 
        together according to equation (5). This can be easily 

validated by taking equation (3) into equation (5) and compare 
the results with equation (2). Brandes argued that the 
betweenness can be calculated in              . 

              

   

       

 (5) 

Some efforts have been made to further improve the 
computational time of both metrics. Some use 
approximations[15, 16], which will not always generate 
exactly the same metric values as the definitions. Others use 
distributed[17, 18] and parallel techniques [19, 20].  

2.3 Algorithms for Streaming Network Data  

The algorithm illustrated in Section 2.2 is designed to 
handle static network data and will be too slow to be applied 
on streaming network data. In order to better understand 
algorithms for streaming data, we need to first clarify two 
important concepts: An aggregated network at time  , denoted 
as      consists of all the edges in the network at time  . If an 
edge        exists in the network      (i.e.             ), 
          represents its corresponding edge weight. On the 

other hand, a delta network at time t, denoted as     consists 
of only the changes made to the network between time  -1 and 
time  . Link changes can come in one of the following forms: 
link addition, link deletion or link weight modification. For 
simplicity, we will only consider link addition and link 
deletion in this paper since a change of link weight can be 
considered as a link deletion followed by a link addition. An 
edge              will either has a finite link weight 

           if this is a link addition on time step t or 

           if this is a link deletion on this time step. At 

time 1,    =   . At time t>1,     is an aggregation result of 
all the delta network from the time 1 to time t 
{             }. 

An algorithm that is capable of handling streaming data 
should take a delta network instead of aggregated network as 
input. The calculations should thus take advantage of the delta 
network so that unnecessary calculations can be avoided or 
minimalized. Some recent work tried to address this issue, but 
efforts were limited to implementing either betweenness or 
closeness. On the side of closeness, [21] has a good solution in 
unweighted networks. [22] use similar approaches to further 
speed up the algorithm in a parallel fashion. On the side of 
betweenness, [23-25] looks for solutions on binary network 
data. [26] managed to produce an algorithm on weighted 
network data. However, the techniques used by these authors 
cannot extend to closeness.  In contrasts, the efforts in the 
present work extend to both algorithms and additionally are 
able to handle weighted data. 

3. Methodology 

We divide the calculation of closeness and betweenness into 

two steps: 1) the convergence step, where shortest path 

information is updated, and 2) the aggregation step, where 

metric values are updated based on the results from 

convergence step. Convergence step and aggregation step will 

needed to be executed each time new data is received. To help 

readers to better understand the paper, we prepared Table 1 

that contains a summary of all the major notations used in the 

paper. 

 
Table 1 Summary of major notations. clo=closeness. 

bet=betweenness 

 

     Shortest path length from s to t. (clo & bet) 

      Change of shortest path from s to t. (clo) 

     One of s’ out-neighbors on shortest path from s to t. (clo) 

     Num. shortest path from s to t. (bet) 

      Change in Num. shortest path from s to t. (bet) 

     s’ out-neighbors on shortest path from s to t. (bet) 
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     t’ in-neighbors on shortest path from s to t. (bet) 

      See equation (4). (bet) 

      See equation (7). (bet) 

3.1 Closeness 

3.1.1 Initialization for Closeness 
Algorithm 1.1 is the initialization for closeness. In this 

algorithm, a complex global G is created, initialized and 
returned. This variable G contains information that will not be 
released as long as there are new streaming data coming in. 
The first member of G,      is the length of shortest path from 

s to t. It is initialized to be 0 when s=t based on the fact that 
there is always a shortest path of length 0 from a node to itself. 
When s t,       is initialized to be   to indicate that no 

shortest path is available at this moment. The variable       is 

defined to be one of the out-neighbors of s that lies on the 
shortest path from s to t.      is initialized to be t if s=t and 

null otherwise.       is the actual closeness centrality value 
and is initialized to be 0.    is an aggregated network that is 
used to keep track of the complete network. 

Algorithm 1.1 Initialize_Clo() 

                 

                     

                         

                                     

                  

                                         

                    

8:      end for 

                

10: end for 

11:       ;  

12: return    

 

3.1.2 Convergence Step for Closeness 
The goal of converge step is to update shortest path 

information incrementally and efficiently. The main idea 
behind the convergence step is to propagate changes of 
convergence variables based on routes that are currently 
Active.  

Definition 1 Active Route 
A route         is active if the shortest path from s to t, 

     is changed during the convergence step.  

Active routes are results of route updates. There are two 
types of updates: Direct Link Update (DLU), which is 
triggered by a direct link change, and Remote Link Update 
(RLU), which is triggered by a remote link change. Fig. 1 
illustrates these two cases. On the left, a new link is added 
from node s to node u. A DLU will be triggered to update the 
shortest path from s to t since u might provide a route to t with 
better path weight. On the right, a shortest path change from s 
to t just happened. It will trigger a RLU to update route from 
s’ to t.. This differs from the previous case in that this update 
is not triggered by a direct link change.  

 

Fig. 1. Illustration of DLU (left) and RLU (right). Solid links represent 

existing path while dotted links represent new path just been found. Straight 

links represent actual link in the network while curved ones represent paths 

that consist of multiple links. 

Once a route         is active, it will propagate route 
updates to the in-neighbors of s, namely s’. The routes from 
every such in-neighbor to t will be updated and potentially 
become new active routes, in turn propagating updates to their 
in-neighbors. A route will become inactive after it has 
propagated its updates to all the in-neighbors of s. It might 
become active again if its path length gets changed again. If 
there are no active routes being generated, the system will 
reach a status of convergence.  

Algorithm 2 displays the algorithm for convergence. 
There are four input of the algorithm: G, which is the 
Global Variable returned by the Algorithm 1.1,   , which is 
the delta network containing streaming network changes, 
and two function objects Init and Update defined in 
Algorithm 1.2 and Algorithm 1.3 respectively. Algorithm 2 
returns a variable C as output, which stands for 
Convergence Variable. C is initialized by algorithm 1.2.  

The first thing Algorithm 2 does is to apply all the 
changes from    into   . Links that are marked as 
deletions (i.e. those have   link weight )in    will delete 
the corresponding links in AN and those links marked as 
inserts in    will be added into   . The algorithm then 
iterates all the link changes in DN and tries initializing DLU 
updates. If the update actually changes the shortest path, this 
route will become active in the next convergence step and will 
be recorded in             . In the next convergence step, 
similar route updating procedures for RLU will happen and 
active routes will be added to the convergence step after that 
in             . This process will repeat until no more 
active route is found which indicates the algorithm reaches the 
convergence. 

Algorithm 2 Convergence (                ) 

1:             

                  ;  

                         ); 

                       

                           

                                                  

7:                                               ; 

8:         end if 

9:     end for 

10: end for 

11:                         

12:                            ; 
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17:                                          ; 

18:      end if  

19:    end for 

20:  end for 

21: end do 

22:return  ; 

 
Algorithm 1.2 is the initialization of the convergence step 

for closeness. The only variable that needs to be initialized 
here is   , which is a map to record changes of shortest path 

weight     .    is used in Algorithm 1.3 and the aggregation 

step. 

 

Algorithm 1.2 Init_Clo () 

1 :                 

2:  return    

 
Algorithm 1.3 is the update function for closeness. The 

algorithm takes several inputs: the key points of the route 
which consists of the identities of three nodes (i.e. s,t,v), the 
type of update (DLU or RLU), the global variable (G), the 
convergence variable (C) and the delta network (DN). The 
algorithm will update shortest path information from node s to 
node t via node v, which must be one of the out-neighbors of 
s. The key thing here is to compare   , which is the new path 

length from s to v via t, and the old value     . If this is a DLU 

update                   . If it is a link deletion,         

will be    and    will be    as well. If otherwise it is a RLU 

update,     =            . 

There are three cases for the update algorithm. The first 
case is when the length of the new path d’ turns out to be 
better than that of the existing path     . In that case, a change 

occurs and we need to update      and      . CHG will be 

returned to signal a change has occurred. In the second case 
where the new path (i.e. d’) is not better (i.e. d’>    ) but 

      , the previous considered optimal shortest path no 

longer valid and needs to be deleted. This usually happens 
when there is a link deletion, which causes the distance to 
increase. In this case, we need to search for an alternative 
route. To begin search, we first set      to be   and      to be 

null and then iterate all the out-neighbors of s and update the 
route. Once the search is finished, we will return CHG. In the 
third case, the new route is not better and it is not the route we 
have found before, no change will be made and UNCHG will 
be returned. 

Algorithm 1.3 Update_Clo                     

                     

2:                            ; 

3:  else 

4:                            ; 

5:  end if 

                      

                      

8:                                 ; 

                        

10:      Return CHG; 

11: else if          and           then  

12:               ; 

                      ; 

                                          

15:                                            

16:       end for 

17:       Return CHG; 

18: end if 

19: Return UNCHG; 

 

3.1.3 Aggregation Step for Closeness 
The goal of the aggregation step is to update closeness 

based on the results from convergence step. Recall equation 
(1) that the closeness of node s can be calculated by first 
summing all the       over t then make an inverse of the sum. 

Also recall that    keeps track of all the changes being made 

to      during the convergence step. The aggregation algorithm 

of closeness would thus be to update the sum based on the old 
value sum’ and the    using equation (6). 

           
 

 

                                    
 
          

 

 

                         =     
          

 

(6) 

Algorithm 1.4 displays the aggregation step for closeness. 
It works by first iterating all the changes in    and gradually 
add the changes to sum. Closeness will be returned by 
inversing the sum. 

Algorithm 1.4 Aggregation_Clo(C) 

1: for                 do 

2:     if         then  

3:         sum=        ; 

4:     else 

5:         sum=
 

     
          

6:     end if 

7:           
 

   
   

8: end for 

9: return   ; 

 

3.1.4 Procedures to Calculate Closeness 
To put everything together, we have Algorithm 1.5 to 

illustrate the general workflow of the closeness calculation. 
The initialization only needs to be executed once to initialize 
global variable G. In the following step, convergence and 
aggregation needs to be executed in pair to respond to network 
change.  

Algorithm 1.5 Closeness(DN) 

1:    Initialize_Clo(); 

2:       
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3:  While             do 

4:                                                 

5:                             

6:      Output   ; 

7:  end do 

3.2 Betweenness 

3.2.1 Initialization for Betweenness 
To understand the initialization step for betweenness, we 

need to first understand two important quantities      and      . 
Fig. 2 illustrates these two quantities. In this scenario, a node 

s has multiple shortest paths to node t. The value      is 

defined to be a map with each key v to be the out-neighbors of 
s that are on the shortest paths from s to t and values to be the 
count of such shortest paths, which is        . Since v is the 

out-neighbor of s, there will be exactly one path from s to v. 

Thus we have             . In Fig. 2,   ,    are two such 

out-neighbors. The number of shortest paths that go 
through each of them are       and      . They will be 

recorded along with the keys in     . The variable      is a map 

that contains the in-neighbors of t that are on the shortest 
paths. In the example of Fig. 2, there are three such in-
neighbors of t. Each key has two values: #CP and    , which 
stands for the number of composite paths and the changes in 
the number of composite paths. Definition 2 defines 
composite path. 

Definition 2 Composite Path (CP) 
A composite path on the shortest path from s to t and ends 

with node  ,    
         is defined to be a collection of paths 

on the shortest paths that start from one of s’ out-neighbors 
and end in one of the in-neighbors of t if    . If s=t, it is 
defined to be a single path from s to itself. A composite path 
has to overlap with one of the shortest paths from s to t.  

 

Fig. 2. Shortest paths from s to t are being illustrated to demonstrate      and 

       

In Fig. 2, there are two different composite paths ending 
with   , which is v1->p1 and v2->p1. The number of 
composite paths, #CP will be 2 for     Similarly, there are 
#CP=2 for    and #CP=1 for   .  

Algorithm 3.1 is the initialization process for betweenness. 
Similar to that of closeness,     ,    and the centrality value 

   needs to be initialized. Unlike closeness, betweenness 

needs to create four other variables. The variable      is the 

number of shortest paths from s to t. It is initialized to 1 when 
s=t and 0 otherwise. The variables      and      are the two 

maps previously discussed . Another variable that we need to 
initialize is      , which is defined in equation (7). We will 
defer the explanation of this quantity to later sections. 

      
         

    
 (7) 

 

 Algorithm 3.1 Initialize_Bet() 

1:              

                  

                    

                              

                                  

                                        

             

                               

9:                                    

              

                     

                     

             

               

15: end for 

             

17: return      

 

3.2.2 Convergence Algorithm for Betweenness 
The convergence algorithm for betweenness utilizes the 

same convergence function as the one for closeness defined in 
algorithm 2. To make the convergence function work, we need 
to supply algorithm 3.2 and algorithm 3.3 to serve as function 
objects to pass into algorithm 2.  

Algorithm 3.2 Init_Bet() 

1:              
   ,          

   ; 

2:                 

3: return C; 

 

Algorithm 3.2 is the initialization function for 
betweenness. Two maps named         

  and         
  

are being initialized. The keys of the maps are nodes and 
values are distances from s to that particular node represented 
by the key. These maps are used to keep track of positive 
changes (when a shortest path from s to a specific node is 
being added or changed) and negative changes (when a 
shortest path from s is being deleted or changed) made during 
the convergence step.       is used to keep track of the change 

of      throughout the convergence step.  

Algorithm 3.3 Update                        

                     

2:                            ; 

3:  else 

4:                            ; 

5:  end if 

                         

                  

                                 

9:                                 ; 

10:                 

11:  UpdatePath (s,t,v,G,C,CLEAR); 
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12:  UpdatePath (s,t,v,G,C,INSERT); 

14:  Return CHG; 

15:else if             and           then  

                                

17:                               

                        

19:  UpdatePath (s,t,v,G,C,DELETE); 

20:    if                   then 

21:              ; 

                                         

23:                                    

24:       end for 

25:       Return CHG; 

26:    end if 

27: else if                    
         then 

28:                                ; 

29:                         

                                        

31:   UpdatePath (s,t,v,G,C,INSERT); 

32:   return CHG; 

33:end if 

34:Return UNCHG; 

 

Algorithm 3.3 is organized in a similar fashion to the 
closeness algorithm. First    is calculated based on whether it 
is a DLU or RLU update. Then we will consider four different 
cases instead of three in the closeness algorithm.  

The first case is when          . In this case, we need to 

update     ,           and      . It is obvious that when a new 

path with shorter length is present, all the old information 
needs to be discarded. Thus there will be only one element in 
     and      will be set to     .  The value       is updated by 

adding it to the change of     , which is           in this case. 

The value      is updated by calling the function UpdatePath, 

which is defined in Algorithm 3.4. Calling UpdatePath with 
parameter CLEAR will mark all the paths in      to be invalid 

(i.e. making         ). Keys found in      will record a 

negative change to s in         
 . A second function call to 

UpdatePath with parameter INSERT will insert all the 
composite paths    found in     into     . In algorithm 3.4, 

cases for INSERT are divided into two branches: on the first 
branch, if    is already in     , then we update     field of 

key p’. Both         
      and         

      will be 
recorded in this case because this is considered to be a change 
to the composite path. If the second branch is taken, we will 
create a new entry for    with       and     to be the 
increments. This case will be considered to be an addition and 
only         

      will be recorded. CHG will be returned.  

In the second case,           but v is recorded in      (i.e 

           ). This means the shortest path information that 

was previously recorded in the system is no longer valid. This 
happens usually when a link on the shortest path is being 
deleted. In that case, we need to take v out from all variables. 
We first update     ,       and     . Then we update      by 

calling UpdatePath using a DELETE parameter. Here, for all 

   found in       we subtract the values in     . This is still 

considered to be a change to composite path. There might still 
be some other composite paths after the deletion and hence 
both         

      and         
      also needs to be 

updated. After calling the UpdatePath, we will see whether or 
not it is necessary to perform a search for an alternative 
shortest path if we found      to be empty. If so, we will 

search for an alternative shortest path by calling Update. In 
either case, CHG will be returned.  

In the third case, if we found a node v with equal shortest 
path length as the one recorded but itself not recorded(i.e. 
      ), we will update     ,      ,      and call UpdatePath 

to update     . CHG will be returned.  

In the last case, there will be no change at all and UNCHG 
will be returned. 

Algorithm 3.4 UpdatePath(s,t,v,G,C,Mode) 

1:  if             then 

2:    for                   

3:      if                then  

4:                
                

           

                             
               

        

                     
            ; 

                     
            ; 

7:      else 

8:                                      

                                
               

               

                     
            ; 

10:    end if 

11:  end for 

12:else if      CLEAR then 

13:  for                  

14:                                    

                 
           ; 

16:  end for 

17:else if             then 

18:  for                   

19:                                           
       

                          
        

                  
            ; 

21:               
            ; 

22:  end for 

23:       

 

3.2.3 Aggregation Step for Betweenness 
The aggregation step for betweenness relies on the idea of 

Brandes’ approach. Remember betweenness can be calculated 
by aggregating         according to equation (5).          can 

be calculated by iterating all p in the nonincreasing order of 
their distance to s using equation (4). We follow the same idea 
to build the aggregation function for betweenness. 

Algorithm 3.5 illustrates the procedure in detail. The 
aggregation step will process two kinds of updates: negative 
updates and positive updates. Negative updates consist of link 
deletions and link changes, which are stored in         

  
while positive updates consists of link additions and link 

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 6



 

 

changes, which are stored in         
 . Negative updates 

will always come first. The Mode variable will first be 
NEGATIVE and then POSITIVE to reflect this procedure. For 
each node s in the network, we then build a queue by putting 
all the elements from either         

  or         
  

depending on the value of Mode parameter.  

To understand how we are going to update the centrality, 
consider Equation (4) and its rewritten format in equation (8). 
The variable         can be written as the product of      and 

the sum of       over t. The aggregation algorithm will 1) 
Check if      has changed and if so then update         and 

      accordingly (implemented by function ScaleQuantity in 
algorithm 3.7) and 2) check whether any       has changed. If 
so, it will then either call                  (algorithm 3.8) 

or IncreaseQuantity (algorithm 3.9) to update both         and 

     . 

         
    
    

    

           

         

                                                      

           

 

(8) 

The algorithm will then work by retrieving the elements 
from the queue by the descending order of the values in 
        

  or         
 , which is the distance     . We first 

save the old       to be     . We will need to deduct this old 
value from betweenness and add the new one to it. We update 
      to be the newest value according to Equation (8). We 
then iterate all the composite paths and update quantities. If 
       , that means there is some changes for      during 

the convergence step. We will first call ScaleQuantity to 
update     . Since       is the change of     .              
        is the old value of      before the convergence step 

and the new value of       will be       
    

     
 

     
    

              
. We will also update       by minus the 

old value of       and add the new value of      , which is 

(
      

              
  )        .  

The next step is to determine whether or not we need to 
update      . Before doing that, we will generate a Status 

based on             and             using function defined 

in algorithm 3.6. When #CP=0 while      , a whole new 
path from s to   needs to be added and the status will be 
INSERT. When #CP=0 but      , the path from s to p is 
first added and later deleted. The corresponding status will be 
DUMMY. When #CP>0 and #CP+     , a previously 
established path from s to p is being completely deleted. The 
algorithm will return a status DELETE. In the final case where 
#CP>0 and # CP+     , a change occurried to the path 
from s to p and will return CHANGE. The update function 
will then update the centrality based on the status. If it is 
       then we will first decrease the quantity by dropping 
the corresponding       when Mode is NEGATIVE and 
increase the quantity by adding the path when Mode is 
positive. The decrease function is defined in Algorithm 3.8 
which essentially decreases the             for both       and 

     . Note that      here is the up to date value of      not the 

old value      . The reason to use the up to date value is that 

we have updated      in both       and       when calling 

ScaleQuantity before. IncreaseQuantity is implemented in 
algorithm 3.9 by adding the most current value of       
       back to       and      . When the status is DELETE 

or DUMMY, we will only call                  . While 

the status is INSERT we will only call IncreaseQuantity. We 

will also always add     to     and clear     after each 
operation. 

Algorithm 3.5 Aggregate_Betweenness(     

1: for Mode   {NEGATIVE, POSITIVE} do 

2:     for             

3:                                   ; 

4:         if Mode=NEGATIVE then 

5:                               
 ; 

6:         else  

7:                               
 ; 

8:         end if 

9:     for           keys  do  

                                       

11:   end for 

12:   while                   do 

13:                        ; 

14:                        

                        
 

      
            ; 

16:       for               do 

17:           if           then 

18:               ScaleQuantity (         ); 

19:           end if 

20:           St= GetST(                           ); 

21:           if St=        then 

22:               if Mode=NEGATIVE then 

23:                                    (s,t,p,     ,G);   

24:               else  

25:                   IncreaseQuantity (       ); 

26:                                                             ; 

27:                                    

28:               end if 

29:           else if St =DELETE or St = DUMMY then 

30:               if Mode=NEGATIVE then 

31:                                    (s,t,p,G); 

                                         ; 

33:              end if 

34:          end if  

35:                                 

36:      end for 

37: end do 

38: return          

Algorithm 3.6 GetST (         

1:   if #CP=0 then 

2:       if       then 

3:           return INSERT; 

4:       else 

5:           return  DUMMY; 
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6:       end if 

7:   else   //#CP>0 

8:       if #CP+      then  

9:           return DELETE; 

10:     else   //# CP+      

11:         return CHANGE; 

12:     end if   

13: end if 

Algorithm 3.7 ScaleQuantity (         ) 

1:                    (
      

              
  )        ; 

2:                     
      

              
  

                 

Algorithm 3.8                  (     ,      G) 

                               ; 

2:                              ; 

Algorithm 3.9 IncreaseQuantity (     ,G) 

1:                              ; 

2:                               ; 

 

3.2.4 Procedures to Calculate Betweenness 
Algorithm 3.10 to illustrated the procedures to calculate 

betweenness. 

Algorithm 3.10 Betweenness (    

1:    Initialize_Bet(); 

2:       

3:  While             do 

4:                                               

5:                             

6:      Output   ; 

7:  end do 

3.3 Calculating Betweenness and Closeness Together 

Since the convergence variable of closeness is a subset of 
that of betweenness, maintaining a single copy of the 
convergence variable of betweennes will avoid unnecessary 
calculations in the situation when closeness and betweenness 
are both being calculated. During the aggregation stage 
however, closeness and betweenness need to call their own 
aggregation functions. Since the majority of the calculations 
concentrate on the convergence step, calculating those two 
metrics together will significantly reduce the running time as 
compared to calculate them separately. Due to space 
limitations, we will omit the algorithm. 

4. Experimental Results 

4.1 Implementations and Experimental Settings 

We implemented both algorithms and compared them 
against baseline methods. The baseline algorithms are Dijkstra 
and Johnson for closeness and Brandes for betweenness. 
Experiments are run on a 64-bit machine with 4 Intel Xeron 
7550 CPUs. The compiler is MSVC 2012 64 bit. 

4.2 Data Sets 

We tested our algorithms on two data sets. Table 2 shows 
the summary of the two data sets. 

WikiVote Data Set 
The wiki vote data set consists of the vote logs among 

Wikipedia administrators when choosing the new 
administrators. When a user casts a vote for another user, a 
link will be recorded with a timestamp. The link weight is the 
total number of critiques of the user who made the vote. The 
data is processed into a delta network stream by day. Each day 
is a time step and there are 1267 time steps. 

Foursquare Travel Sequence Data Set 
The second data set we use in the experiment is collected 

from public location API of foursquare in New York City and 
Pittsburgh area. The source node of the link represent the first 
location a specific user has visited and the target of the link is 
the next one with link weight being the difference of those two 
visits in milliseconds. The network data is again processed 
into a delta network by day. Each day is a time step and there 
are 578 time steps. 

Table 2 Summary of the data sets 

 

 Num.Nodes Num.Links Time Steps 

WikiVote 26,773 26,773 1267 

Foursquare 84,722 67,404 578 

4.3 Results 

Experimental results show that our algorithms significantly 
reduced running time on both data sets. Fig. 3 shows the speed 
up of closeness compared to the baseline methods (in 
speedups). Using our approach, the calculations are sped up 
by roughly 5 to 7 orders of magnitudes. In the foursquare data, 
the speed up tends to decrease over time. This is because there 
are more link changes at later time steps than earlier time 
steps. Fig. 4 shows the running time comparisons of 
betweenness. The speed up is not as significant as the 
closeness because of the increased complexity brought by 
additional calculations. However, the speed up is still 2 to 4 
orders of magnitudes on both data sets.  

 

Fig. 3. Running time of closeness compared to baseline algorithms on 

WikiVote (left) and Foursquare (right). 
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Fig. 4. Running time of betweenness compared to baseline algorithm on 

WikiVote (left) and Foursquare (right). 

 
Fig. 5 and Fig. 6 illustrate the relationship between the 

number of link changes and the running time of closeness and 
betweenness. We see that the running time of the algorithm 
follows a fairly linear relationship to the number of link 
change. For closeness on foursquare data, the relationship is 
almost a perfect line. This suggests that the actual running 
time of the algorithm depends strongly on the number of link 
changes rather than the size of the networks.  

Another way to look at the efficacy is to investigate how 
many steps those algorithms take in the convergence step. Fig. 
7 shows the average steps to converge for both algorithms at 
each time step. It is illustrated that both of the algorithms have 
a fairly similar number of convergence steps. This is not 
surprising because we use a unified convergence algorithm for 
both of them. It is also noticed that the number of steps to 
converge increased dramatically for foursquare data. This is 
consistent with the observation in the previous analysis that 
there are more link changes being made in the later part of that 
data set. 

 

Fig. 5. Num. link changes V.S. running time for closeness on WikiVote (left) 

and Foursquare (right) 

 

Fig. 6. Num. link changes V.S. running time for betweenness on WikiVote 

(left) and Foursquare (right) 

 

Fig. 7. Number of steps to converge for both metrics on WikiVote (left) and 

foursquare (right). 

5. Conclusions and Discussions 

In this work, we proposed a unified framework to handle 

closeness and betweenness on streaming network data. The 

algorithms utilize existing calculation results and update the 

centrality values incrementally. Experimental results show 

several magnitudes of speed up compared to baseline 

algorithms. The speed ups make the application of these two 

metrics on large and frequently changed social network data 

feasible. Various social media research that relies on these 

metrics such as real time network stability analysis, real time 

link prediction, network clustering algorithm and dynamic 

information diffusion models will benefit from this research. 
In addition, we showed that the standardized algorithm 

framework could be divided into convergence step and 
aggregation step. The convergence step for both betweenness 
and closeness are similar except that betweenenss requires 
more quantities to be calculated. In the situation where both 
metrics are required, maintaining a convergence variable of 
betweenness while using different aggregation functions will 
significantly reduce the running time.  

There are several ways to extend the work in that paper. 
First, the algorithm proposed in that paper has the potential to 
be paralleled or converted into a distributed algorithm. This 
will enable the algorithm to handle larger data sets at a higher 
link change rate. Another way to improve upon the current 
work would be to decrease the additional complexity of 
betweenness calculation and make it close to that of the 
closeness calculation. 
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