

Real Time Closeness and Betweenness Centrality Calculations on

Streaming Network Data

Wei Wei

School of Computer Science

Carnegie Mellon University, Pittsburgh, PA, U.S.A

weiwei@cs.cmu.edu

Kathleen M. Carley

School of Computer Science

Carnegie Mellon University, Pittsburgh, PA, U.S.A

kathleen.carley@cs.cmu.edu

Abstract

Closeness and betweenness are among the most important metrics in

social network analysis. They are essential to the evaluation of

various research problems such as viral marketing, network stability

and network traffic predictions, which play an important role in

social media research. However, both of these metrics are expensive

to compute. We propose an efficient online algorithm framework to

handle both closeness and betweenness in the situation where

network structure changes frequently. Whenever a link change is

received as the input, the algorithm utilizes existing facts about the

calculation to update centrality values with minimal effort.

Experimental results on data sets collected from online social media

websites show that our approach is 4-7 orders of magnitude faster for

closeness and 2-4 orders of magnitude faster for betweenness

calculations over baseline methods. We also show how those two

metrics share some common calculations so that the running time can

be dramatically reduced when calculated together. To the best of our

knowledge, this is the first work to improve the running time when

those two algorithms are calculated at the same time on streaming

network data.

Keywords: betweenness; closeness; streaming network data;

social network; real-time network analysis; centrality; fast metrics

1. Introductions

Social networks consist of agents and their connections to each

other. In social network analysis, the assessment of node

position plays an important role in understanding various

research questions such as information diffusion [1], network

dynamics [2], behavior analysis [3] and community detection

[4]. Multiple metrics to assess node level performance have

been proposed [5-7]. Among all these assessments, two

particular network metrics are particularly interesting because

of their relationships to the shortest path problem, which

usually represents the optimal way to reach an objective in a

network. The first one, closeness [5], evaluates the difficulties

for a node to reaching other nodes through shortest path in the

network. The second metric, betweenness [5] measures the

importance of a node based on the number of shortest paths

pass through it in the network. These metrics have seen

abundant applications in various research topics [8-10].
Despite the usefulness of closeness and betweenness, the

practice of applying those two important metrics on streaming
network data faces great challenges. In streaming network data,
information that modifies the network (e.g. by adding a link,
deleting a link, or by modifying link weights) is organized into
data streams. Unfortunately, state of the art algorithms are

designed to work on static networks and perform poorly on
streaming data. Take betweenness for example, it takes
 time for the most widely used
algorithm[11] to calculate, where V and E are the number of
vertices and the number of links in the network, respectively.
Given the fact that social networks usually have millions of
users and connections, it’s impossible for these algorithms to
respond to streaming network data in real time.

In this paper, we build an efficient online algorithm
framework to handle the calculations of both closeness and
betweenness on streaming network data that contains link
changes organized in a streaming fashion. The algorithm has
the merits of responding to streaming data efficiently by
avoiding unnecessary calculations that have already been done
in the previous time steps. We divide the calculation of both
metrics into a unified two-step process: Convergence and
Aggregation. In the convergence step, a calculation process
will be repeated until the shortest path is converged. In the
aggregation step, those shortest path calculations will be
aggregated into closeness and betweenness centralities. Both of
the steps will be updated incrementally and are optimized for
streaming network data. We also show that the most part of the
convergence steps of both the betweenness and closeness
algorithms can be shared and only the aggregation steps need
to be done separately. This further decreases the running time
if those two metrics are calculated together. To the best of our
knowledge, this is the first paper to improve the running time
of the two metrics when they are calculated together on
streaming data.

The rest of the paper is be organized as follows: Section 2
will introduce background information of the paper. Section 3
will detail the methodologies. Section 4 is the experimental
section where we compare the running time of our algorithms.
Section 5 will conclude our paper.

2. Preliminary

2.1 Definitions

In a network with V nodes and E edges, the closeness of
specific node k, noted as is defined in Equation (1) to

be the inverse of the sum of shortest paths from node to

some other node t. Closeness measures the average cost to
reach other nodes in a network through shortest path. The
higher this measure is, the less it costs for a node to reach the
rest of the network.

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 1

 (1)

Betweenness utilizes shortest path information in a
different way. It is defined in Equation (2) to be the sum of the
ratio of the number of shortest paths passing through node .

Here is the number of shortest path from s to t and
is the number of shortest paths from s to t that go through k.
Nodes with high betweenness are typically the hubs of the
network due to their central positions. Removing those nodes
will result in changing a significant amount of shortest paths
in the network.

 (2)

2.2 Algorithms for Static Networks

The use of closeness and betweenness is significantly
limited by the complexity of the calculations. To calculate
closeness for a static network, the best algorithm requires at
least time to compute [12] [13] by utilizing the
all pairs shortest path algorithms. The calculation of
betweenness is more complicated since it requires not only the
correct computation of shortest paths but also correct number
of paths that pass through each node. To calculate
betweenness for a static network, the best algorithm in general
case is Brandes’ approach [14], which avoids many
unnecessary calculations by using a special sequence. Brandes
introduced a quantity which is defined in equation (3).

 (3)

This quantity can be calculated in a recursive fashion in
equation (4). This is done by fixing each s and applying
equation (4) to calculate according to the non-

increasing order of the shortest path distance from s to k.

 (4)

Here is the set of all in neighbors of s that are on the

shortest paths from s to t. After is calculated, the

betweenness centrality can be acquired by summing all the
 together according to equation (5). This can be easily

validated by taking equation (3) into equation (5) and compare
the results with equation (2). Brandes argued that the
betweenness can be calculated in .

 (5)

Some efforts have been made to further improve the
computational time of both metrics. Some use
approximations[15, 16], which will not always generate
exactly the same metric values as the definitions. Others use
distributed[17, 18] and parallel techniques [19, 20].

2.3 Algorithms for Streaming Network Data

The algorithm illustrated in Section 2.2 is designed to
handle static network data and will be too slow to be applied
on streaming network data. In order to better understand
algorithms for streaming data, we need to first clarify two
important concepts: An aggregated network at time , denoted
as consists of all the edges in the network at time . If an
edge exists in the network (i.e.),
 represents its corresponding edge weight. On the

other hand, a delta network at time t, denoted as consists
of only the changes made to the network between time -1 and
time . Link changes can come in one of the following forms:
link addition, link deletion or link weight modification. For
simplicity, we will only consider link addition and link
deletion in this paper since a change of link weight can be
considered as a link deletion followed by a link addition. An
edge will either has a finite link weight

 if this is a link addition on time step t or

 if this is a link deletion on this time step. At

time 1, = . At time t>1, is an aggregation result of
all the delta network from the time 1 to time t
{ }.

An algorithm that is capable of handling streaming data
should take a delta network instead of aggregated network as
input. The calculations should thus take advantage of the delta
network so that unnecessary calculations can be avoided or
minimalized. Some recent work tried to address this issue, but
efforts were limited to implementing either betweenness or
closeness. On the side of closeness, [21] has a good solution in
unweighted networks. [22] use similar approaches to further
speed up the algorithm in a parallel fashion. On the side of
betweenness, [23-25] looks for solutions on binary network
data. [26] managed to produce an algorithm on weighted
network data. However, the techniques used by these authors
cannot extend to closeness. In contrasts, the efforts in the
present work extend to both algorithms and additionally are
able to handle weighted data.

3. Methodology

We divide the calculation of closeness and betweenness into

two steps: 1) the convergence step, where shortest path

information is updated, and 2) the aggregation step, where

metric values are updated based on the results from

convergence step. Convergence step and aggregation step will

needed to be executed each time new data is received. To help

readers to better understand the paper, we prepared Table 1

that contains a summary of all the major notations used in the

paper.

Table 1 Summary of major notations. clo=closeness.

bet=betweenness

 Shortest path length from s to t. (clo & bet)

 Change of shortest path from s to t. (clo)

 One of s’ out-neighbors on shortest path from s to t. (clo)

 Num. shortest path from s to t. (bet)

 Change in Num. shortest path from s to t. (bet)

 s’ out-neighbors on shortest path from s to t. (bet)

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 2

 t’ in-neighbors on shortest path from s to t. (bet)

 See equation (4). (bet)

 See equation (7). (bet)

3.1 Closeness

3.1.1 Initialization for Closeness
Algorithm 1.1 is the initialization for closeness. In this

algorithm, a complex global G is created, initialized and
returned. This variable G contains information that will not be
released as long as there are new streaming data coming in.
The first member of G, is the length of shortest path from

s to t. It is initialized to be 0 when s=t based on the fact that
there is always a shortest path of length 0 from a node to itself.
When s t, is initialized to be to indicate that no

shortest path is available at this moment. The variable is

defined to be one of the out-neighbors of s that lies on the
shortest path from s to t. is initialized to be t if s=t and

null otherwise. is the actual closeness centrality value
and is initialized to be 0. is an aggregated network that is
used to keep track of the complete network.

Algorithm 1.1 Initialize_Clo()

8: end for

10: end for

11: ;

12: return

3.1.2 Convergence Step for Closeness
The goal of converge step is to update shortest path

information incrementally and efficiently. The main idea
behind the convergence step is to propagate changes of
convergence variables based on routes that are currently
Active.

Definition 1 Active Route
A route is active if the shortest path from s to t,

 is changed during the convergence step.

Active routes are results of route updates. There are two
types of updates: Direct Link Update (DLU), which is
triggered by a direct link change, and Remote Link Update
(RLU), which is triggered by a remote link change. Fig. 1
illustrates these two cases. On the left, a new link is added
from node s to node u. A DLU will be triggered to update the
shortest path from s to t since u might provide a route to t with
better path weight. On the right, a shortest path change from s
to t just happened. It will trigger a RLU to update route from
s’ to t.. This differs from the previous case in that this update
is not triggered by a direct link change.

Fig. 1. Illustration of DLU (left) and RLU (right). Solid links represent

existing path while dotted links represent new path just been found. Straight

links represent actual link in the network while curved ones represent paths

that consist of multiple links.

Once a route is active, it will propagate route
updates to the in-neighbors of s, namely s’. The routes from
every such in-neighbor to t will be updated and potentially
become new active routes, in turn propagating updates to their
in-neighbors. A route will become inactive after it has
propagated its updates to all the in-neighbors of s. It might
become active again if its path length gets changed again. If
there are no active routes being generated, the system will
reach a status of convergence.

Algorithm 2 displays the algorithm for convergence.
There are four input of the algorithm: G, which is the
Global Variable returned by the Algorithm 1.1, , which is
the delta network containing streaming network changes,
and two function objects Init and Update defined in
Algorithm 1.2 and Algorithm 1.3 respectively. Algorithm 2
returns a variable C as output, which stands for
Convergence Variable. C is initialized by algorithm 1.2.

The first thing Algorithm 2 does is to apply all the
changes from into . Links that are marked as
deletions (i.e. those have link weight)in will delete
the corresponding links in AN and those links marked as
inserts in will be added into . The algorithm then
iterates all the link changes in DN and tries initializing DLU
updates. If the update actually changes the shortest path, this
route will become active in the next convergence step and will
be recorded in . In the next convergence step,
similar route updating procedures for RLU will happen and
active routes will be added to the convergence step after that
in . This process will repeat until no more
active route is found which indicates the algorithm reaches the
convergence.

Algorithm 2 Convergence ()

1:

 ;

);

7: ;

8: end if

9: end for

10: end for

11:

12: ;

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 3

17: ;

18: end if

19: end for

20: end for

21: end do

22:return ;

Algorithm 1.2 is the initialization of the convergence step

for closeness. The only variable that needs to be initialized
here is , which is a map to record changes of shortest path

weight . is used in Algorithm 1.3 and the aggregation

step.

Algorithm 1.2 Init_Clo ()

1 :

2: return

Algorithm 1.3 is the update function for closeness. The

algorithm takes several inputs: the key points of the route
which consists of the identities of three nodes (i.e. s,t,v), the
type of update (DLU or RLU), the global variable (G), the
convergence variable (C) and the delta network (DN). The
algorithm will update shortest path information from node s to
node t via node v, which must be one of the out-neighbors of
s. The key thing here is to compare , which is the new path

length from s to v via t, and the old value . If this is a DLU

update . If it is a link deletion,

will be and will be as well. If otherwise it is a RLU

update, = .

There are three cases for the update algorithm. The first
case is when the length of the new path d’ turns out to be
better than that of the existing path . In that case, a change

occurs and we need to update and . CHG will be

returned to signal a change has occurred. In the second case
where the new path (i.e. d’) is not better (i.e. d’>) but

 , the previous considered optimal shortest path no

longer valid and needs to be deleted. This usually happens
when there is a link deletion, which causes the distance to
increase. In this case, we need to search for an alternative
route. To begin search, we first set to be and to be

null and then iterate all the out-neighbors of s and update the
route. Once the search is finished, we will return CHG. In the
third case, the new route is not better and it is not the route we
have found before, no change will be made and UNCHG will
be returned.

Algorithm 1.3 Update_Clo

2: ;

3: else

4: ;

5: end if

8: ;

10: Return CHG;

11: else if and then

12: ;

 ;

15:

16: end for

17: Return CHG;

18: end if

19: Return UNCHG;

3.1.3 Aggregation Step for Closeness
The goal of the aggregation step is to update closeness

based on the results from convergence step. Recall equation
(1) that the closeness of node s can be calculated by first
summing all the over t then make an inverse of the sum.

Also recall that keeps track of all the changes being made

to during the convergence step. The aggregation algorithm

of closeness would thus be to update the sum based on the old
value sum’ and the using equation (6).

 =

(6)

Algorithm 1.4 displays the aggregation step for closeness.
It works by first iterating all the changes in and gradually
add the changes to sum. Closeness will be returned by
inversing the sum.

Algorithm 1.4 Aggregation_Clo(C)

1: for do

2: if then

3: sum= ;

4: else

5: sum=

6: end if

7:

8: end for

9: return ;

3.1.4 Procedures to Calculate Closeness
To put everything together, we have Algorithm 1.5 to

illustrate the general workflow of the closeness calculation.
The initialization only needs to be executed once to initialize
global variable G. In the following step, convergence and
aggregation needs to be executed in pair to respond to network
change.

Algorithm 1.5 Closeness(DN)

1: Initialize_Clo();

2:

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 4

3: While do

4:

5:

6: Output ;

7: end do

3.2 Betweenness

3.2.1 Initialization for Betweenness
To understand the initialization step for betweenness, we

need to first understand two important quantities and .
Fig. 2 illustrates these two quantities. In this scenario, a node

s has multiple shortest paths to node t. The value is

defined to be a map with each key v to be the out-neighbors of
s that are on the shortest paths from s to t and values to be the
count of such shortest paths, which is . Since v is the

out-neighbor of s, there will be exactly one path from s to v.

Thus we have . In Fig. 2, , are two such

out-neighbors. The number of shortest paths that go
through each of them are and . They will be

recorded along with the keys in . The variable is a map

that contains the in-neighbors of t that are on the shortest
paths. In the example of Fig. 2, there are three such in-
neighbors of t. Each key has two values: #CP and , which
stands for the number of composite paths and the changes in
the number of composite paths. Definition 2 defines
composite path.

Definition 2 Composite Path (CP)
A composite path on the shortest path from s to t and ends

with node ,
 is defined to be a collection of paths

on the shortest paths that start from one of s’ out-neighbors
and end in one of the in-neighbors of t if . If s=t, it is
defined to be a single path from s to itself. A composite path
has to overlap with one of the shortest paths from s to t.

Fig. 2. Shortest paths from s to t are being illustrated to demonstrate and

In Fig. 2, there are two different composite paths ending
with , which is v1->p1 and v2->p1. The number of
composite paths, #CP will be 2 for Similarly, there are
#CP=2 for and #CP=1 for .

Algorithm 3.1 is the initialization process for betweenness.
Similar to that of closeness, , and the centrality value

 needs to be initialized. Unlike closeness, betweenness

needs to create four other variables. The variable is the

number of shortest paths from s to t. It is initialized to 1 when
s=t and 0 otherwise. The variables and are the two

maps previously discussed . Another variable that we need to
initialize is , which is defined in equation (7). We will
defer the explanation of this quantity to later sections.

 (7)

 Algorithm 3.1 Initialize_Bet()

1:

9:

15: end for

17: return

3.2.2 Convergence Algorithm for Betweenness
The convergence algorithm for betweenness utilizes the

same convergence function as the one for closeness defined in
algorithm 2. To make the convergence function work, we need
to supply algorithm 3.2 and algorithm 3.3 to serve as function
objects to pass into algorithm 2.

Algorithm 3.2 Init_Bet()

1:
 ,

 ;

2:

3: return C;

Algorithm 3.2 is the initialization function for
betweenness. Two maps named

 and

are being initialized. The keys of the maps are nodes and
values are distances from s to that particular node represented
by the key. These maps are used to keep track of positive
changes (when a shortest path from s to a specific node is
being added or changed) and negative changes (when a
shortest path from s is being deleted or changed) made during
the convergence step. is used to keep track of the change

of throughout the convergence step.

Algorithm 3.3 Update

2: ;

3: else

4: ;

5: end if

9: ;

10:

11: UpdatePath (s,t,v,G,C,CLEAR);

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 5

12: UpdatePath (s,t,v,G,C,INSERT);

14: Return CHG;

15:else if and then

17:

19: UpdatePath (s,t,v,G,C,DELETE);

20: if then

21: ;

23:

24: end for

25: Return CHG;

26: end if

27: else if
 then

28: ;

29:

31: UpdatePath (s,t,v,G,C,INSERT);

32: return CHG;

33:end if

34:Return UNCHG;

Algorithm 3.3 is organized in a similar fashion to the
closeness algorithm. First is calculated based on whether it
is a DLU or RLU update. Then we will consider four different
cases instead of three in the closeness algorithm.

The first case is when . In this case, we need to

update , and . It is obvious that when a new

path with shorter length is present, all the old information
needs to be discarded. Thus there will be only one element in
 and will be set to . The value is updated by

adding it to the change of , which is in this case.

The value is updated by calling the function UpdatePath,

which is defined in Algorithm 3.4. Calling UpdatePath with
parameter CLEAR will mark all the paths in to be invalid

(i.e. making). Keys found in will record a

negative change to s in
 . A second function call to

UpdatePath with parameter INSERT will insert all the
composite paths found in into . In algorithm 3.4,

cases for INSERT are divided into two branches: on the first
branch, if is already in , then we update field of

key p’. Both
 and

 will be
recorded in this case because this is considered to be a change
to the composite path. If the second branch is taken, we will
create a new entry for with and to be the
increments. This case will be considered to be an addition and
only

 will be recorded. CHG will be returned.

In the second case, but v is recorded in (i.e

). This means the shortest path information that

was previously recorded in the system is no longer valid. This
happens usually when a link on the shortest path is being
deleted. In that case, we need to take v out from all variables.
We first update , and . Then we update by

calling UpdatePath using a DELETE parameter. Here, for all

 found in we subtract the values in . This is still

considered to be a change to composite path. There might still
be some other composite paths after the deletion and hence
both

 and
 also needs to be

updated. After calling the UpdatePath, we will see whether or
not it is necessary to perform a search for an alternative
shortest path if we found to be empty. If so, we will

search for an alternative shortest path by calling Update. In
either case, CHG will be returned.

In the third case, if we found a node v with equal shortest
path length as the one recorded but itself not recorded(i.e.
), we will update , , and call UpdatePath

to update . CHG will be returned.

In the last case, there will be no change at all and UNCHG
will be returned.

Algorithm 3.4 UpdatePath(s,t,v,G,C,Mode)

1: if then

2: for

3: if then

4:

 ;

 ;

7: else

8:

 ;

10: end if

11: end for

12:else if CLEAR then

13: for

14:

 ;

16: end for

17:else if then

18: for

19:

 ;

21:
 ;

22: end for

23:

3.2.3 Aggregation Step for Betweenness
The aggregation step for betweenness relies on the idea of

Brandes’ approach. Remember betweenness can be calculated
by aggregating according to equation (5). can

be calculated by iterating all p in the nonincreasing order of
their distance to s using equation (4). We follow the same idea
to build the aggregation function for betweenness.

Algorithm 3.5 illustrates the procedure in detail. The
aggregation step will process two kinds of updates: negative
updates and positive updates. Negative updates consist of link
deletions and link changes, which are stored in

while positive updates consists of link additions and link

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 6

changes, which are stored in
 . Negative updates

will always come first. The Mode variable will first be
NEGATIVE and then POSITIVE to reflect this procedure. For
each node s in the network, we then build a queue by putting
all the elements from either

 or

depending on the value of Mode parameter.

To understand how we are going to update the centrality,
consider Equation (4) and its rewritten format in equation (8).
The variable can be written as the product of and

the sum of over t. The aggregation algorithm will 1)
Check if has changed and if so then update and

 accordingly (implemented by function ScaleQuantity in
algorithm 3.7) and 2) check whether any has changed. If
so, it will then either call (algorithm 3.8)

or IncreaseQuantity (algorithm 3.9) to update both and

 .

(8)

The algorithm will then work by retrieving the elements
from the queue by the descending order of the values in

 or
 , which is the distance . We first

save the old to be . We will need to deduct this old
value from betweenness and add the new one to it. We update
 to be the newest value according to Equation (8). We
then iterate all the composite paths and update quantities. If
 , that means there is some changes for during

the convergence step. We will first call ScaleQuantity to
update . Since is the change of .
 is the old value of before the convergence step

and the new value of will be

. We will also update by minus the

old value of and add the new value of , which is

(

) .

The next step is to determine whether or not we need to
update . Before doing that, we will generate a Status

based on and using function defined

in algorithm 3.6. When #CP=0 while , a whole new
path from s to needs to be added and the status will be
INSERT. When #CP=0 but , the path from s to p is
first added and later deleted. The corresponding status will be
DUMMY. When #CP>0 and #CP+ , a previously
established path from s to p is being completely deleted. The
algorithm will return a status DELETE. In the final case where
#CP>0 and # CP+ , a change occurried to the path
from s to p and will return CHANGE. The update function
will then update the centrality based on the status. If it is
 then we will first decrease the quantity by dropping
the corresponding when Mode is NEGATIVE and
increase the quantity by adding the path when Mode is
positive. The decrease function is defined in Algorithm 3.8
which essentially decreases the for both and

 . Note that here is the up to date value of not the

old value . The reason to use the up to date value is that

we have updated in both and when calling

ScaleQuantity before. IncreaseQuantity is implemented in
algorithm 3.9 by adding the most current value of
 back to and . When the status is DELETE

or DUMMY, we will only call . While

the status is INSERT we will only call IncreaseQuantity. We

will also always add to and clear after each
operation.

Algorithm 3.5 Aggregate_Betweenness(

1: for Mode {NEGATIVE, POSITIVE} do

2: for

3: ;

4: if Mode=NEGATIVE then

5:
 ;

6: else

7:
 ;

8: end if

9: for keys do

11: end for

12: while do

13: ;

14:

 ;

16: for do

17: if then

18: ScaleQuantity ();

19: end if

20: St= GetST();

21: if St= then

22: if Mode=NEGATIVE then

23: (s,t,p, ,G);

24: else

25: IncreaseQuantity ();

26: ;

27:

28: end if

29: else if St =DELETE or St = DUMMY then

30: if Mode=NEGATIVE then

31: (s,t,p,G);

 ;

33: end if

34: end if

35:

36: end for

37: end do

38: return

Algorithm 3.6 GetST (

1: if #CP=0 then

2: if then

3: return INSERT;

4: else

5: return DUMMY;

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 7

6: end if

7: else //#CP>0

8: if #CP+ then

9: return DELETE;

10: else //# CP+

11: return CHANGE;

12: end if

13: end if

Algorithm 3.7 ScaleQuantity ()

1: (

) ;

2:

Algorithm 3.8 (, G)

 ;

2: ;

Algorithm 3.9 IncreaseQuantity (,G)

1: ;

2: ;

3.2.4 Procedures to Calculate Betweenness
Algorithm 3.10 to illustrated the procedures to calculate

betweenness.

Algorithm 3.10 Betweenness (

1: Initialize_Bet();

2:

3: While do

4:

5:

6: Output ;

7: end do

3.3 Calculating Betweenness and Closeness Together

Since the convergence variable of closeness is a subset of
that of betweenness, maintaining a single copy of the
convergence variable of betweennes will avoid unnecessary
calculations in the situation when closeness and betweenness
are both being calculated. During the aggregation stage
however, closeness and betweenness need to call their own
aggregation functions. Since the majority of the calculations
concentrate on the convergence step, calculating those two
metrics together will significantly reduce the running time as
compared to calculate them separately. Due to space
limitations, we will omit the algorithm.

4. Experimental Results

4.1 Implementations and Experimental Settings

We implemented both algorithms and compared them
against baseline methods. The baseline algorithms are Dijkstra
and Johnson for closeness and Brandes for betweenness.
Experiments are run on a 64-bit machine with 4 Intel Xeron
7550 CPUs. The compiler is MSVC 2012 64 bit.

4.2 Data Sets

We tested our algorithms on two data sets. Table 2 shows
the summary of the two data sets.

WikiVote Data Set
The wiki vote data set consists of the vote logs among

Wikipedia administrators when choosing the new
administrators. When a user casts a vote for another user, a
link will be recorded with a timestamp. The link weight is the
total number of critiques of the user who made the vote. The
data is processed into a delta network stream by day. Each day
is a time step and there are 1267 time steps.

Foursquare Travel Sequence Data Set
The second data set we use in the experiment is collected

from public location API of foursquare in New York City and
Pittsburgh area. The source node of the link represent the first
location a specific user has visited and the target of the link is
the next one with link weight being the difference of those two
visits in milliseconds. The network data is again processed
into a delta network by day. Each day is a time step and there
are 578 time steps.

Table 2 Summary of the data sets

 Num.Nodes Num.Links Time Steps

WikiVote 26,773 26,773 1267

Foursquare 84,722 67,404 578

4.3 Results

Experimental results show that our algorithms significantly
reduced running time on both data sets. Fig. 3 shows the speed
up of closeness compared to the baseline methods (in
speedups). Using our approach, the calculations are sped up
by roughly 5 to 7 orders of magnitudes. In the foursquare data,
the speed up tends to decrease over time. This is because there
are more link changes at later time steps than earlier time
steps. Fig. 4 shows the running time comparisons of
betweenness. The speed up is not as significant as the
closeness because of the increased complexity brought by
additional calculations. However, the speed up is still 2 to 4
orders of magnitudes on both data sets.

Fig. 3. Running time of closeness compared to baseline algorithms on

WikiVote (left) and Foursquare (right).

	

1000	

10000	

100000	

1000000	

10000000	

1	 201	 401	 601	 801	 1001	 1201	

S
p
e
e
d
	U
p
s	

Time	Step	

Compared	to	Dijkstra	

Compared	to	johnsons	

	

1.00E+04	

1.00E+05	

1.00E+06	

1.00E+07	

1.00E+08	

1	 101	 201	 301	 401	 501	

Sp
ee
d
	U
p
	

Time	Step	

Compared	to	Dijkstra	

Compared	to	johnsons	

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 8

Fig. 4. Running time of betweenness compared to baseline algorithm on

WikiVote (left) and Foursquare (right).

Fig. 5 and Fig. 6 illustrate the relationship between the

number of link changes and the running time of closeness and
betweenness. We see that the running time of the algorithm
follows a fairly linear relationship to the number of link
change. For closeness on foursquare data, the relationship is
almost a perfect line. This suggests that the actual running
time of the algorithm depends strongly on the number of link
changes rather than the size of the networks.

Another way to look at the efficacy is to investigate how
many steps those algorithms take in the convergence step. Fig.
7 shows the average steps to converge for both algorithms at
each time step. It is illustrated that both of the algorithms have
a fairly similar number of convergence steps. This is not
surprising because we use a unified convergence algorithm for
both of them. It is also noticed that the number of steps to
converge increased dramatically for foursquare data. This is
consistent with the observation in the previous analysis that
there are more link changes being made in the later part of that
data set.

Fig. 5. Num. link changes V.S. running time for closeness on WikiVote (left)

and Foursquare (right)

Fig. 6. Num. link changes V.S. running time for betweenness on WikiVote

(left) and Foursquare (right)

Fig. 7. Number of steps to converge for both metrics on WikiVote (left) and

foursquare (right).

5. Conclusions and Discussions

In this work, we proposed a unified framework to handle

closeness and betweenness on streaming network data. The

algorithms utilize existing calculation results and update the

centrality values incrementally. Experimental results show

several magnitudes of speed up compared to baseline

algorithms. The speed ups make the application of these two

metrics on large and frequently changed social network data

feasible. Various social media research that relies on these

metrics such as real time network stability analysis, real time

link prediction, network clustering algorithm and dynamic

information diffusion models will benefit from this research.
In addition, we showed that the standardized algorithm

framework could be divided into convergence step and
aggregation step. The convergence step for both betweenness
and closeness are similar except that betweenenss requires
more quantities to be calculated. In the situation where both
metrics are required, maintaining a convergence variable of
betweenness while using different aggregation functions will
significantly reduce the running time.

There are several ways to extend the work in that paper.
First, the algorithm proposed in that paper has the potential to
be paralleled or converted into a distributed algorithm. This
will enable the algorithm to handle larger data sets at a higher
link change rate. Another way to improve upon the current
work would be to decrease the additional complexity of
betweenness calculation and make it close to that of the
closeness calculation.

Acknowledgment

This work is part of the dynamics networks project at the
center for Computational Analysis of Social and
Organizational Systems (CASOS) of the School of Computer
Science (SCS) at Carnegie Mellon University (CMU). Support
was provided, in part, by AFOSR (FA9550-11-1-0179), DTRA
(HDTRA11010102) and ONR MURI (N000140811186). The
views and proposal contained in this document are those of the
author and should not be interpreted as representing the official
policies, either expressed or implied, of the Office of Naval
Research, the National Science Foundation, or the U.S.
government.

References

1. Chen, W., et al. Influence maximization in social networks when negative
opinions may emerge and propagate.

	

10	

100	

1000	

1
	

6
8
	

1
3
5
	

2
0
2
	

2
6
9
	

3
3
6
	

4
0
3
	

4
7
0
	

5
3
7
	

6
0
4
	

6
7
1
	

7
3
8
	

8
0
5
	

8
7
2
	

9
3
9
	

1
0
0
6
	

1
0
7
3
	

1
1
4
0
	

1
2
0
7
	

S
p
e
e
d
	U
p
s	

Time	Step	

Compared	to	Brandes	

	

1	

10	

100	

1000	

10000	

100000	

1	 101	 201	 301	 401	 501	

S
p
e
e
d
	U
p
	

Time	Step	

Compared	to	

	

0	

0.5	

1	

1.5	

2	

2.5	

3	

0	 20	 40	 60	 80	 100	 120	 140	

R
u
n
n
in
g
	T
im
e
(m
s)
	

Num.	Link	Changes	

	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

0	 200	 400	 600	 800	 1000	

R
u
n
n
in
g
	T
im
e
	(
m
s)
	

Num.	Link	Changes	

	

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

0.08	

0.09	

0	 20	 40	 60	 80	 100	 120	 140	

R
u
n
n
in
g
	T
im
e
(S
e
d
o
n
d
s)
	

Num.	Link	Changes	
	

0	

0.5	

1	

1.5	

2	

2.5	

3	

0	 200	 400	 600	 800	 1000	

R
u
n
n
in
g
	T
im
e
	(
S
e
co
n
d
s)
	

Num.	Link	Changes	

	

0	

1	

2	

3	

4	

5	

6	

1	 201	 401	 601	 801	 1001	 1201	N
u
m
.	S
te
p
s	
to
	R
e
a
ch
	C
o
n
v
e
rg
e
n
ce
	

Time	Step	

Closeness	

Betweenness	

	

1	

10	

100	

1	 201	 401	

N
u
m
.	S
te
p
s	
to
	R
e
a
ch
	C
o
n
v
e
rg
e
n
ce

	

Time	Step	

Closeness	

Betweenness	

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 9

2. Bird, C., et al. Structure and Dynamics of Research Collaboration in
Computer Science. in SDM. 2009. SIAM.

3. Srivastava, J., et al. Data mining based social network analysis from online
behavior. in Tutorial at the 8th SIAM International Conference on Data
Mining (SDM’08). 2008.

4. Chen, J., O.R. Zaïane, and R. Goebel. Detecting Communities in Social
Networks Using Max-Min Modularity. in SDM. 2009.

5. Freeman, L.C., Centrality in Social Networks Conceptual Clarification. Social
Networks, 1979. 1(3): p. 215-239.

6. Bonacich, P., Power and Centrality: A Family of Measures. American
Journal of Sociology, 1987. 92(5): p. 1170-1182.

7. Latora, V. and M. Marchiori, A measure of centrality based on the network
efficiency. 2004.

8. Jeong, H., et al., Lethality and centrality in protein networks. Nature, 2001.
411(6833): p. 41-42.

9. Eppstein, D. and J. Wang. Fast approximation of centrality. in Symposium
on Discrete Algorithms. 2001.

10.Voloshin, S.A. and A.M. Poskanzer, The physics of the centrality
dependence of elliptic flow. 1999.

11.Brandes, U., A Faster Algorithm for Betweenness Centrality. Journal of
Mathematical Sociology, 2001. 25: p. 163-177.

12.Dijkstra, E.W., A note on two problems in connexion with graphs.
Numerische Math, 1959: p. 269-271.

13.Johnson, D.B., Efficient algorithms for shortest paths in sparse networks.
Journal of the ACM 24, 1977. 1(1-13).

14.Brandes, U., A faster algorithm for betweenness centrality. 2001.
15.Brandes, U. and C. Pich, Centrality estimation in large networks.

International Journal of Bifurcation and Chaos, 2007. 17(07): p. 2303-2318.
16.Geisberger, R., P. Sanders, and D. Schultes. Better Approximation of

Betweenness Centrality. in ALENEX. 2008.
17.Lichtenwalter, R. and N.V. Chawla. DisNet: A framework for distributed

graph computation. in Advances in Social Networks Analysis and Mining
(ASONAM), 2011 International Conference on. 2011. IEEE.

18.Edmonds, N., T. Hoefler, and A. Lumsdaine. A space-efficient parallel
algorithm for computing betweenness centrality in distributed memory. in
High Performance Computing (HiPC), 2010 International Conference on.
2010. IEEE.

19.Madduri, K., et al. A faster parallel algorithm and efficient multithreaded
implementations for evaluating betweenness centrality on massive
datasets. in Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on. 2009. IEEE.

20.Baglioni, M., et al. Fast exact computation of betweenness centrality in
social networks. in Proceedings of the 2012 International Conference on
Advances in Social Networks Analysis and Mining (ASONAM 2012). 2012.
IEEE Computer Society.

21.Sarıyüce, A.E., et al., Incremental Algorithms for Closeness Centrality.
22.Sariyuce, A.E., et al. STREAMER: A distributed framework for incremental

closeness centrality computation. in Cluster Computing (CLUSTER), 2013
IEEE International Conference on. 2013. IEEE.

23.Green, O., R. McColl, and D.A. Bader. A fast algorithm for streaming
betweenness centrality. in Privacy, Security, Risk and Trust (PASSAT), 2012
International Conference on and 2012 International Confernece on Social
Computing (SocialCom). 2012. IEEE.

24.Lee, M.-J., et al. QUBE: a Quick algorithm for Updating BEtweenness
centrality. in Proceedings of the 21st international conference on World
Wide Web. 2012. ACM.

25.Kourtellis, N., G.D.F. Morales, and F. Bonchi, Scalable Online Betweenness
Centrality in Evolving Graphs. arXiv preprint arXiv:1401.6981, 2014.

26.Kas, M., et al. Incremental algorithm for updating betweenness centrality
in dynamically growing networks. in Proceedings of the 2013 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining. 2013. ACM.

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

©ASE 2014 ISBN: 978-1-62561-000-3 10

