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1 Introduction

Spam diffusion over social networks is a major problem. Spam
content varies between counterfeit watches, fake commercial
offers and erroneous political information. In some instances,
people think that the spam content is correct and disseminate
it to their contacts. This was, for example, observed in the
political discussion on Twitter about the recent Massachusetts
senate race (Metaxas and Mustafaraj, 2012; Ratkiewicz et al.,
2011). Spamming accounts disseminated false information

and legitimate users thought the information is correct and
disseminated it. Spamming accounts are either fake accounts
or hacked accounts. Fake accounts are accounts created
for the only purpose of sending spam or rumours. On the
other hand, hacked accounts belong to legitimate users,
but a hacker has gained access to these accounts. Hackers
gain access to accounts by guessing passwords, stealing
password databases, or through a computer malware. Account
hacking is a very prevalent cyber-attack. Multiple online
websites and videos explain how to compromise e-mail
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accounts (Go Hacking, 2008; Hacker The Dude, 2013).
Facebook reveals that it daily detects 600,000 attempts to
compromise accounts (ConsumerReports.org, 2011). Spam
sent from hacked accounts is more credible. For example,
when the hacked Twitter account of Fox news announced that
Obama was shot dead in July 2011, the information rapidly
spread out in the Internet (Guardian, 2011). Similarly, when
the hacked Twitter account of the presidential adviser for
disaster management posted a false tsunami warning in 2011,
the entire nation was scared (Yahoo! News, 2010).

Information diffusion in social networks is widely
studied (Zanette, 2002; Wu et al., 2003; Carley, 1991; Valente,
1996; Granovetter, 1987; Goldenberg, 2001; Domingos
and Richardson, 2001; Kempe et al., 2003; Morris,
2000). However, most prior work overlooks the case
where compromised accounts aggressively disseminate the
information. In this paper, we modify a traditional information
diffusion model (Carley, 1991) in order to capture the
behaviour of hacked accounts. More specifically, the modified
model has two types of agents: hacked agents that represent
hacked accounts and regular agents that represent people
that have no hacked account. Hacked agents continuously
transmit a rumour to all their contacts, whereas regular
agents transmit the rumour at a lower rate and may lose
interest in transmitting the rumour. Our results show that
rumour diffusion dynamics are very different in the model that
accounts for the behaviour of hacked accounts and the model
that does not. More specifically, when the behaviour of hacked
accounts is accounted for, spam diffusion is faster and reaches
more people. Moreover, parameters like the social network
size affect differently the diffusion in two models.

We discuss related work in Section 2. We provide
background on Construct (Carley, 1991), the agent-based
modelling tool we use and the Box–Behnken experiment
design in Section 3. We present our model in Section 4,
our virtual experiment in Section 5 and results in Section 6.
We discuss limitations and future work in Section 7 before
concluding.

2 Related work

Diffusion through ‘word-of-mouth’ has been widely studied
in the literature in different contexts using a variety of
approaches. However, most of this prior work does not
consider the case where some of the participants in the
diffusion are hacked accounts that behave maliciously. Much
previous work considers that information propagates similarly
to diseases (Zanette, 2002; Wu et al., 2003). Examples of
classical disease propagation models are SIR and SIRS, which
are based on the stages of a disease in a person. Initially,
people are susceptible (S) to the disease. When a person
gets the disease, they become infected and infectious (I).
When a person recovers, they become recovered (R). A
recovered person is immune against the disease. In the SIRS
model, a person can become susceptible (S) again. Using
epidemic models allows benefiting from tremendous work on
epidemic diffusion. However, information is intrinsically and
biologically different from diseases. Construct (Carley, 1991)

is a powerful turn-based and agent-based modelling tool for
information and belief diffusion. Agents have information,
beliefs and transactive memory. Each time period, agents are
paired and can exchange information, belief and transactive
memory. Construct is the tool we use in this paper and we cover
it in more detail in Section 3. Diffusion of innovation (Valente,
1996; Granovetter, 1987; Goldenberg, 2001) has been studied
through threshold models and cascade models. In the threshold
model (Granovetter, 1987), a node u is influenced by each of
its connections v by a weight wvu where

∑
vcontact of u wvu ≤

1. Node u also has a threshold θu drawn randomly in [0,1].
At a given time period, u adopts the innovation if and only if
θu ≤

∑
v adapter and contact of u wvu . The intuition behind using

innovation diffusion to model rumours is that a person may not
believe in the rumour the first time they hear it, but they become
more likely to believe in the rumour as they hear it from
different people. In cascade models (Goldenberg, 2001), when
a node adopts the innovation, each one of its contacts follows
with some probability. Domingos and Richardson (Domingos
and Richardson, 2001) suggested an optimisation problem
of identifying the individuals that we can try to convince
to adopt a new product or innovation in order to cause
a cascade of adoption. This optimisation algorithm is NP-
hard and Kempe et al. (2003) suggested an approximation
algorithm to find these most influential nodes. Game-theoretic
approaches (Morris, 2000) have also been used to study idea
propagation in a social network. The intuition is that the utility
that a person perceives from adopting an idea increases as
more of the person’s contacts adopt that idea. In the model,
a person adopts at a given time period with a probability that
increases with the number of contacts that have adopted it.

The literature contains empirical studies of spam; however,
these studies are typically only marginally interested in
spam diffusion in social networks. Kanich et al. (2008) find
that spam campaigns are very profitable. Levchenko et al.
(2011) characterise the infrastructure used to monetraize
spam (Levchenko et al., 2011). Grier (2010) characterise spam
on Twitter. For example, Grier et al. find that most spam on
Twitter originates from hacked accounts.

Modelling and simulations haves been used to study
the impact of cyber-attacks on various networks. Kundur
et al. (2011) suggest an impact analysis framework for
investigating the impact of attacks on the smart grid.
There is considerable work on worm diffusion in computer
networks (Zou et al., 2012; Wagner, 2003; Zou et al., 2003).
Tang and Li (2011) analyse virus spread in wireless sensor
networks using epidemic models. Karyotis (2006) introduce
a probabilistic modelling framework for the diffusion of
an energy-constrained mobile threat in a wireless ad hoc
network and evaluate the impact of various parameters using
simulations.

3 Background

3.1 Construct

Construct (Carley, 1991) is a powerful turn and agent-based
simulation tool for investigating information diffusion and
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social change in complex socio-cultural systems. In agent-
based simulation tools, the model is specified at the agent level,
but the main interest is on emergent behaviour. Construct is
turn-based in the sense that agents act in turn. Since Construct
is a relatively complex tool, we only describe features relevant
to this paper. In Construct, agents have information and are
connected through a social network. Agents choose agents
to interact with based on factors that include homophily and
information seeking. Through these interactions, information
is exchanged among agents. In homophily based interactions,
human agents interact with human agents that have similar
information. In information seeking interaction, human agents
interact with human agents from whom they can learn the
most information. Information is represented through an array,
where each value is between 0 and 1. A value equal to 1
indicates that the agent has that information; a value equal
to 0 indicates that the agent does not have this information
whereas an intermediate value indicates that the agent has this
information partially. For example, an information array (1, 1,
0.5, 0) indicates that the agent knows the first and second piece
of information, knows half of the third piece of information,
but does not know the fourth piece of information. At each
time period, agents are associated in pairs, and each pair of
agents interacts and exchanges information. More specifically,
each agent has an initiation count that indicates the number of
interactions the agent can initiate and a reception count that
specify the number of interactions an agent can receive at a
given time period. An agent can interact with himself in case
no other agent is available for interaction. This self-interaction
does not count towards the agent’s reception count. Consider
for example that agent A has initiation count equal to 3 and
a reception count equal to 1, whereas agents B, C and D all
have initiation and reception counts equal to 1. One possible
pairing is (A−B), (A− C), (B −D), (C −A), (A−A),
(D −D). A initiates the interaction with B, C and itself, B
initiates the interaction withD,C initiates the interaction with
A and D initiates the interaction with itself. Similarly, each
agent receives an interaction initiated from a different agent
once. During an interaction, each agent randomly chooses an
information value from its information array and sends that
value to its interaction partner. Upon receiving that value,
this interaction partner updates its information array. Each
agent places a transmission weight on each value in its
information array. The information weight is the weight that
the agent places on a given piece of information when choosing
information to transmit. Consider for example that agent A
places information weights (10, 1, 1, 0) on its information
array (1, 1, 1, 1), thenA has a probability 10/12 of transmitting
the first value, probability 1/12 of transmitting the second
value, probability 1/12 of transmitting the third value and
probability 0 of transmitting the fourth value. When A’s
interaction partner B receives an information value from A,
B updates its information array. Consider for example that
B has information array (0, 0, 0, 1) before interacting with
A and that A decides to send the first value to B, then B’s
information array becomes (1, 0, 0, 1). Construct also allows
specifying a learning rate and a forgetting rate per agent and
per information. A learning rate is the probability that an agent
that receives information learns that information. A forgetting

rate is a value between 0 and 1 that specifies the rate at which
an agent’s information value decays over time. Assume that an
agent has an information value v at a given time period and has
forgetting rate fr, then the next time period the information
value is v ∗ (1− fr). Consider for example that agent A has
information array (1, 1, 1, 1) at time period t, and forgetting
rate 0.1 for the first value and forgetting rate 0.6 for the
other values. A’s information array becomes (0.9, 0.4, 0.4,
0.4) at time t+ 1 and (0.81, 0.16, 0.16, 0.16) at time t+ 2.
Besides information, agents also have transactive memory. We
have not discussed transactive memory above in order to keep
the discussion simple. Transactive memory represents agents’
limited understanding of their environment. More specifically,
an agent’s transactive memory consists of what the agent
thinks each of its contacts knows. What an agent thinks its
contacts know does not necessarily match what these contacts
know. This mismatch captures the bounded rationality notion.
For example, agentA’s transactive memory about agentB can
be (1, 1, 0, 1), whereas agent B’s information array is (1, 0, 0,
1). That is agent A thinks that agent B knows the first, second
and fourth information, whereas in reality B only knows the
first and fourth information. During an interaction, agents
can also choose to transmit transactive memory. For example,
agent A can send to agent B part of its transactive memory
about agent C. Construct enables setting the probability that
an agent chooses to transmit information and the probability
that an agent chooses to transmit transactive memory.

3.2 Box–Behnken experiment design

Box–Behnken design (Box and Behnken, 1960) is one type
of systematic experiment designs. A systematic experiment
design helps choose the parameter combinations for which
to run experiments in order to generate the response surface.
Such design avoids the combinatorial complexity of running
all possible combinations of the independent variable values.
The Box–Behnken design is suited for quantitative variables
and requires three values for each independent variable. This
design suggests using parameter combinations that are the
midpoints of the edges of the design space and the centre point.
This design should be sufficient to fit a quadratic model.

4 Model

In this section, we describe the hacked account and human
model and the human-only model. Hacked accounts initiate
the rumour in the hacked account and human model, while
humans initiate the rumour in the human-only model. The
hacked account and human model has two types of agents:
hacked agents correspond to people who have a hacked
e-mail account and regular agents correspond to people who
have no hacked e-mail account. Hacked agents initiate the
rumour diffusion and are more aggressive about transmitting
the rumour than regular agents. The human-only model also
has two types of agents: initiator agents and regular agents.
Initiator agents correspond to the people that initiate the
rumour and regular agents correspond to the other people in the
social network. Regular agents in the human-only model have
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the same behaviour as regular agents in the hacked account and
human model. Initiator agents initiate the rumour propagation,
but transmit the rumour at the same rate as regular agents.

4.1 Hacked account and human model

The model contains two types of agents: hacked agents
that represent the people with hacked e-mail accounts and
regular agents that represent people with no hacked e-mail
account. Similarly, there are two types of information: regular
information and the rumour. We use rumour as a generic term
that can also designate spam or misinformation. We assume the
absence of information conflicting to the rumour in the social
network. This is a simplifying assumption that we intend to
address in future work. The main difference between hacked
agents and regular agents is that

• hacked agents initially know the rumour while the
regular agents do not

• hacked agents are aggressive about transmitting the
rumour.

In order to capture the fact that hacked agents send a very
large number of e-mails, hacked agents have a higher initiation
count than regular agents. Moreover, hacked agents place a
transmission weight 1 on the rumour and transmission weight
0 on other information. This causes all e-mails originating
from hacked e-mail accounts to contain the rumour. Regular
agents, on the other hand, place equal transmission weight on
the rumour and the regular information. Regular agents place
a learning rate less or equal to 1, and a forgetting rate higher
or equal to 0 on the rumour. This reflects that regular agents
do not always believe the rumour and that regular agents lose
interest in the rumour over time. On the other hand, hacked
agents place a zero forgetting rate on the rumour. This causes
the hacked agents to never lose interest in the rumour. As the
hacked agents initially have the rumour and never lose interest
in the rumour, the learning rate that hacked agents place on
the rumour is irrelevant.

4.2 Human-only model

The human-only model has two types of agents: initiator
agents and regular agents, and two types of information: the
rumour and regular information. Regular agents in the human-
only model have the exact same behaviour as regular agents
in the hacked account and human model. Initiator agents
have the same initiation count as regular agents. As a result,
initiator agents transmit the same amount of messages as
regular agents. Initiator agents have initially access to both
the rumour and regular information. Initiator agents place a
transmission weight 1 on the rumour and transmission weight
0 on the regular information. This causes the initiator agents to
initiate the rumour transmission immediately at the start of the
simulation. Finally, initiator agents place a non-zero forgetting
rate on both regular information and the rumour.

5 Virtual experiment

In this section, we present our virtual experiment. Table 1
shows the experiment variables. The independent variables
consist of the network size, network topology, network density,
number of hacked (or initiator) agents, strategy for choosing
hacked agents, learning rate and forgetting rate. We use a
small, a medium and a large value for each of the quantitative
variables, as required by the Box–Behnken experiment design.
Such requirement does not apply to the categorical variables,
namely the network topology and the strategy for choosing the
hacked agents. The dependent variables consist of the number
of agents that have the rumour over time and the maximum
number of agents that have the rumour.

We first describe the independent variables. We use
network sizes 100, 600 and 1100, which correspond to the
size of a small, a medium and a large corporation respectively.
Using million-node networks is computationally prohibitive
within a complex simulation tool such as Construct. As future
work, it would be interesting to investigate using such large
networks within simpler simulation tools. We experiment
with an Erdos-Renyi topology (Erdos and Renyi, 1960),
a small-world topology (Watts and Strogatz, 1998) and a
scale free topology (Barabasi and Albert, 1999). The Erdos-
Renyi topology is a random topology almost never found
in real social networks. We use the Erdos-Renyi topology
as a baseline for comparison. The small-world topology is
often used to model human social networks and the scale free
topology is found in many online social networks (Mislove,
2007). In order to obtain consistent results across these
topologies, networks are generated to have the same density.
The density of a network is the ratio of links present out of the
number of possible links in the network. We use values 2, 6
and 10%. The number of hacked agents represents the number
of hacked e-mail accounts used to disseminate the rumour.
We experiment with values 1, 3 and 5, which correspond to
1–5% in a network of 100 nodes, and to 0.09–0.45% in a
network of 1100 nodes. These values are consistent with the
size of high-profile password database breaches and account
hacking. For example, 420,000 out of 28 million (≈1%)
Formspring passwords were leaked in 2012 (CNET, 2012)
and 6.5 million out of about 150 million (≈5%) LinkedIn
passwords were leaked in 2010 (ZDNet, 2012). In early 2013,
250,000 Twitter accounts were hacked (abcNews, 2013). Next,
we experiment with two strategies for choosing accounts
to hack. In the random strategy, the hacked accounts are
chosen randomly. This is, for example, the case in a password
database breach or in a large scale non targeted phishing
attack. The highest degree strategy corresponds to the case
where the hacker targets the highest degree accounts using
social-engineering and various attacks until the hacker is
able to compromise these accounts. Hackers are interested in
hacking and using high-degree accounts such as the fox news
Twitter account (Guardian, 2011) because rumours from these
accounts reach more people and have higher credibility. The
learning rate is the probability that an agent adopts the rumour
after hearing it from one of its contacts. In the experiment,
we use values 20, 60 and 100%. Rumour theory identifies
multiple factors that affect the likelihood that people spread
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Table 1 Virtual experiment variables

Independent variables Number of test cases Values used
Network size 3 100, 600, 1100
Network topology 3 Small-world, scale free, Erdos-Renyi
Network density 3 2%, 6%, 10%
Number of hacked (or initiator) agents 3 1,3,5
Strategy for choosing hacked agents 2 Random, highest degree
Learning rate 3 20%, 60%, 100%
Forgetting rate 3 30%, 45%, 60%
Control variables
Information array size 1 10
Probability of a regular agent to transmit information 1 0.8
Probability of a regular agent to transmit transactive memory 1 0.2
Homophily-based interaction 1 0.8
Expertise-seeking interaction 1 0.2
Time count 1 150
Dependent variables Variable range
Ratio of agents that have the rumour over time – [0,1] each time period
Maximum ratio of agents that have the rumour – [0,1]

rumours. For example, rumours arise in ambiguous situations
where people have a psychological need to understand (Fiske,
2004), but that reliable information is unavailable (Shibutani,
1966). Rosnow (1986) sent a questionnaire to faculty members
of an American university asking them to list rumours
they had heard recently and whether they had transmitted
these rumours. The study occurred during major negotiations
between the administration of the university and the faculty
union. Rosnow et al. found that more credible rumours were
more likely to be transmitted. They also found that 25.0% of
low-credibility positive rumours and 31.4% of low-credibility
negative rumours were transmitted, and that 71.4% of high-
credibility positive rumours and 86.1% of high-credibility
negative rumours were transmitted. Finally, the forgetting rate
corresponds to the rate at which regular agents lose interest in
the rumour and we use values 30%, 45% and 60%.

We now describe our control variables. The total number
of information bits is 10 where 9 bits represent regular
information and 1 bit represents the rumour. Initially, a given
information value corresponding to regular information is set
to 1 with probability 0.5 for all agents. On the other hand,
the information value corresponding to the rumour is set to 1
for hacked agents and to 0 for regular agents. Next, hacked
agents place a transmission weight of 1 on the rumour and
a transmission weight of 0 on regular information, whereas
regular agents place a transmission weight of 1 on each of
their information bits. Furthermore, hacked agents have an
initiation count equal to the network size, while regular agents
have an initiation count of 1. The higher initiation count of
hacked agents captures the large amount of e-mail transmitted
by hacked e-mail accounts. Next, agents choose interaction
partners based on knowledge similarity 80% of the time and
in order to seek new knowledge 20% of the time. During
interactions, agents exchange information 80% of the time
and transactive memory 20% of the time. Finally, we run the
experiment for 150 time periods. We determine the length
of the experiment by running a few preliminary simulations
and choosing the time length that enables observing the main
behaviour.

6 Results

In this section, we discuss the results of our virtual experiment.
More specifically, we compare the rumour diffusion dynamics
in the hacked account and human model, and in the human-
only model. Our results indicate that the rumour always
reaches a higher number of agents in the hacked account
and human model than in the human-only model. More
surprisingly, the effect of some variables differs across the two
models. For example, the network size has almost no effect
in the hacked account and human model, but has considerable
effect in the human-only model. Figure 1 shows the maximum
ratio of agents that have the rumour in the two models for
all parameter combinations of the Box–Behnken design. As
can be seen, the maximum ratio of agents that have the
rumour in the hacked account and human model is always
higher than in the human-only model. This result is expected
since hacked agents in the hacked account and human model
aggressively disseminate the rumour. More specifically, in the
hacked account and human model, hacked agents interact with
up to all their contacts each time period and always choose
to transmit the rumour. On the other hand, in the human-only
model, at any given time period, each agent interacts with at
most another agent. During these interactions, agents may or
may not choose to transmit the rumour.

A surprising observation from Figure 1 is that the
maximum ratio of agents that have the rumour behaves
differently across different parameter combinations in the two
models. For example, this maximum ratio oscillates in the
human-only model, but remains almost constant in the hacked
account and human model for parameter combinations 9 to
15. We see the same phenomenon for parameter combinations
21 to 24 and 27 to 36.

Table 2 presents the correlation between the maximum
ratio of agents that have the rumour and the independent
variables that are part of the Box–Behnken design. It can be
seen that the learning rate has a strong effect on the results
in the two models. The learning rate reflects the rumour
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credibility and agents’ willingness to transmit the rumour.
The rumour reaches a large fraction of the network when the
learning rate is large, but remains localised when the learning
rate is small. The network size and the forgetting rate impact
the maximum ratio of agents that have the rumour in the
human-only model, but not in the hacked account and human
model. In order to gain more insight into these results, we
first examine Figure 2 that shows the ratio of agents that have
the rumour for all the parameter combinations of the Box–
Behnken design. Subsequently, we examine Figures 3 and 4
that compare the effect of the network size and the forgetting
rate on the diffusion in the two models.

Table 2 Correlation between the maximum ratio of agents that
have the rumour and the quantitative independent
variables

Hacked account Human-only
Independent variable and human model model

Learning rate 0.995*** 0.993***
Network size –0.008 –0.185***
Forgetting rate 0.002 –0.117***
Number of hacked 0.006 0.031
(initiator) agents
Network density –0.001 0.004

***p < 0.001.

Figure 1 Comparison between the diffusion in the hacked account
and human model, and the human-only model across all
parameter combinations (see online version for colours)

From Figure 2, it can be seen that in the hacked account
and human model, the ratio of agents that have the rumour
increases very fast and reaches a maximum in a few steps.
The ratio then remains stable at a maximum. On the other
hand, in the human-only model, that ratio slowly increases
and fluctuates before stabilising. In the hacked account and
human model, the ratio of agents that have the rumour initially
increases very fast because hacked agents send the rumour to
a large number of agents. Later, the ratio of agents that have
the rumour stabilises because, at a given time period, some
agents loose interest in the rumour and the same number of

other agents lose interest in it. In the human-only model, the
ratio of agents that have the rumour fluctuates initially because
the number of agents that learn the rumour and the number
of agents that loose interest in the rumour evolve at different
rates. More specifically, change in the number of agents that
learn the rumour precedes in time change in the number of
agents that loose interest in the rumour. As the two numbers
start evolving at the same rate, the ratio of agents that have the
rumour stabilises.

Figure 2 Behaviours of the ratio of agents that have the rumour
over time for the different Box–Behnken parameter
combinations

We now examine Figure 3 in order to gain more insight into
the effect of network size. We see that the rumour reaches a
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higher ratio of agents for the small network size in the human-
only model, but reaches the same ratio of agents in the hacked
account and human model. As that ratio is equal to the number
of agents that have the rumour divided by the network size, it is
helpful to examine the number of agents that have the rumour
over time. From Figure 3, we see that in the human-only model,
the rumour initially reaches the same number of agents for
the two network sizes. The number of agents that have the
rumour is the same for the two network sizes because each
initiator agent interacts with at most one other agent at any time
period. Given that the ratio of agents is equal to the number
of agents divided by the network size, the ratio of agents is
larger for the smaller network size. From the figure, we also
see that the number of agents that have the rumour stabilises
later for the larger network. This is simply due to the fact that
there are more agents in the larger network, and therefore the
rumour can continue spreading. In the hacked account and
human model, the rumour reaches the same ratio of agents. In
this model, hacked accounts transmit the rumour to all their
contacts. As the number of these contacts is proportional to
the network size, the ratio of agents that have the rumour is
the same for the two network sizes.

We now explain the difference in the effect of the forgetting
rate in the two models. Figure 4 shows the ratio of the agents
that have the rumour for forgetting rates 30% and 60%. In
the human-only model, that ratio is smaller for the larger
forgetting rate. When the forgetting rate is large, agents loose
interest in the rumour faster and therefore transmit it to fewer
agents. As a consequence, the rumour reaches less agents
overall. In the hacked account and human model, the ratio of
agents that have the rumour is unaffected by the forgetting rate.
The rumour propagates very fast and reaches the maximum
during the first few time steps before the forgetting rate has an
effect.

Figure 5 compares the effect of the random and
highest degree strategies, and the effect of different network
topologies. From the figure, we see that the strategy and
the network topology do not significantly affect the rumour
diffusion. These surprising results may be due to the short
distance between nodes in the three types of networks.

6.1 Spam mitigation techniques

Multiple social networks and e-mail service providers
implement spam mitigation techniques. We discuss how
two major techniques, namely content filtering and account
suspension affect the results of this paper.

The content filtering technique consists of examining
e-mail content and flagging the e-mail as spam when the
content is suspicious. The e-mail is then typically placed in a
different folder and is less likely to be read by the recipient.
Content filtering is used by most e-mail service providers, but
not by Twitter (Grier, 2010). Capturing content filtering in our
simulation can be accomplished by reducing the learning rate.
Perfect content filtering is equivalent to a learning rate equal
to 0. In this case, rumour diffusion does not occur in neither

the hacked account and human model nor the human only
model. Imperfect content filtering is equivalent to a smaller
learning rate. In this case, the rumour remains localised and
only reaches a small portion of the network. However, the
rumour diffusion dynamics are still different across the two
models as can be seen from Figure 2.

Figure 3 Comparison of the effect of the network size on the
diffusion in the hacked account and human model, and
the human model: (a) ratio of agents and (b) number of
agents (see online version for colours)

Account suspension consists of blocking hacked accounts that
send large amounts of e-mails. Account suspension does not
affect human agents that spread the rumour as those agents
send e-mails at a regular rate. In the hacked account and human
model, the ratio of agents that have the rumour reaches the
maximum within a few time periods. Thus, account suspension
that is not extremely fast would not affect the maximum
number of agents that receive the rumour. In case hacked
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accounts are suspended very early, the rumour diffusion will
be slower, but will not stop as human agents will continue to
spread the rumour.

Figure 4 Comparison of the effect of the forgetting rate on the
diffusion in the two models. Small world network,
random strategy, learning rate = 60%, number of hacked
(initiator) agents, density = 6% (see online version for
colours)

Figure 5 Effect of the network topology and the strategy for
choosing hacked agents (see online version for colours)

7 Limitations and future work

In this paper, we focus on the case where hacked accounts
initiate spam diffusion, and overlook the case where fake
accounts initiate such diffusion. Spam transmitted by hacked
accounts enjoys greater credibility than spam transmitted by
fake accounts. Grier (2010) found that spammers mostly use

hacked accounts in Twitter. As future work, it would be
interesting to incorporate fake accounts in the simulation.

The model in this paper assumes that the more e-mails a
hacked account sends to a person, the more likely is the person
to think that the rumour is correct. This may be the case if
the e-mails contain different ‘facts’ related to the rumour, but
may not be necessarily the case if the content of the e-mails is
exactly the same.

8 Conclusion

Spam diffusion in social networks is a major problem. In
this paper, we investigate spam diffusion dynamics in social
networks, where spam is initiated by hacked accounts. We
build our spam diffusion model by modifying a standard
diffusion model in order to capture the behaviour of hacked
e-mail accounts. Our results show that when the behaviour of
hacked accounts is captured, spam diffuses faster and reaches
more people, and parameters like the network size and spam
credibility affect the diffusion differently.
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Appendix

Table 3 contains parameters used in our virtual experiment.

Table 3 Experiment design based on the Box–Behnken experiment Design

Number of compromised agents Network density Network size Learning rate Forgetting rate Number of replications

1 1 2 600 60 45 50
2 1 10 600 60 45 50
3 5 2 600 60 45 50
4 5 10 600 60 45 50
5 3 6 100 20 45 50
6 3 6 100 100 45 50
7 3 6 1100 20 45 50
8 3 6 1100 100 45 50
9 3 2 600 20 30 50
10 3 2 600 100 60 50
11 3 10 600 60 30 50
12 3 10 600 60 60 50
13 1 6 100 60 45 50
14 1 6 1100 60 45 50
15 5 6 100 60 45 50
16 5 6 1100 60 45 50
17 3 6 600 20 30 50
18 3 6 600 20 60 50
19 3 6 600 100 30 50
20 3 6 600 100 60 50
21 3 2 100 60 45 50
22 3 2 1100 60 45 50
23 3 10 100 60 45 50
24 3 10 1100 60 45 50
25 1 6 600 20 45 50
26 1 6 600 100 45 50
27 5 6 600 20 45 50
28 5 6 600 100 45 50
29 3 6 100 60 30 50
30 3 6 100 60 60 50
31 3 6 1100 60 30 50
32 3 6 1100 60 60 50
33 1 6 600 60 30 50
34 1 6 600 60 60 50
35 5 6 600 60 30 50
36 5 6 600 60 60 50
37 3 2 600 20 45 50
38 3 2 600 100 45 50
39 3 10 600 20 45 50
40 3 10 600 100 45 50
41 3 6 600 60 45 300


