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ABSTRACT 
�

 

Computational methods combined with traditional empirical techniques offer a 

powerful new approach to the study of human performance.  Scholars engaged in the 

study of work group and organizational behavior are increasingly calling for the use of 

integrated methods in conducting research, including the wider adoption of 

computational models for generating and testing new theory.   

In this collection of three studies, I first review the state of modern computational 

modeling and find a steady increase in the incorporation of dynamic, adaptive, and 

realistic behaviors of agents in social network settings.  However, my analysis suggests 

areas that can be addressed in the next generation of organizational simulation systems.  I 

compare 28 models according to more than 200 evaluation criteria, ranging from simple 

representations of agent demographic and performance characteristics, to more richly 

defined instantiations of behavioral attributes, interaction with non-agent entities, model 

flexibility, communication channels, simulation types, knowledge, transactive memory, 

task complexity, and resource networks.  I assess trends across these criteria, discuss 

practical applications, and propose an agenda for future research and development. 

In the second study, using a modified version of one of the models reviewed in 

the first study, I examine the link between individual performance and group outcomes.  

Organizational behavior theories generally agree that human capital is critical to teams 

and organizations, but little guidance exists on the extent to which such theories 

accurately explain the relative contributions of individual actors to overall performance.  

Using newly created network-based measures of individual knowledge and task 
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exclusivity along with simulations based on empirical data obtained from a software 

development firm, I investigate the relative effectiveness of social network theory and 

resource dependency theory as predictors of individuals’ contributions to group 

performance.  Results indicate that individual impacts on group performance are even 

more closely associated with knowledge and task dimensions than with social network 

structure.  Furthermore, given that knowledge may be assessed a priori, I explore factors 

that may provide useful guidance for structuring teams and predicting team performance. 

In the third study, I integrate psychological, social network, and organizational 

learning theories to investigate the extent to which the amount and structure of a work 

group’s transactive memory explains the relationship between the group’s collective 

experience and its performance.  I use network surveys and archival data obtained from 

1,456 individuals and 87 managers on 118 diverse work teams in four Fortune 500 

companies as the basis for analyzing relationships between transactive memory, group 

experience, and group performance.  I find that group transactive memory partially 

mediates the link between group experience and performance.  In addition, the degree of 

"small-worldness" exhibited in the structure of group transactive memory moderates the 

memory’s mediating effect on group learning.  I discuss the study’s findings, practical 

implications, and limitations as well as how the findings may extend to inter-group, 

organization, inter-organizational, and even societal levels.   

Finally, I provide a path for computational extensions of these studies in future 

research efforts.  In particular, I propose modifications of the multi-agent model used in 

the second study (“Construct”) that will enable dynamic simulation of agent-level 

learning that builds to group and organizational level learning.  I also suggest a step-by-

step methodology for calibrating, validating, and conducting a multi-agent simulation-

based study of organizational learning.  
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PREFACE 
 

  

In attempting to summarize a significant concentration of one’s relatively short 

life in what one hopes will be even modestly useful research, there is a great temptation 

to wax philosophic in order to sustain the appearance of importance or comedic perhaps 

to mask the fear of insignificance.  Alas, five years of intense doctoral study has wearied 

me of such vanity.  Little more can be said than that I arrived thinking “look how far I 

have swum to get here” and that I depart thinking “but look how vast is the ocean in 

which I swim.” 

Even so, journeys are rarely truly solitary, particularly academic ones.  And I 

embarked on mine with the support of parents whose love is and always has been action 

more than words, and with the constant encouragement of my wife, Libby, without whom 

whatever contribution I might claim would have been lost long ago to the exigencies and 

disappointments of academia.  Perhaps the greatest lesson to be learned is not a scientific 

one at all, but rather one about life and love.  It is the love within our dearest relationships 

that endures, transcending any truth we think we may have glimpsed along our journey’s 

way. 

Beyond the involvement of my family and my wife, the journey would not 

have been possible without the support and insight of many friends and colleagues, 

some of whom I will doubtless offend by forgetting to include them here.  I apologize 

in advance if you are in that number.  I wish to express gratitude to my advisor, 

Kathleen Carley, and to members of my dissertation committee, David Krackhardt 

and Jim Herbsleb, for their time and insight.  In addition, I deeply appreciate Lester 
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Lave for setting an example for all of academia (and beyond) to follow.  Many thanks 

also to Linda Argote, Tridas Mukhopadhyay, and Denise Rousseau for their 

encouragement and productive conversations. Of course, there are many others who 

have provided a hand along the way, but I extend special thanks to Jeff Reminga for 

his help in coding some of the complex computational models that have been integral 

to the research I describe in this dissertation.  I may or may not be good at algorithms, 

but I am a regrettably slow and inefficient programmer. 

Over the past five years, funding for this work has been generously provided 

by the Alfred P. Sloan Foundation’s Industry Studies Program, the National Science 

Foundation (IGERT grant no. 9972762), Carnegie Mellon University’s (CMU) 

School of Computer Science, CMU’s Center for Computational Analysis of Social 

and Organizational Systems, the William Larimer Mellon Foundation, and the CMU 

Tepper School of Business. 
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��
INTRODUCTION 

�

 

Groups remain the dominant structure in organizations, and their performance 

continues to be a subject of intense study by sociologists, psychologists, and behaviorists.  

Because of its practical orientation, research on group performance has been traditionally 

focused on field studies and both experimental and quasi-experimental methods.  

However, because group performance is dynamic and multi-dimensional, such 

approaches to research can oftentimes be complemented by computational and simulation 

techniques.  In this dissertation, I explore the state of computational models and then 

attempt to apply simulation and other computational techniques alongside empirical 

techniques to demonstrate the power of using such methods in combination. 

In classic Carnegie Mellon University fashion, this dissertation is a collection of 

three papers.  Each study has been published or submitted for publication in substantially 

the same form as presented here.  Chapter 2, “Can Tools Help Unify Organization 

Theory,” appeared in volume 13, issue 1 (March, 2007) of Computational and 

Mathematical Organization Theory.  In this chapter, I survey 28 computational models 

created and used in organizational behavior research over the fifteen year period from 

1989 to 2003.  I link the characteristics of the simulation models to a work team 

effectiveness framework built on the classic contributions of scholars such Richard 

Hackman, Jim McGrath, Paul Goodman, and Susan Cohen and attempt to identify 

theoretical gaps in the present models and possible paths to their improved reconciliation 

with real group behavior.  As empirical and laboratory work continues to add new 
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understanding of group performance mechanisms, computational techniques can likewise 

instantiate this new knowledge in simulations with unprecedented richness.  I explore 

why and how the complexities and implications of this richness can be investigated in 

complementary ways using improved computational models. 

Chapter 3, “Who You Know vs. What You Know,” originally appeared in volume 

30, issue 1 (January, 2006) of the Journal of Mathematical Sociology.  In this chapter, I 

attempt to put into practice the suggestion of Chapter 2 that empirical methods be 

combined with simulation to generate and explore the boundaries of theories that are 

difficult or practically impossible to test in field or laboratory settings.  Using both 

qualitative and quantitative data on a software engineering group, I try to examine just 

how useful the traditional notions of social network centrality are in helping identify, 

understand, and even predict individual performance in a group.  I compare those socially 

oriented network attributes – “who you know” – with knowledge and task oriented 

attributes – or “what you know.”  Conventional wisdom says that one’s contribution to 

performance is all about “who you know, not what you know.”  However, my study 

indicates that knowledge dimensions are at least as important as social dimensions, if not 

more so, in determining individuals’ contributions to group performance.  Since 

knowledge and task capabilities may be more evident to managers when initially 

structuring teams, using knowledge-based approaches may help improve team 

performance.  

While Chapter 3 focuses on one short-term project team, Chapter 4, “Opening the 

‘Black Box’ of Group Learning” (currently under review for publication), examines 

effects of knowledge network attributes on performance of 118 ongoing work groups in 

multiple companies.  Similar to Chapter 3, the analysis combines empirical data with 

network computational measures.  However, rather than using simulation, Chapter 4 

focuses on using computation in ways that extend the ability and essentially become a 

part of conventional empirical methods.  One limitation to the scientific acceptance of 

computational methods has been its general restriction to generation of theory rather than 

testing it.  By infusing computational techniques into empirical methods, theory can be 

tested and not merely generated. 
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Chapter 4 is somewhat ambitious in attempting to introduce, develop, and test a 

new theory that seeks to provide one of the first glimpses inside the ‘black box’ of 

organizational learning.  Organizational learning is an exciting and useful way of 

thinking about organizations because the learning perspective presents a motion picture 

of performance rather than the more typical collection of snapshots provided in field and 

lab studies.  “Learning” is simply change that occurs over time in response to collective 

experience.  As such, it captures the essence of organizational adaptation.  The same kind 

of learning behavior has also been found to occur at the group level, but despite 

impressive evidence of learning across many different types of organizations and groups, 

the “how” and “why” are still fairly open questions.   

One reason that the ‘black box’ has been so difficult to open is that it is 

notoriously hard to collect the large amounts of data needed in the requisite longitudinal 

analyses.  To make matters even more difficult, large datasets with minimal missing data 

are required for conducting any type of social network research. Fortunately, 

computational methods can help in two ways.  First, as in Chapter 4, computational 

techniques can be blended with conventional statistical methods to ground the analysis in 

current and proposed theory by testing empirical associations between collective 

experience, network characteristics, and group performance.  Then, as outlined in 

Chapter 5, “Future Research,” empirical analyses can be further extended by using 

simulation to investigate dynamic interactions of multi-dimensional variables such as 

experience, network attributes, and performance over time. 

In Chapter 4, I theorize that a group’s ability to learn – that is, its ability to change 

its performance in response to its collective experience – depends in part on the level of 

“transactive memory” in the group.  Transactive memory is the relative level of “who 

knows who knows what” in a group and thus combines elements of group 

communication and perception of expertise among group members.  It is probably the 

nearest thing to a “group brain” or “group memory” that has been identified in the 

literature on organizational psychology.  There are two parts to my formal theory.  The 

first posits that the amount of transactive memory partially mediates (or explains) the 

“learning process” – that is, the link between collective group experience and group 
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performance.  This element of the theory generalizes ideas first proposed by Liang, 

Moreland, and Argote (1995) that training of people in groups is more effective than 

training them individually.  Their work found that the effectiveness of group training was 

greater because more transactive memory developed during the training period and 

carried over to the group task.  My theory generalizes this finding by hypothesizing that it 

is not merely training but all collective group experience that results in greater group 

transactive memory and that these increases in transactive memory partially explain the 

very existence of resultant adaptations of group performance.   

The second part of the theory is that the network structure of group transactive 

memory regulates the extent to which the amount of memory mediates the learning 

process (the link between collective experience and current performance).  In particular, I 

propose that the strength of the mediating relationship depends on the extent to which 

group transactive memory is structured as a “small-world” network.  The idea behind 

small-world networks was first hypothesized by social psychologist Stanley Milgram in 

his 1967 study that suggested that any two random people in the U.S. were connected on 

average by a chain of only six acquaintances (later popularized as “six degrees of 

separation”).  Subsequent research has found that naturally evolving networks such as 

those in the human brain exhibit such properties as well.  

Small-world networks are remarkably efficient.  They are characterized by many 

small sub-networks in which elements are densely connected.  Those sub-networks in 

turn are connected to other sub-networks through fewer or weaker connections.  The 

dense connections within those small sub-networks form clusters of elements that 

facilitate promotion or exploitation of particular group attributes (such as friendship, 

gender, affiliation, etc.) or capabilities (such as knowledge or task proficiency).  At the 

same time, the connections between the sub-networks (or clusters), although fewer, 

enable efficient reachability between sub-networks and help enhance the performance 

and extend the capability of the entire network.  Thus, even as networks explode in size – 

as in the case of even a small group of people and their perceptions of other group 

members’ differing degrees of knowledge needed for their group task, the efficiency of 

the network can remain very high.  Small-world transactive memory networks apparently 



 11    

enable groups to maximize effectiveness of organizational memory even as the group 

grows and accumulates richer bodies of knowledge without the burdensome need for 

every member to be connected to every other member.   

The empirical analysis of “moderated mediation” in Chapter 4 supports both 

hypotheses suggested by the two-part theory.  The amount of group transactive memory 

mediates the link between collective group experience and current group performance, 

suggesting that transactive memory is a critical mechanism of group learning.  Moreover, 

when the structure of group transactive memory more closely resembles that of a small-

world network, transactive memory’s mediation of the group learning process is stronger.  

The chapter concludes with an extensive discussion of implications of the findings for 

practical management concerns such as turnover and extensions of the theory to 

organizational, inter-organizational, and even societal levels. 

Finally, in Chapter 5, I present a specific plan of future research designed to 

extend the results of Chapter 4 using simulation techniques introduced in Chapters 2 and 

3.  I present a plan for calibrating and validating the requisite simulations, creating 

simulation-induced longitudinal data, and then using the data in a log-log-regression 

model of group learning curves.  Thus, future scholars will hopefully be able use the 

proposed approach to build on the implications for theoretical and computational research 

offered throughout this work. 
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�

��
CAN TOOLS HELP UNIFY ORGANIZATION THEORY? 

PERSPECTIVES ON THE STATE OF COMPUTATIONAL MODELING 
�

�

 

2.1    Introduction 

Work is central to every aspect of modern life.  What we “do for a living” 

influences not only government policy, community norms, and economic status but also 

our individual self-esteem, social activities, and even seemingly unrelated decisions such 

as when to marry and if and when to have children (Hulin, 2002).  The usual environment 

for work is some form of organization, ranging from companies, where people are linked 

as employees engaged in activities supporting profit or welfare maximizing motives, to 

an array of other organizational forms, such as families, communities, religious groups, 

and even nation states, where connections between people are based not only on 

sustainability or economics but also on genetics, social identity, or concern for promoting 

the welfare of its members.  However, despite the pervasiveness and critical importance 

of organizations to society and individuals, organization science remains a relatively low-

consensus field with multifarious and yet less unified paradigms than other scientific 

disciplines (Hartman, 1988; Aldrich, 1992; Mone and McKinley, 1993; Donaldson, 1995; 

Pfeffer, 1993, 1995; Van Maanen, 1995a, 1995b; McKelvey, 1997).  Economists have a 

coherent body of theory underlying their understanding of the market transactions or 

contractual mechanisms that motivate organizations, but management scientists still 

struggle to provide an integrated theoretical rationale for the complex behavioral, 

cognitive, and attitudinal aspects of those same organizations (Simon, 1991).  To 
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understand why this is so, we must look to the core of the types of organizations 

considered in this study – human beings.     

Notwithstanding the existence of automata, avatars, and agents, organizations are 

principally comprised of human agents who contract tacitly or explicitly for an exchange 

of some degree of authority or autonomy for compensation, social identity, preservation, 

or other objectives of enlightened self-interest.  Comprised thusly of human agents, 

organizations, from the simplest of partnerships to the most intricate of international 

corporations, reflect not only the richness, complexity, variation, chaos, and beauty of 

human behavior but also its seeming defiance of theoretical conformity.  We should not 

be astonished then why predicting or even understanding organizational behavior is 

indeed daunting.  Nor should we be astonished by the multitude of partial theories of 

group and organizational behavior, which, although insightful and stimulating, fall well 

short of theoretical unity or even harmony in many instances (Miner, 2002).   

It is precisely this state of affairs that motivates my review of computational 

organizational models.  In the domain of computational modeling, ideally any number of 

theories can be fused and tested using the touchstone of simulation modeling, enabling 

researchers to represent the reality of human complexities to the extent necessary to 

establish robustness.  Ultimately, as empirical and simulation findings continue to feed a 

growing foundation of complementary constructs, such computational modeling 

capability offers the promise of linking desultory theories of behavior of individuals, 

groups, organizations, and groups of organizations into a more unified body of theory of 

organizational behavior (Masuch and LaPotin, 1989).  In this review, I examine twenty-

eight organizational simulation models developed over the past fifteen years.  I first 

introduce a framework for organizational simulation modeling that will guide the analysis 

of the reviewed models.  Then, based on the resultant nomological construct, I discuss the 

models and their contributions to understanding organizations and their effectiveness.  

Finally, I suggest a research agenda for extending the application of computational 

modeling toward the goal of integrating and ultimately unifying theories of 

organizational behavior. 
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2.2    Model Selection Process 

Simulation models included in this review span the period from 1989 to 2003.  To 

select models, I first searched general, business, psychology, interdisciplinary, social 

science, and dissertation abstract databases using the primary terms simulation, model, 

and expert system, in conjunction with numerous antecedent and secondary terms such as 

computer, computer-based, computational, system dynamics, agent-based, and multi-

agent.  This initial sweep yielded several hundred abstracts, from which I ultimately 

chose models introduced in twenty-nine peer-reviewed journal articles.  The selection 

rules specifically required that models (1) focus on human organizations and networks 

(i.e., no robotic or avatar-based interactions except as part of overall human systems), (2) 

inculcate theory at a level at least as aggregate as individual behavior (i.e., no biological 

or chemical level models), (3) enable investigation of multiple aspects of individual, 

group, and inter-group behavior (i.e., models that extend beyond a single-purpose use for 

testing an existing theory, as in the case of Repenning’s (2002) exemplary yet limited 

application of system dynamics to the investigation of innovation adoption).  An 

additional condition I applied for inclusion is that the code for the models be publicly 

available or identifiable based on publicly available information.  Despite the rigorous 

identification methodology, the twenty-eight models reviewed are not necessarily 

intended to be “exhaustive.” I nevertheless believe the selected models are widely 

representative of organizationally oriented simulation systems introduced over the 1989-

2003 period and will thus form a reasonable basis for providing perspectives on the 

present and future states of computational modeling. 

2.3   Definitions 

Organizational Simulation Model.  I define an organizational simulation model as 

a type of Turing machine in which the discrete-state machine represents performance of a 

group of two or more individuals interacting to achieve a common goal.  Inputs and 

outputs are combinations of physical, behavioral, and cognitive characteristics of the 

individuals and groups comprising the organization.  State transitions are described by 

empirically based associations or mathematical relations founded on existing and 
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proposed theory. 

Organizational Simulation Framework.  Rather than simply reporting on models 

and their capabilities, one of my aims is to understand the state of computational 

organization modeling in the context of theories of organization and organizational 

behavior.  To do so, I require a framework for modeling organizational behavior against 

which I can measure the coverage of respective models reviewed in the study. I take this 

approach in recognition that the scientific standards applicable to a good mathematical 

model also apply to simulation. Such standards dictate that a sound model (1) provide 

categories of assumptions so that insights and intuitions can be transferred from one 

context to another and cross-checked between different contexts, (2) allow insights and 

intuitions to be subjected to tests of logical consistency, and (3) establish the ability to 

trace back from observations to underlying assumptions to see which assumptions are 

really at the heart of particular models (Kreps, 1990).  Thus, the review is organized 

around components of a heuristic model of organizational effectiveness that integrates 

and extends earlier effectiveness frameworks introduced by Hackman and Morris (1975), 

Nieva, Fleishman, and Rieck (1978), Nadler and Tushman (1980), Hackman (1983), 

McGrath (1984), Gladstein (1984), Goodman (1986), Sundstrom, DeMeuse, and Futrell 

(1990), Cohen and Bailey (1997), Marks, Mathieu, and Zaccaro (2001), and Ashworth 

(2005). 

As shown in Figure 2.1, the framework has fifteen constructs, categorized as 

“Inputs” (Resources, History, Culture, and External Environment), “Transformation 

Processes” (Composition, Organization Context, Psychosocial Traits, Technology, 

Informal Networks, and Interactive Processes), “Outputs” (Performance, Attitudinal, 

Behavioral), and “Linkages” (Strategy and Action).  The framework embeds individual 

characteristics, described by “Composition” attributes, within the group or organization-

level transformation processes.  Transformation processes represent the means by which 

strategy translates organizational inputs into meaningful action resulting in performance, 

attitudinal, and behavioral outputs.  Results of both transformation processes and outputs 

have feedback impacts on inputs and the processes themselves. Performance outcomes 

range from objective measures – such as efficiency, cost, productivity, quality, safety, 
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errors, or customer service – to perceived measures of those same dimensions.  

“Perceived” performance outcomes measure how organizations and organizational units 

appear to work together, including the perceived level of integration of social identity 

groups (by gender, age cohort, or role, for example) and the perception of overall team 

functioning.  Examples of attitudinal outcomes are job satisfaction, worker morale, 

turnover intentions, change resistance, and commitment.  Behavioral outcomes range 

from absenteeism and turnover to communication patterns, innovation, and learning.   

 

I represent organizational design elements in a multi-dimensional construct 

encompassing technology, composition, and organizational context.  I further break down 

each construct into specific sub-categories in order to surface more explicit distinguishing 

factors of organizations (Kozlowksi and Bell, 2003).  For example, I disaggregate 

technology design into variables representing task (complexity, interdependence, and 

autonomy) and non-task technology (equipment, materials, and physical environment).  

The composition construct is disaggregated into sub-categories that include individual 

characteristics such as personality, values, knowledge, experience, and tenure, and group 

Figure 2.1.  Organizational Simulation Framework. 
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and organization level characteristics such as size, demography, and diversity.  Similarly, 

organizational context includes representations of leadership, empowerment, and multi-

cultural influences.  

With respect to group and unit-level processes, I define categories for cooperation 

and communication variables in both internal and external contexts as well as separate 

group goal-setting and organizational justice variables.  Cooperation encompasses 

processes such as conflict resolution, collaborative decision making, and reflexivity.  

Communication broadly includes processes that facilitate social and cognitive 

information sharing.  Following Cohen and Bailey (1997), I differentiate psychosocial 

variables as group and division-level constructs such as efficacy, affect, norms, 

cohesiveness, and cognition.  Collective efficacy is an expression of a group’s confidence 

in working together in general, while group affect is a measure of consistent or 

homogeneous affective reactions in a group (George, 1990).  Norms are tacit 

understandings or implied agreements of how group members should behave under 

certain conditions, and cohesiveness reflects the level of shared identity in a group or the 

extent to which members of a group view themselves as a group.  Group cognition 

encompasses group learning processes, shared mental models, and group transactive 

memory (Wegner, 1986).  Finally, the framework incorporates environmental factors as a 

distinct construct that broadly encompasses industry characteristics, competition, and 

economic context. 

2.4    Analysis 

The analysis approach consisted of first identifying factors that could be used to 

characterize the capabilities of each model surveyed.  I distinguished 245 such 

“capability evaluation factors” representing the following categories:   

• Range of permissible organization designs.  This category distinguishes models 

that represent one or more forms of organization design.  Hierarchies are defined 

as pyramidal arrangements of formal authority with relations descending stepwise 

from the top to the bottom of an organization (March & Simon, 1958).  Networks 
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are non-hierarchical forms of organization that evolve as interconnections of 

individuals engaged in reciprocal, preferential, mutually supportive actions 

(Powell, 1990).  A team is a set of two or more individuals working in an 

interdependent fashion toward a shared and meaningful goal (Urban et al., 1996).  

Any organizational form in which personnel may be assigned both to a functional 

role and a product or project-specific role is a matrix form of organization 

(Galbraith, 1977).  Other distinctive types include more specific forms of teams 

(such as autonomous or self-directed teams) and bureaucracies, which combine 

hierarchy with codified rules of conduct, labor specialization, and impersonal 

cultures (Weber, 1968). 

• Range of permissible entities.  An entity is something that is known or perceived 

to have its own distinct existence, whether animate or inanimate, physical or 

conceptual.  Agents are animate entities that include people and groups of people 

(teams, companies, units, etc.) as well as inanimate entities such as robots, 

avatars, intelligent agents, and web-bots.  Conceptual entities include knowledge, 

physical and financial resources, and tasks.   

• Range of Actions.  Actions are results of transformation processes and represent 

how entities engage, such as moving, lifting, thinking, or achieving a group goal. 

Actions have effects measured as performance, behavioral, and attitudinal 

outcomes.  

• Organizational performance measures.  Performance measures are defined in the 

same way as the simulation framework in Figure 2.1. 

• Entity and environment characteristics.  This group of evaluation factors 

distinguishes models by the maximum numbers of entities that can be simulated 

simultaneously. In addition, this category examines the extent to which 

characteristics of the organization’s environment can be reflected in each model.  

This includes determining whether models instantiate the organization’s strategic 

objectives, internal and external cooperation, environmental complexity, and 

socio-political contextual factors. 
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• Agent characteristics.  Agent characteristics focus on demographic, 

psychographic, and cognitive capabilities of agents. 

• Agent behavioral attributes.  Behavioral attributes encompass psychosocial traits 

such as efficacy, task-orientation, and affect as well as outcomes such as 

citizenship behavior and absenteeism. 

• Agent cognitive attributes.  Cognitive attributes include capabilities, skills, 

knowledge, memory (including “forgetting”), and ability to plan ahead.  In 

addition, this category examines the extent to which models incorporate learning 

from experience (including training, task repetition, and knowledge transfer). 

• Task characteristics.  Task characteristics describe whether tasks are assigned by 

managers, self-assigned, or “fixed” (pre-programmed, as in the case of an avatar). 

In addition, other task attributes incorporated in some models include 

interdependence, complexity, and physical layout. 

• Informal and formal network representation.  Network representation factors 

indicate the extent to which models represent connections and relationships 

between entities.  This includes social and communication networks (agent-to-

agent), knowledge networks (agent-to-knowledge), task assignment networks 

(agent-to-task), and networks of relationships between other types of entities. 

• Network evolution functions.  These capability evaluation factors indicate the 

dynamic capability of a model to evolve informal and formal networks over time.  

• Internal processes. Other interactive processes not included in previous categories 

are indicated in this set of capability evaluation factors.  These include processes 

of enculturation, innovation, recruitment, dismissal, and goal/reward 

determination. 

• Communication characteristics.  Lastly, the communication category indicates 

whether models explicitly distinguish between various forms of communication, 

such as personal (one-on-one) communication, email, avatars, or telephone. 
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As summarized in Appendix A, each capability evaluation factor was then 

mapped to one of the fifteen constructs in the organization simulation framework (Figure 

2.1).  Based on publicly available information, the capabilities of each of the twenty-eight 

Table 2.1.  Simulation Models Included in Review. 
 

Model Reference 

 Double-AISS 

 Construct 

 ELM 

 OrgCon 

 Cultural Transmission 

 Social Exchange 

 HITOP-A 

 Plural-SOAR 

 CORP 

 SimVision 

 TASCCS 

 Action 

 DYCORP 

 Radar-SOAR 

 TacAir-SOAR 

 Orgahead 

 Sugarscape 

 TAEMS 

 STEAM 

 Blanche 

 CASCON 4 

 Brahms 

 Team-SOAR 

 Trust Me 

 Construct-O 

 NK Fitness 

 Construct-TM 

 VISTA 

Masuch & LaPotin (1989) 

Carley (1990a, 1991a) 

Carley (1990b, 1991b, 1992) 

Baligh, Burton & Obel (1990, 1994) 

Harrison & Carroll (1991) 

Macy (1991) 

Majchzrak & Gasser (1992) 

Carley, Kjaer-Hansen, Newell & Prietula (1992) 

Carley & Lin (1993, 1995) 

Levitt et al. (1994) 

Versagen & Masuch (1994) 

Majchrzak & Finley (1995) 

Lin & Carley (1995) 

Ye & Carley (1995) 

Tambe et al. (1995) 

Carley & Svoboda (1996) 

Epstein & Axtell (1996) 

Decker (1996, 1998) 

Tambe (1997a, 1997b) 

Hyatt, Contractor & Jones (1997) 

Bloomfield & Moulton (1997) 

Clancey, Sachs, Sierhuis & van Hoof (1998) 

Kang, Waisel & Wallace (1998); Kang (2001) 

Prietula (2001) 

Carley & Hill (2001) 

Levinthal (2001) 

Carley (2002) 

Diedrich et al. (2003) 
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models (Table 2.1) was coded according to the models’ coverage of the theoretical 

constructs in the framework.  For all models, I then calculated simple indices 

representing the proportion of actual capability evaluation factors covered to the total 

possible.  Group indices for input, process, and output-related constructs are depicted in 

Figures 2.3 and 2.4.  To obtain the estimated coverage indices reported in Figure 2.5, I 

averaged the values across all models for each construct.  

Evolution of Simulation Types.  Simulation models in the review are grouped into 

three broad categories according to simulation type: agent-based models, expert systems, 

and mathematical models.  As shown in Figures 2.2a, 2.2b, and 2.2c, while there has been 

a similar pattern of growth between model types, agent-based models now outnumber 

other types and are growing at a faster rate; in addition, agent-based simulations have the 

greatest representation of network structures.  Networks are used to characterize not only 

social relationships but also organizational roles, communication linkages, advice 

relationships, tasks, knowledge, and resources.  Among the models surveyed, a wide 

range of organizational structures is represented, from hierarchies and bureaucracies to 

networks and nation-states.  The most prevalent type of structure is team-based, with 

fairly even focus on both traditionally managed and autonomous teams. 

Evolution of Dynamic and Cross-Level Capabilities.  Models are generally 

limited to focusing on one level of analysis. However, some models simulate two or more 

levels (e.g., ELM, TASCCS, DYCORP, STEAM), with linkages defined as one or more 

performance or decision making outcomes communicated from one level to another.  One 

model, OrgCon, theoretically permits investigation of the effects of an unlimited number 

of levels; however, the measure is incorporated, as are other measures in such rule-based 

systems, as a set of ranges reflecting varying levels of influence of complexity or 

hierarchy on other organizational design variables.  Time is generally defined in the form 

of generic Markovian “time steps,” with linkages to normative or positive scientific 

interpretation completely dependent on the time frame of the inputs provided by the 

modeler.  Thus, most models offer a means of construing time on a relative basis between 

simulations in a given study rather than on an absolute basis for making time-based 

predictions.  
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Figures 2.2a-c.  Growth in Simulation Models by Type. (Lightly-shaded region 
represents percentage that is network-based.) 

Figure 2.2a.  Multi-Agent Models. 

 
 

Figure 2.2b.  Expert Systems.   

 
 

Figure 2.2c.  Mathematical/System Dynamics. 

 



 

 24    

Evolution of Multi-Theoretic Designs.  While all models instantiate one or more 

bodies of theory as an analytical foundation, applications of models generally fall into 

two broad categories – theory-building and situational simulation.  Theory-building 

models (e.g., Table 2.2) pose and test new theory based on results that emerge based on 

interactions of existing theory.  Situational simulations (e.g., Table 2.3) apply existing 

theory to situations typically unsuited to empirical investigation to validate theory under 

those conditions.  Both theory-building and situational simulations are useful for 

examining robustness of propositions under scenarios in which some or all key 

independent variables are changed.  

  

Table 2.2.  Examples of Theory-building Models. 
  

Theory Domain Representative Models 

  Organization Design 
 
 
 
 
  Organization Change 
  Enculturation 
 
  Cooperation 
  Gossip 

  Double-AISS 
  CORP 
  SimVision 
  Orgahead 
  NK Fitness 
  Construct 
  Cultural Transmission 
  SugarScape 
  Social Exchange 
  Trust Me 

 
 
 

Table 2.3.  Examples of Situational Models. 
 

Situational Domain Representative Models 

Tailor Shop 
Airlines 
Manufacturing 
Warehouse Order Picking 
Petroleum Refining 
Radar Detection 
Air Combat 
Hospital Scheduling 
Border Hostility 
Urban Threats 

Construct 
OrgCon 

ACTION 
Plural-SOAR 

SimVision 
Team-SOAR 

TacAir-SOAR 
TAEMS 

CASCON 4 
VISTA 
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As shown in Table 2.4, the range of theory encompassed by the surveyed models 

is dominated by socio-technical (Emery and Trist, 1960) and structuration (Giddens, 

1986) theories, although the focus of such models is on simulating the interaction of 

people, task, and technology rather than on optimization of their social and technological 

outcomes. Not surprisingly, most of the socio-technical models also incorporate social 

network representations of actors. Closely aligned with socio-technical approaches are 

models incorporating contingency theory.  These models are concerned less with agent-

specific behavior and more with aspects of design that are predicated on factors such as 

differing levels of formalization, centralization versus decentralization, and proactive 

versus reactive planning time horizons. 

 

Models based on socio-technical systems approaches are cybernetic and 

constructivist in nature, seeking to balance technology and task in a context of socially 

shared meaning.  In contrast, models based on artificial intelligence (AI) theory presume 

that knowledge alone, rather than having a social dimension, is a commodity and that the 

application of such knowledge is in fact the true expression of intelligence (Minsky, 

Table 2.4.  Underlying Theories of Reviewed Models. 
 

Underlying Theory Representative Models 

Socio-Technical Theory 
Structuration Theory 

Double-AISS 
Construct 
ELM 
Brahms 
HITOP-A 

CORP 
ACTION 
Orgahead 
DYCORP 
VISTA 

Artificial Intelligence Theory 
Double-AISS 
Plural-SOAR 
TASCCS 

Radar-SOAR 
STEAM 
Team-SOAR 

Organizational Information Processing 
Theory 

SimVision 
Trust Me 
Brahms 

Orgahead 
Construct 

Contingency Theory OrgCon 
CASCON 4 

NK Fitness 

Evolutionary Theory/Population 
Ecology 

Cultural Transmission 
Sugarscape 

NK Fitness 
 

Joint Intentions Theory STEAM  

Dynamic Phase Conflict Model CASCON 4  

Social Learning Theory 
Social Exchange Model 
Trust Me 

STEAM 



 

 26    

1967).  Thus, models such as TASCCS (Verhagen and Masuch, 1994) and STEAM 

(Tambe, 1997a, 1997b) instantiate agents with decision logic oriented around agents’ 

respective skills, assigned tasks, memory, and mental models of other agents, enabling 

them to act and interact based on pre-programmed rules.  The “task” of learning thus 

becomes a pre-programmed routine of reinforcing the agent’s stock of knowledge based 

on responses the agent keeps in memory.  AI models are particularly useful for exploring 

the actions of both human and technological agents engaged in highly standardized 

processes with protocols defined for as near to all conceivable situations as possible. 

Still other models are based on evolutionary designs and population ecology, 

enabling simple agents to explore complex organizational search spaces based on genetic 

algorithms or relatively simple sets of rules for death and regeneration.  These models 

tend to be more intellective in nature and are thus powerful for theory-building but less 

useful for situational emulation.  Models incorporating more specific theories, such as 

joint intentions theory and social learning theory, tend to represent their premises in 

combination with broader theories such as contingency theory and general artificial 

intelligence.  These models’ unique additions extend the detail with which models can 

address goal and outcome interdependence as opposed to simple task interdependence. 

2.5    Discussion 

While I recognize that the idea of a unified body of theory of organizations is 

epistemological in nature, and that establishing the capability to simulate the behaviors of 

organizations in increasing detail may no more lead to such unification than the present 

panoply of partial theories, I nevertheless believe that such ideas and attempts to model 

those ideas are worthy goals (Hulin and Ilgen, 2000).  Hence, the calculations of indices 

of coverage of the simulation framework (Figure 2.1) are intended less as absolute 

measures than as indicators of the richness and vastness of organizational behavior yet to 

be integrated.  Based on these calculations, as Figure 2.3 indicates, there is a discernible 

if variable trend upward in the coverage of inputs, processes, and outputs in the 

framework. The coverage indices of most models cluster in the 5 to 15 percent range, 

with a few reaching the 25 to 35 percent levels.   
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Figure 2.3.  Coverage indices of models in chronological order, 1989-2003. 

  

0

0.1

0.2

0.3

0.4

0.5

Models in Chronological Order

C
ov

er
ag

e 
In

di
ce

s
Input

Process

Output

0

0.1

0.2

0.3

0.4

0.5

Models in Chronological Order

C
ov

er
ag

e 
In

di
ce

s
Input

Process

Output

 

 

Figure 2.4.  Input versus Process (dark spectrum) and Output (light spectrum). 
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As Figure 2.4 shows, the richness of simulation models has increased over the 

review period. Representation of processes tends to dominate input and output coverage, 

indicating that existing simulations focus primarily on transformation factors such as 

group composition, technology, communication, and cooperation.  Somewhat 

surprisingly, output coverage is generally superseded by both input and process 

representation.  Most models focus on some aspect of performance or productivity, with 

little or no attention to behavioral and attitudinal measures.  Future research should 

increase the incorporation of attitudinal and behavioral outcomes in models, along with 

dynamic feedback of those outcomes to input and process variables.  

Figure 2.5 summarizes average coverage of the simulation framework across all 

surveyed models and provides a scorecard value for each construct in the framework.  

Given that despite its theoretical grounding the framework is arguably much less than 

100 percent representative of organization theory, the coverage estimates are clearly 

biased on the high side.  Thus, the analysis reveals there is much ground to cover in 

Figure 2.5.  Simulation Framework Scorecard (0-100 scale). 
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integrating existing theory using computational approaches.  While most models exhibit 

fairly low coverage of the simulation framework, even models with richer feature sets 

tend to have similar underlying theories and cover many of the same types of factors in 

the simulation framework.  Thus, if there is a road to “unification of theory,” it clearly is 

not one of merely adding or integrating multiple models together.  Rather, the range of 

underlying theory must expand beyond the fractional and mechanistic to the holistic and 

emergent.  Just as understanding biological evolution requires less about what atoms 

themselves are made of and more about how they behave in chemical and physical 

networks, discovering more unified laws of organizational behavior will only result from 

understanding how sundry partial theories of organization interplay at each level in 

complex networks of people, resources, tasks, knowledge, and technology.  Future 

research should examine the appropriate range of theories further, refining the unified 

simulation framework ultimately with a level of dependent, independent, and control 

variables that fosters the study of both integrative and emergent organizational behavior 

irrespective of the specific goals of the simulation.  

2.6    Conclusion 

As far back as 1978, Chris Argyris identified “the principal challenge to present-

day organization theory is to invent a productive synthesis of fragmentary approaches” 

(Argyris, 1978, p. 331).  Over 25 years later, theories of organization behavior seem to 

have become more rather than less fragmentary (Miner, 2002, 1982).  Somewhat 

disappointingly, the state of organizational simulation modeling has not helped create 

such synthesis, instead continuing to reflect classical approaches to empirical studies.  

Mere automation of classical approaches, while enabling organization scientists an 

additional tool for corroborating and testing relationships between restrictive sets of 

variables, leads to the same partial theories that result from very empirical and 

experimental methods underlying those approaches.  Although this result is not a poor 

one, it is certainly one that deprives researchers of the broader capability of 

computational modeling to integrate bodies of theory that would be impossible to 

combine otherwise, enabling exploration of unforeseen emergence and identification of 

new, more unified theory.  Thus we must persist in widening the boundaries of simulation 
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modeling beyond the present state of mirroring empirical limitations.  Yet, to do this, 

simulation models themselves must adopt improved theories of computation and 

applications of existing computer science to enable them to take full advantage of their 

ability to process complex interactions of increasingly human-like agents.  In addition, 

simulations must widen their boundaries with respect to organizational behavior by 

incorporating broader empirical grounding synthesized with computational approaches 

such as network algorithms, structural equation methods, system dynamics, and 

constraint satisfaction modeling.  Consequently, as computer science and simulation 

methods alike continue to advance, computational organization science may very well 

have opportunities for making lasting contributions to the development of a unified body 

of organization theory.  
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��
WHO YOU KNOW VS.  WHAT YOU KNOW 

SOCIAL POSITION,  KNOWLEDGE,  AND PERFORMANCE 
�

�

 
3.1    Introduction 

Teams require the right combination of personalities, capabilities, and knowledge 

to achieve maximum effectiveness, but organization charts and personnel evaluations 

notwithstanding, critical contributors to a team’s performance are far from obvious 

(Prietula and Simon, 1989).  This situation arises because work groups are comprised not 

only of people and their individual behaviors but also of the cultural backgrounds, skills, 

education, financial and physical resources, and other distinctive traits these “human 

capital endowments” bring to the organization (Becker, 1975; Mincer, 1970; Stewart, 

2001).  Social network theories suggest that the types and degrees of an individual’s 

relationships in social and communication networks are key impactors of group 

performance, while resource dependency theory suggests that non-social factors such as 

knowledge and skill figure at least as prominently as social dimensions in determining 

such performance.  My objective in this study is to investigate the relative ability of 

social network theory versus resource-based views to explain the criticality and 

performance of human capital at a team level in an organization.   

In the following sections, I draw on some of the relevant research to provide my 

motivation and show how omy conjectures extend existing theories of individual 

productivity, group performance, and social networks.  I then describe my theoretical 

propositions, propose a research methodology, introduce empirical data, and present 
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specific results of the analysis.  I conclude with a wider discussion of contributions, 

limitations, and opportunities for further research.  Results provide the first empirical 

evidence that the extent of an actor’s contribution to group performance is more related to 

the individual’s knowledge and tasks than to the individual’s position in the team’s social 

network.  From a practical standpoint, since objective evaluations of skills and 

knowledge can be conducted prior to team formation, as opposed to evaluations of social 

network positions well after teams are established, the measures and methodology offer 

useful approaches to structuring teams and predicting their performance. 

3.2    Motivation 

Several areas of organizational behavior literature stress the importance of human 

capital, including theories of power (Emerson, 1962), complexity (Perrow, 1984, 1986), 

resource dependency (Hickson, Hinings, Lee, Schneck, and Pennings, 1971; Wernerfelt, 

1984), leadership (Graen, 1976), knowledge and learning (Carley and Hill, 2001; 

Hollenbeck, Ilgen, Phillips, and Hedlund, 1994; Hollenbeck et al., 1995), and social and 

human capital (Coleman, 1988).  While all of these perspectives are related, power and 

leadership in particular are clearly linked to knowledge and learning due to the fact that 

such power rests primarily on the control of resources possessing appropriate knowledge 

and skill (Leavitt, 1996; Mintzberg, 1983), but it is not clear whether social or knowledge 

factors matter more in determining individual contributions to team performance.  Recent 

work by Ahuja, Galletta, and Carley (2003) found that individual centrality is a strong 

predictor of individual performance and plays a mediating role with respect to other 

performance factors such as functional and communication roles, but their study only 

indirectly incorporates knowledge.  Kline and McGrath (1998) suggest that meeting 

objectives with high quality (accuracy) is the most important evaluative criterion for team 

performance, but their model fails to link team performance to social position or 

knowledge of individual actors.  Other studies have established the importance of task-

related knowledge and group familiarity (Hinds, Carley, Krackhardt, and Wholey, 2000; 

Littlepage, Robison, and Reddington, 1997), while still others have linked group 

performance to cognitive structures such as group experience and transactive memory 

(Carley, Kiesler, and Wholey, 1993; Liang, Moreland, and Argote, 1995), shared mental 
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models (Espinosa et al., 2002), and group “meta-knowledge” (Larsen and Christenson, 

1993).  Fleishman and Zaccaro (1992) offer a taxonomy that includes team resource 

distribution as a variable but do not extend their topology to a detailed assessment of 

team members’ knowledge, skill, and task-based capabilities.  Kiesler, Wholey, and 

Carley (1994) discuss the importance of coordination, structure, and communication in 

determining individual contributions to software team performance, but their work stops 

short of offering guidance on the relative importance of knowledge versus other factors 

(although the authors do suggest – as this paper attempts to illustrate – that such research 

should encompass both the social and the efficiency effects of team coordination).  

Literature on organizational learning shows the clear relationship of knowledge to 

organizational productivity (Argote, 1999; Levitt and March, 1988).  In the work of 

Herriott, Levinthal, and March (1985) and Pisano, Bohmer, and Edmondson (2001), for 

example, differences in productivity across firms are linked to cumulative experience and 

initial competences of individual actors.  Although these inquiries confirm that 

knowledge is a major determinant of team performance, they do not focus objectively on 

each individual’s ex ante knowledge relative to social position.   

In contrast to the literature on organizational learning, theories of social networks 

suggest that, while skills are one of many elements affecting team performance, such 

performance may be primarily dependent on the power and influence structure of the 

group’s social network (Burt, 1992; Brass, 1984; Everett and Borgatti, 1999; Freeman, 

1979; Jones, Hesterly, Fladmoe-Lindquist, and Borgatti, 1998; Krackhardt, 1999).  The 

social network view posits that the contributions of individual actors within a team 

framework depend fundamentally on the relations between actors as opposed to actors’ 

resources or knowledge (Burt, 1992).  Indeed, in this paradigm, the relations themselves 

are productive resources (Coleman, 1988).  The structural character of actors’ social 

linkages with other actors, hence their social network positions, influence the extent to 

which they are economic producers (Granovetter, 1985; Lin, 2001).  While individually 

and collectively insightful, such theoretic approaches subsume knowledge as a mediating 

factor while primarily emphasizing social, friendship, communication, and advice 

networks, thus failing to incorporate a more comprehensive and analytical view of other 

critical aspects of group performance such as education, skill, and experience.  
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Although existing literature does not explicitly compare the impact of social 

position and knowledge on team performance, research in both industrial-organizational 

psychology and organization strategy has established connections between individual and 

collective intellectual capital, firm strategic advantage, and organizational performance 

(Coff, 1997; Coff, 1999; Wernerfelt, 1984).  For example, Goodman, Lerch, and 

Mukhopadhyay (1994) offer Thompson’s (1967) framework as a means of explaining 

potential variation in the levels of individual contributions to organizational productivity, 

but their final analysis calls for more detailed empirical work to investigate facilitators 

and inhibitors of individual performance contributions.   

Other research offers the notion of task criticality as a partial explanation of the 

link between individual actors’ productivity and organizational effectiveness.  Notably, 

Brass (1984) and Hinings et. al (1974) evaluate task criticality in terms of an actor's 

“non-substitutability” and the number of connections the actor has to other actors for 

inputs and outputs related to her or his task.  Similar recognition of the importance of task 

and knowledge attributes in organization networks can be traced to Pfeffer (1981) and 

Mechanic (1962), with their concept of “irreplaceability,” and to Crozier (1964), who 

emphasized task criticality in his analysis of an engineering group’s performance in a 

French tobacco-processing plant.   

The primary motivation for this paper is to build on these resource-based views 

by advancing theory at a finer-grained level on the contributions of individual knowledge 

to team performance.  My motivation is predicated on the post-Weberian recognition that 

teams are comprised of individuals as opposed to mere placeholders (Goodman, 1998), 

the growing importance of skill and knowledge elements in modern organizations 

(Fullerton and Toossi, 2001), and the need to incorporate a dynamic understanding of 

those elements when seeking to fully understand and manage critical human assets 

(Senge, 1990).     

To explore these facets more formally, I developed three propositions based on 

the implications of social network and resource dependency theories.  Because social 

network theory does not explicitly incorporate task and knowledge dimensions except in 
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a descriptive sense, following Brass’s logic (1984) the theory may not always reliably 

link all critical actors to team performance.  If such theory alone is relied upon to 

investigate employee contributions to performance, it may accurately identify actors who 

are key in terms of social connections but not necessarily key in terms of greatest 

performance impact.  Conversely, the application of social network theory as a sole basis 

for linking individuals to group performance may lead to the identification of actors as 

critical when they may not be critical in terms of group performance impact.  These types 

of errors are analogous in many ways to “false negative” and “false positive” statistical 

errors, and for convenience I shall refer to them as such throughout the remainder of the 

paper.1  Thus, my first proposition is as follows: 

Proposition P1a:  Social network theory alone does not reliably predict all critical 

human actors on a team as determined by their performance impact; 

Proposition P1b:  Social network theory alone has an unacceptably high tendency 

to identify human assets as critical when they may not be. 

The reliability and acceptability criteria for evaluation purposes are based on the 

area under the corresponding receiver operating characteristic (ROC) curve being greater 

than 0.80, which is generally considered to indicate good to excellent performance of a 

measurement test construct (Swets, 1995; Tape, 2002).   

One of the primary corollaries of the central theme in this study is that resource-

based views of knowledge and task relations in organizations are more reliable predictors 

of individuals’ contributions to performance than those provided by social network 

theory alone.  Accordingly, I further posit that 

Proposition P2:  Knowledge elements of resource dependency theory can be used 

to identify critical human assets without unacceptably high levels of false 

negatives and positives. 

                                                 
1 We use the analogy of Type I and Type II errors strictly for convenience in describing the efficacy of measures used to evaluate the 
hypotheses.  We do not imply that existing theories are invalid because they exhibit false negatives.  Instead, we are suggesting that 
while theories of organization science may reflect Popper’s falsifiability criterion, those theories which can be shown to be 
consistently less falsifiable (viz., exhibiting consistently fewer false negatives or false positives) are arguably more robust. 
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Finally, I believe that it will be useful to examine whether both theories acting 

together can be relied upon to more accurately connect individual actors’ contributions to 

overall group performance.  Based on this premise, I propose the following: 

Proposition P3:  A combined application of resource dependency and social 

network theories enables the reliable identification of critical human assets on a 

team. 

3.3    Method 

To provide a realistic framework in which to evaluate these propositions, I first 

introduce data obtained from a high-tech firm focused on software development.  

Software development teams in general exhibit high levels of knowledge intensity 

(Kiesler et al., 1994), making this data selection particularly relevant to my analysis.  

After describing the data set, I introduce the theoretical model and describe the steps in 

my research methodology.   

Description of Data Set 

The data I use for the study relates to a team of 16 information technology (IT) 

professionals responsible for the programming and implementation phases of a multi-

phase IT development project.  The team members’ specific roles are summarized in 

Figure 3.1.  Software team organization.   

Employee 1
("EE1")

Employee 2
("EE2")

Supervisor 1
("S1")

Employee 3
("EE3")

Supervisor 2
("S2")

Manager 1
("M1")

Employee 4
("EE4")

Employee 5
("EE5")

Supervisor 3
("S3")

Employee 6
("EE6")

Employee 7
("EE7")

Employee 8
("EE8")

Employee 9
("EE9")

Supervisor 4
("S4")

Manager 2
("M2")

Leader
("LDR")
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Appendix B (“Actor Vector”) and Figure 3.1. 

As shown in the organization chart, there is a leader (project manager), two 

assisting managers, four supervisors and nine employees, all with skills ranging from 

artistic design to specialized programming expertise. Since the company would not 

permit me to access private employee communication records or to conduct a formal 

social network survey, I faced a potentially vexing primary data problem in developing 

the social network matrix required for calculating traditional centrality measures.  To 

address this problem, I applied a triangulation approach used successfully in a number of 

research disciplines (Benbasat, Goldstein, and Mead, 1987; Bonoma, 1985; Bredo and 

Feinberg, 1982; Jick, 1983; Maxwell, Bashook, and Sandlow, 1986; for more general 

treatments, see also Cook and Reichardt, 1979; Glaser and Strauss, 1967; Van Maanen, 

1983; Yin, 1984), combining qualitative methods – including observation, interviews, 

and iterative data collection – with quantitative methods.  Deriving the social network 

with such an approach both meets my present methodological requirements and offers a 

useful pedagogic tactic to the typical organization seeking to perform similar analyses but 

finding itself (whether for practical or policy reasons) in the similar position of not being 

able to conduct a more standard social network survey. 

Hence, as the first step in modeling the social network, I conducted iterative 

interviews with key team leaders regarding task–oriented interaction patterns and asked 

them to provide their view of the team’s network of social interaction with an unvalued, 

bi-directional tie between actors A and B being defined as “A and B are observed 

communicating regularly throughout the day.”  While “regularly” was subject to some 

interpretation, the distinction rested on the managers’ assessments of average frequency 

and duration of communications, with estimates tending to be relatively bi-polar (i.e., 

communications between two given actors were either comparatively high or low, with a 

“high” level indicating that a tie exists and a “low” level indicating that no tie exists 

between the actors).   Given both the constant proximity of managers to team members 

and the open, low-divider work space design, such observations were easily made 

throughout the project, and, according to Krackhardt (1987), the social network view of 

actors with high betweenness but low in-degree values (such as project leaders with non-
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operational roles) is a reasonable predictor of the true underlying cognitive social 

structure.  To validate the managers’ subjective assessment, we then collected data from 

project management and human resources department records and developed matrices 

associating actors by interdependent task assignment, team authority and community 

structures, and actor work station locations (proximity).   According to theories of 

structural action (Burt, 1982) and physical proximity (Festinger, Schachter, and Back, 

1950; Korzenny and Bauer, 1981; Monge et al., 1985; Oldham, Cummings, and Zhou, 

1995; Olson and Olson, 2000; Kiesler and Cummings, 2002; Monge and Contractor, 

2003), these matrices should have significant correlation with the observed social 

network.  Irrespective of the correlation values (as long as they are non-trivial), the 

correlations of the independent matrices to the social network matrix must be among 

those with the highest possible levels of correlation in order to be considered 

“significant.”  To test the null hypothesis that there is no correlation between the 

affiliation/proximity matrices and the underlying social network, I used the quadratic 

assignment procedure (Hubert and Schultz, 1976; Krackhardt, 1987) based on 10,000 

Monte Carlo simulations.  To avoid potential multicollinearity, I use the semi-partialling 

extension to the QAP method developed by Dekker, Krackhardt, and Snijders (2003).  

As Table 3.1 shows, the QAP p-values for the proximity, authority/community, 

and task assignment matrix predictors (Models 1 – 3) are statistically significant, with p 

values of 0.0023 and 0.0004, and 0.0140, respectively.  When the social network is 

Table 3.1.  QAP Results and Significance Values. 
 

Independent Variable 
(Predictor) Model 

Pearson’s 
r 

% Higher 
(p value) 

1. Proximity 0.296 0.0023 

2. Authority/Community Structure 0.656 0.0004 

3.  Interdependent Task Assignment 0.221 0.0140 

4.  Proximity, Authority/ 
Community, Task Assignment 0.670 0.0001 
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regressed on all three predictor variables (Table 3.1, Model 4), the model is strongly 

statistically significant2 and exhibits a reasonably high Pearson’s r.  Thus, I reject the null 

hypothesis that the observed social network identified by the managers is not 

significantly correlated to the independent predictor matrices.  This conclusion provides 

reasonable assurance that the social network observed by the managers is free from 

significant random or systematic error.  The team’s resultant network of social ties is 

depicted in Figure 3.2.   

 

After defining the social network, I identified skills, knowledge elements, and 

tasks of team members based on information provided by the company’s human 

resources department and cross-validated by the technical division’s knowledge 

management database and the team’s formal project management plan (see Appendixes C 

and D).  

                                                 
2 In the multiple QAP regression (Model 4), the coefficients of the proximity and authority/community matrices were significant at 
p=0.05 and p=0.001, respectively.  The task assignment matrix, however, did not have a statistically significant coefficient (p=0.20) in 
the multiple regression.  Since task assignment was significantly correlated with the social network matrix when considered 
standalone (Table 1, Model 3), the reduced significance in the combined regression indicates non-linearity in the multiple regression 
model. 

Figure 3.2.  Team social network. 
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Theoretical Model 

After obtaining data on the software team, I developed a framework in which the 

data could be organized and evaluated computationally with respect to my investigation 

of individual actors’ impacts on team performance.  Building on the organizational meta-

network concept (Carley, 2002b; Carley and Hill, 2001; Krackhardt and Carley, 1998), I 

defined the context of the analysis in terms of a linear algebraic meta-matrix relating the 

following primitives as depicted in Figure 3.3:  people (actors), skills (including 

knowledge, experience and expertise), resources (physical or financial), and tasks.   For 

purposes of this paper, I only use sub-matrices N , NS , and NT , all of which are assumed 

to represent fully connected, non-directional and dichotomous graphs (see Appendixes E, 

F, and G). 

 

Figure 3.3.  Generalized organization meta-matrix. 
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Social Position Measures 

As proxies for comparing social network theory predictions of individual 

performance, I used traditional measures of degree centrality and betweenness centrality.  

Although the two indices may be correlated for some individuals (Bienenstock and 

Bonacich, 2002), they were selected because of their now canonical status (Bavelas, 

1948; Freeman, 1979), their familiarity and accepted use (Ahuja et al. 2003), and their 

relative ease of computation for the software team used in our analysis.  Accordingly, I 

introduce a Degree Centrality Index )(nCI D  based on classical definitions of degree 

centrality (Proctor and Loomis, 1951; Freeman, 1979) as follows:  

 )(nCI D  =  (3.1) 

Equation 3.1 states that the Degree Centrality Index )(nCI D  for any actor n is the 

sum of 1’s across row n of the social network matrix N  (actor n’s raw “degree” 

measure), divided by n̂ -1 and normalized by max1 DCI (the maximum value of )(nCI D  ∀ 

n). 

I similarly define a Betweenness Centrality Index )(nCI B  (Anthonisse, 1971; 

Freeman, 1977; Wasserman and Faust, 1994) as follows: 

      )(nCI B  =         (3.2) 

In Equation 3.2, the numerator represents the betweenness of actor n (that is, the 

number of geodesics, or “shortest paths,” between j and k containing n, divided by the 

total number of geodesics between j and k), which is then divided by the total number of 

pairs not including n (to compute a raw betweenness value) and normalized by 

multiplying the raw value by max1 BCI . 

Knowledge-Based Measures 

As proxies for comparison of knowledge and resource-based theories with social 
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network theory, I extended and operationalized theories introduced by Mechanic (1962), 

and Dubin (1957) by defining three knowledge-based measures.  The first, building on 

concepts of Brass (1984), Hinings et al. (1974), and Dubin (1963), is the Task 

Exclusivity Index (TEI), defined as 

 nTEI  = max
1

TEI � =

−t

t

T

Nt
tN

nt
eT

ˆ

1

)1(α  (3.3) 

where 
tNT =� =

n

n Nntn
T

ˆ

1
1

β and  maxTEI is the largest observed value of iTEI .  Parameters 

tα and nβ  are weighting factors for each task t and individual n, respectively, where tα > 

0 and 0 < nβ � 1. 

Brass (1984) recognized the importance of workflow criticality and proposed his 

conceptually similar “Transaction Alternatives” metric, which computes the number of 

different actors who can perform precedent and post-hoc tasks for each reciprocal task.  

Actors who exclusively perform such tasks are deemed more critical.  Other than the fact 

that Brass’s measure derives from survey and interview data, the main difference 

between my proposed task measure and Brass’s is that his focuses primarily on such 

reciprocal tasks while mine generalizes to the entire set of task interdependencies as 

defined by Thompson (1967) and incorporates the inverse proportionality relationship 

between task uniqueness and task criticality (Dubin, 1963). 

The TEI in Equation 3.3 essentially measures the extent to which each actor is the 

only one who can do certain tasks. The TEI is weighted toward unity for individuals who 

have one or more unique task assignments, with values associated with individuals with 

fewer unique tasks declining exponentially.  A potential drawback of the TEI approach 

could arise if the task assignment matrix NT  is defined at such a granular level that every 

task is assigned to only one person, essentially reducing NT  to a unit matrix.  Here, 

grouping of similar tasks may be necessary to obtain a meaningful assignment matrix. 

Consistent with human capital measurement theory (Boudreau, 1997), my second 

measure, the Knowledge Exclusivity Index (KEI), builds similarly on the knowledge 

dimension: 
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 nKEI = max
1

KEI � =

−s

s

S

Ns
sN

ns
eS

ˆ

1

)1(α  (3.4) 

where 
sNS =� =

n

n Nnsn
S

ˆ

1
1

β ; maxKEI is the largest observed value of nKEI ; and sα  is a 

weighting factor for skill s.  As in the TEI (equation 3), the KEI measures the extent to 

which each actor is the only one who possesses certain skills, knowledge, or expertise.  

Also similar to the TEI, the KEI is weighted toward unity for individuals who possess 

one or more unique skill or knowledge elements, with values associated with individuals 

with fewer unique skills declining exponentially.  To avoid issues of granularity similar 

to those of the TEI, grouping of similar skills may be necessary to obtain a meaningful 

knowledge matrix NS . 

Extending Brass’s (1984) and Hickson et al.’s (1971) notion of access exclusivity 

and Blau and Alba’s (1982) suggestion that “communication access” to key individuals 

increases actor criticality, my next proposed measure is the Knowledge Access Index 

(KAI).  Unlike the TEI and KEI, which range between 0 and 1, the KAI is binary and is 

defined as follows: 

Definition:  nKAI = 1 iff ∃ skill s for individual n  | 
sNS = 1 and nN = � =

n

j njN
ˆ

1
= 

1; iKAI = 0 otherwise.  Furthermore, if nKAI = 1, then jKAI = 1 for the value of j 

where njN = 1. 

The KAI calculation first identifies an actor who is the only actor possessing 

certain knowledge.  If this actor is tied to only one other actor in the social network 

matrix N, then both the person with the unique knowledge (or skill or expertise) and the 

actor to whom this person is uniquely tied are considered potentially critical employees 

and are assigned KAI values of 1. 

As a proxy for synthesizing social network and resource dependency theories, my 

final proposed measure is a Composite Criticality Measure (CCM), defined as 

  (3.5) )(  )(  )(  )(  )(     nnnBDn KAIfKEIfTEIfnCIfnCIfCCM )()( ++++≡
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where )  =f(Indexn  1 iff Indexn is in the critical cluster of Index, and 0 otherwise. I 

determine critical clusters based on conventional hierarchical clustering analysis. 

Consistent with social network and resource dependency theories, I assume that a 

higher value for any index indicates an actor with a higher level of criticality with respect 

to that index.  In addition, without loss of generality, I set all α and β parameters equal to 

1. 

Simulation Model 

In addition to the meta-matrix framework and the measures of social position and 

knowledge, another important component of my approach involves establishing a 

benchmark for comparing actors’ criticality based on the proposed measures.  The 

benchmark I apply is performance impact as defined through successive simulations of 

the software development team with and without each actor.  Accordingly, I define a 

critical human capital asset as an individual whose absence or loss will result in a greater 

decrease in team performance relative to other individuals on the same team.  Since it is 

virtually impossible to obtain empirical data examining team performance with and 

without each actor, simulation proves to be an excellent means of estimating baseline 

performance values for each individual on the team. 

The computer simulation model I employ is an adaptation of the multi-agent 

Construct model originally developed by Carley and Kaufer (Carley, 1990c, 1991; 

Carley, Lee, and Krackhardt, 2001; Kaufer and Carley, 1993) and validated in studies by 

Carley and Krackhardt (1996), Carley and Hill (2001), and Schreiber and Carley (2004).  

The current version of Construct3 simulates organizations in terms of tasks, knowledge, 

and interactions associated with multiple groups and agents.  The proposed extended 

version permits the selective removal of any specific actor at any time in the simulation 

horizon, enabling researchers to evaluate team performance with and without one or more 

actors.  The team’s performance in Construct is determined by each agent’s participation 

in a binary-choice task in which the team must decide for a binary string whether there 

                                                 
3 Complete executable shareware available publicly at http://www.casos.cs.cmu.edu/projects/construct/. 
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are more 1’s or 0’s in the string.   The task is distributed in such a way that no individual 

actor or sub-group can “see” and act on the entire string, with the parts of the task that an 

actor sees being dependent on what pieces of task knowledge and skills the actor has.  

Thus, in my simulations, such decisions act as proxies for team objectives, which, in the 

case of the software team, represent stylized sub-tasks in IT project management and 

implementation.  Performance is calculated as “team accuracy,” or the fraction of tasks 

on which the team correctly acts with respect to the full binary-choice task presented.  

The size of the binary-choice task is the same as the total number of skills/tasks in the 

knowledge matrix NS , and in each time period of the simulation, the organization is 

presented with 25 such stylized tasks.  Thus, in terms of the software team simulated in 

this study, every actor participates in the team’s activity each period to the extent of the 

actor’s task knowledge and skill.  I make no attempt to represent details of “software 

coding” in the model, since the task, knowledge, and skill links capture each actor’s 

incremental contribution to team performance. 

In addition to defining the communication and knowledge networks, I modeled 

the team’s structure and roles, dividing the software team into three hierarchical levels of 

three “managers” (a “Project Leader” plus two “managers”), four “supervisors,” and nine 

“employees.”  Construct enables actors to incorporate transactive memory (“TM”) (Liang 

et al., 1995), and although I assumed an average TM level of 50%, I found the 

simulations to be insensitive to TM levels (varying from 0% to 100%), suggesting that 

the team was small enough and task-dependent actors were connected well enough to 

minimize the significance of transactive memory influences over the short duration of the 

project.  Another multi-agent parameter of Construct allows actors to interact with 

varying degrees of homophilistic (relative similarity) versus information seeking 

behavior.  Although I assumed an equal balance of each type of interaction (50% 

homophily-based and 50% information seeking-based) for our base case, I found no 

sensitivity to variations ranging from complete homophily to complete information 

seeking, suggesting that both homophilistic and information seeking behaviors of team 

members were primarily aligned with tasks for which they or others similarly tasked were 

trained and had experience (Hinds et al., 2000).  I additionally assumed (realistically in 
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the case of the software team analyzed in this study) that all agents were fully engaged in 

their respective tasks at all times, thus there were no slack resources. 

Research Methodology 

As the first step in the research approach, I determined which members of the 

software team were critical employees based on their performance impact.  I 

accomplished this by running a base case simulation with all employees and then deleting 

each actor in turn in 16 subsequent simulations.  Based on the incremental difference in 

performance associated with the removal of each actor, I defined a benchmark measure of 

each actor’s relative criticality as the absolute value of the mean percentage decrease in 

team performance resulting from the deletion of that actor, ceteris paribus.  This 

experimental approach is consistent with Price’s (1977) and Argote’s (1999) suggestion 

that organizational effectiveness is positively related to the performance levels of 

individuals in the organization.  I thus theorized, and results confirmed, that performance 

will always decline upon removal of any non-slack actor.  To confirm effect sizes, I 

conducted statistical testing on the performance differences to examine significance of 

actor impacts and performed clustering analysis to identify the baseline group of 

“critical” actors.  As an interim check of face validity, I interviewed the project manager 

of the software team to confirm that the model’s resultant identification of critical actors 

was consistent with management intuition and direct knowledge.  Then, for all actors on 

the team, I calculated the traditional and knowledge-based measures and compared them 

to the base case estimates using hierarchical clustering.   Finally, I evaluated the study’s 

propositions based on receiver operating characteristic (ROC) curve analysis. 

3.4    Results 

Determination of Critical Human Asset Group 

For the base case (that is, for the complete team of 16 people) and for each of the 

16 cases representing incremental removal of an actor on the software team, I executed 

100 Monte Carlo simulations.  Besides establishing a baseline for further comparison, 

this result confirmed Kiesler et al.’s (1994) suggestion that each actor on a well-designed 
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team will have measurable positive impact on the team’s overall performance.  Each 

simulation spanned 250 time periods, with a two-period lag at the beginning of each run 

before removal of any particular actor.  The removed actor was not included on the team 

for the remaining 248 time periods. 

 

In Figure 3.4, I rank the actors by performance impact and group them into two 

clusters based on a hierarchical similarity analysis that minimizes average Euclidian 

distance differences between clusters (Sokal and Michener, 1958).4  As might be 

expected given the relatively high performance impact shown for the Leader, the initial 

clustering analysis placed this actor in a distinct cluster.  Since using that cluster alone as 

a definition of the baseline “critical employees” is trivial, I include the Leader and all 

employees in the second cluster as the “critical” group.  Although specifying 11 out of 16 

people on a team as “critical employees” may seem high, it is consistent with the 

proposed definition of criticality and is intuitively acceptable given the small size of the 

test team and the typically high degree of specialization on software engineering teams 

(Carley et al., 1993).  An interim interview with the project manager also confirmed face 

validity of the results. 

                                                 
4 The hierarchical clustering technique used throughout the paper is based on average linkage updating of distance between clusters 
(Sokal and Michener, 1958).  The distance between the coordinates of each actor (as determined by actors’ x and y values of the 
metric being clustered, such as x=degree centrality with y=performance index) is calculated as Euclidean distance.  Then, the distance 
Dck between clusters c and k is computed as  

Dck  =  Tck / ( nc * nk ) 
where Tck equals the sum of all pairwise distances between actors in cluster c and cluster k, and nc and nk are the sizes of clusters c and 
k respectively.   At each stage of clustering algorithm, the clusters for which Dck  is the minimum are merged. 

Figure 3.4.  Results of multi-agent simulation and cluster analysis showing cluster of 
eleven “critical” employees.” 
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Table 3.2 and Figure 3.4 indicate that different individuals have different impacts 

on the team’s performance, contradicting Bienenstock and Bonacich’s (2002) contention 

that removal of any single individual results in the same impact on team performance and 

affirming theories that such removals are actually deleterious (Price, 1977; Mowday, 

Porter, and Steers, 1982).   

As Table 3.3 reveals, the differences in impacts are generally significant.  The 

average effect size d (defined as MBase-Mn/SD) is 0.74, with a range from 0.39 to 2.32, all 

with moderate to high levels of statistical power (Cohen, 1988), indicating that all 

performance decrements are significant.  The z values for a hierarchical, two-tailed 

Wilcoxon signed rank test of the difference in performance distributions between each 

actor and the next-lower ranked actor show significance at p<0.05 for 11 out of the 15 

differences (see Table 3.3).  Moreover, the values exhibiting the least significance 

(0.0910<p<0.7114) are consistent with the results of the clustering analysis (Figure 3.4). 

Computation and Comparison of Measures 

Table 3.4 summarizes raw calculations of all social position and knowledge-based 

indexes, and Figure 3.5 shows a relative comparison of normalized values for each actor 

on the software team.   

Figure 3.5 reveals results that are non-linear across measures but consistent in 

many respects with expectations based on traditional social network analysis.  Despite a 

few exceptions (e.g., LDR, S3, and EE2), degree and betweenness measures appear to be 

correlated.  In addition, the leaders of the team (LDR, M1, M2, and S1 through S4) have 

generally higher degree and betweenness centrality measures compared to the employee 

group (EE1 through EE9).  Notable exceptions are employees EE7 and EE9, both of 

whom exhibit centrality measures similar to the leadership group.  Upon further  
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Table 3.2.  Performance Results and Significance Based on 10,000 Simulations 
(df=494, *p<.001). 

 

M SD MBase− M n t-value % Impact 
LDR 63.800 1.056 2.455 17.651* 3.705 

M1 64.817 1.649 1.438 8.952* 2.170 

M2 64.880 1.683 1.375 8.483* 2.075 

S1 64.954 1.791 1.301 7.804* 1.963 

S2 65.054 1.725 1.201 7.331* 1.813 

S3 65.123 1.807 1.132 6.761* 1.708 
S4 65.109 1.790 1.146 6.878* 1.730 

EE1 64.891 1.769 1.364 8.228* 2.058 

EE2 65.397 1.736 0.858 5.221* 1.295 

EE3 65.038 1.712 1.217 7.456* 1.838 

EE4 65.443 1.793 0.812 4.870* 1.226 

EE5 65.583 1.730 0.672 4.099* 1.015 
EE6 65.458 1.797 0.797 4.776* 1.203 

EE7 64.963 1.725 1.292 7.884* 1.949 

EE8 65.126 1.788 1.129 6.780* 1.704 

EE9 65.407 1.733 0.848 5.163* 1.279 
 

Table 3.3.  Results of Wilcoxon test showing significance of differences between 
actors’ Performance Impacts (df=248). 

 

Rank Actor % Impact Wilcoxon z p 
1 LDR 3.705 - - 

2 M1 2.170 -13.330 <.0001 

3 M2 2.075 -5.999 <.0001 

4 EE1 2.058 -0.370 <.7114 

5 S1 1.963 -5.210 <.0001 

6 EE7 1.949 -1.600 <.1096 
7 EE3 1.838 -9.610 <.0001 

8 S2 1.813 -2.040 <.0414 

9 S4 1.730 -5.370 <.0001 

10 S3 1.708 -2.930 <.0034 

11 EE8 1.704 -0.590 <.5552 

12 EE2 1.295 -13.490 <.0001 
13 EE9 1.279 -1.690 <.0910 

14 EE4 1.226 -3.000 <.0027 

15 EE6 1.203 -2.110 <.0349 

16 EE5 1.015 -7.760 <.0001 
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Table 3.4.  Computations of Measures. 
 

 CID(n) CIB(n) TEIn KEIn KAIn CCMn 
LDR 0.750 0.387 0.730 0.817 0 3 
M1 0.625 0.433 0.789 0.747 0 4 

M2 1.000 1.000 1.000 1.000 0 4 
S1 0.750 0.697 0.769 0.532 0 4 

S2 0.375 0.625 0.136 0.110 1 2 

S3 0.500 0.957 0.136 0.044 0 1 

S4 0.875 0.932 0.558 0.554 0 4 

EE1 0.500 0.222 0.616 0.036 0 1 

EE2 0.750 0.177 0.127 0.034 0 1 
EE3 0.125 0.000 0.232 0.682 1 2 

EE4 0.500 0.119 0.260 0.015 0 0 

EE5 0.500 0.108 0.050 0.034 0 0 

EE6 0.375 0.000 0.096 0.252 0 0 

EE7 1.000 0.831 0.585 0.001 0 3 

EE8 0.125 0.000 0.679 0.034 0 1 
EE9 0.500 0.893 0.029 0.036 0 1 

 

Table 3.5.  Critical Employee Groups as Determined by Clustering Analysis of Index 
Results ( - or + indicates false negative/positive). 

 
Base 
Case CID(n) CIB(n) TEIn KEIn KAIn CCMn 

Social 
Position 
Heuristic 

Knowledge-
based 

Heuristic 
LDR C C - C C - C C C 
M1 C C - C C - C C C 
M2 C C C C C - C C C 
S1 C C C C C - C C C 
S2 C - C - - C C C C 
S3 C - C - - - - C - 
S4 C C C C C - C C C 

EE1 C - - C - - - - C 
EE2  C+      C+  
EE3 C - - - C C C - C 
EE4          
EE5          
EE6          
EE7 C C C C - - C C C 
EE8 C - - C - - - - C 
EE9   C+     C+  
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inspection, however, Figure 3.5 indicates clear inconsistencies between social position 

and knowledge-based measures.  For example, while employees EE1, EE3, and EE8 have 

relatively low degree and betweenness centrality measures, they score among the highest 

in terms of task exclusivity for EE1 and EE8 and in terms of knowledge exclusivity for 

EE3.  While not always the case, actors with low centrality measures may be more 

introverted “experts” (Burt, 1992; Prietula and Simon, 1989), so the fact that EE3 and 

EE8 are near-isolates (see Figure 3.2) is not inconsistent with such tendencies.  

 

Evaluation of Propositions 

Figures 6a through 6d reveal graphically the results of agglomerative hierarchical 

clustering analysis performed on the degree, betweenness, nTEI , and nKEI  measures.  I 

do not include graphs for the nKAI  and nCCM measures, but their clustering results are 

summarized in Table 3.5 along with all other measures tested.  These graphs indicate that 

there is a “core” of three critical actors – M2, S1, and S4 – identified by all four indexes.  

However, as hypothesized, the traditional social position measures of degree and 

betweenness identify certain actors as critical who are not deemed critical in the 

simulation benchmark.  For example, while the social position measures correctly 

identify actor S3 as critical (even when the knowledge-based measures do not), the social 

position measures ascribe criticality erroneously in other cases (e.g., EE2 and EE9).  

Figure 3.5.  Measures results for all team members. 
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In Table 3.5, rather than using numerical values, I indicate criticality of an actor 

for any given index with the letter “C.”  In the “Social Position Heuristic” and 

“Knowledge-Based Heuristic” columns, I provide heuristic measures denoting an 

individual as critical (“C”) if the union of the respective social position (degree and 

betweenness centrality) or knowledge-based (task, knowledge, and knowledge access 

exclusivity) measures yields a “C.”  False negatives and false positives versus the base 

case for each index are flagged with a “-” or “+” sign, respectively.  For example, the 

“C+” for employee EE2’s degree index, CID(n),  indicates that the degree index measure 

Figures 3.6a-d.  Results of clustering analysis for (a) degree, (b) betweenness, (c) TEI 
and (d) KEI.  Critical actors are shaded (+ or – indicates false positive/negative). 

Figure 3.6a.  Degree critical actors.        Figure 3.6b.  Betweenness critical actors.
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Figure 6a 
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Figure 6b 

 

Figure 3.6c.  TEI critical actors.     Figure 3.6d.  KEI critical actors. 
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Figure 6c 
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Figure 6d 
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identified EE2 as critical, but the “+” indicates that this result was a false positive.  

Likewise, the “-” shown for employee M1’s betweenness index, CIB(n), indicates that M1 

was not identified as critical according to the cluster analysis of betweenness results, but 

the “-“ means this is a false negative (i.e., M1 should have been identified as critical). 

Based on these results, I can now examine in detail the research propositions.  

With respect to P1a and P1b, it is clear they cannot be rejected, as indexes )(nCI D  and 

)(nCI B  as well as the )(nCI D ∪ )(nCI B  relation (“Social Position Heuristic”) all display 

significant instances of false negatives (affirming P1a) and false positives (affirming 

P1b).  As shown in Figures 3.7a and 3.7b, the area under the ROC curves for the degree 

(area=0.44), betweenness (area=0.44), and social position heuristics (area=0.43) are all 

unacceptably low.  Thus, I accept propositions P1a  and P1b.   

With respect to P2, Figure 3.7a shows that the ROC results for task exclusivity 

(area under nTEI  ROC curve=0.73) and knowledge exclusivity (area under nKEI  ROC 

curve=0.55) fare appreciably better than those of social network measures, but these 

measures still do not exhibit acceptably robust ROC levels (i.e., area under curve>0.80) 

when used alone.  However, when used in combination, the nTEI , nKEI , and nKAI   

identify EE1, EE3, and EE8 as critical, and those instances alone are enough to prove 

non-constructively that knowledge elements, particularly as represented by task and 

knowledge exclusivity, can be used to identify critical human assets that social network 

theory applied in isolation may overlook.  As the ROC curve analysis shows in Figure 

3.7b, the “knowledge-based heuristic” measure, where an individual is assigned “critical” 

status if nTEI ∪ nKEI ∪ nKAI = “C”, exhibited the highest degree of discriminatory power 

and provides support for proposition 2. 

Finally, I do not find support for the proposition that a synthesis of theories, 

represented by the composite measure, nCCM , can be used to reliably identify all critical 

human assets, since I find unacceptable levels of false negatives (S3, EE1 and EE8) and 

only a fair rating with respect to the ROC curves in Figure 7b (area under nCCM  ROC 

curve=0.73).  This result is not altogether unexpected, since the composite measure 
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results reflect the unfortunately high number of false negatives indicated by the social 

network measures.     

3.5    Discussion and Contributions 

Results confirm that social network theory is reasonably robust in predicting 

human capital performance but may present deficiencies when task assignment and 

Figure 3.7a.  ROC curves comparing degree, betweenness, TEI and KEI measures.  
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Figure 3.7b.  ROC curves comparing composite, social position and knowledge-
based heuristic measures.   
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knowledge are taken into account.  I posited that resource dependency theory may satisfy 

those deficiencies and used task- and knowledge-based measures to show how a 

resource-based view substantially improves the robustness of predicting criticality of 

human assets based on their relative impact on team performance.  Notwithstanding the 

improvements offered by knowledge-based theories, I find that no single measure or class 

of measures identifies all critical human capital, but that a heuristic application of 

knowledge-based measures results in the highest overall accuracy.  As Figure 3.7 shows, 

the “Knowledge-Based Heuristic” approach using our task- and knowledge-based 

measures alone results in a significantly more satisfactory ROC curve than any of the 

other measures (area under curve = .91, compared with other values ranging from 0.43 to 

0.73).   

Hence I believe the major contribution of this work is in providing empirical 

evidence that the impact of individuals on team performance is more closely associated 

with knowledge and task dimensions than with social network structure.  This work also 

strengthens the tenets of resource dependency theory by providing new motivation for 

increased attention on the value of managing the knowledge and skill bases of individuals 

in organizations.   

Finally, this work contributes to the growing body of literature on social network 

theory, human capital measurement theory, and dynamic organization network theory.   

Traditional social network theory is limited not only in its focus primarily on socio-

metric aspects of organizations, but also in its lack of practical ability to incorporate the 

dynamic nature of those aspects.  The survey-based data employed in social network 

analyses are difficult to obtain and even more difficult or perhaps impossible to maintain 

longitudinally.  The methods proposed in this paper can operationalize theory using data 

that may be more easily obtained dynamically, longitudinally, and non-invasively from 

existing organization information systems such as ERP systems, human resource 

information systems, project management databases, and knowledge databases.   

With respect to potential shortcomings of social network theory, it bears 

emphasizing that even though the social position measures used in the study fared less 
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convincingly compared to knowledge-based measures, I do not believe this means that 

centrality measures are not useful or valid.  Traditional social network analysis focuses 

on limited type of linkages (such as friendship and advice) between actors at only one 

point in time (Carley, 2004).  Moreover, such analyses assume perfect or near perfect 

information.  Despite their limitations as revealed in the present analysis, such traditional 

centrality-based approaches can clearly be richer in social dimensions that may have 

important organizational implications in their own right, suggesting that a synthesis of 

social network measures, such as information centrality (Stephenson and Zelen, 1989) 

and continuing flow (Bolland, 1988), with resource-based approaches may provide a 

stronger combination of qualitative and quantitative insight on criticality of team actors.  

The implications are consistent with Wasserman and Faust’s (1994) observation that “one 

should not use any single centrality measure [since] each has its virtues and utility.”  I 

extend this admonition to knowledge-based measures as well. 

Although the proposed integration of theory has intuitive and empirical appeal, I 

also recognize potential limitations to its wider application.  For example, the accuracy of 

knowledge-based predictions is based on the premise that key tasks and related 

knowledge elements are well understood for all actors in the organization.  In reality, 

these factors may not be understood at all, and, depending on each individual’s 

knowledge-sharing characteristics and the presence of socially connected versus isolated 

members, certain knowledge elements may not become diffused in the group over time 

(Thomas-Hunt et al., 2003).   Even though I believe the task and knowledge elements of 

the meta-matrix framework contribute to improving such understanding, assembling such 

data could be just as daunting and costly as social network analysis. 

Another issue that may limit application of my findings is scalability to teams that 

are larger or more diverse than the software team analyzed in the study.  In particular, use 

of a single team as the central source of empirical data constrains generalizability.  

However, the study incorporated essentially 17 teams by using simulation to analyze the 

base case view of the full 16-member team along with 16 “experimental” teams, each 

with one of the 16 original members missing.  Scalability is affected not only by the size 

and number of teams but also by the intensity of ties, level of decentralization, and 
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number of generalists versus specialists in the organization.  Additional research should 

explore just how “complete” the information needs to be before results can be accepted 

with reasonable confidence.  With respect to accuracy of the measures, I believe that 

more research is also needed on the effects of the α and β parameters, since they may 

provide a means of increasing sensitivity.  I suspect, however, that any increase in 

sensitivity may come only at the expense of specificity if the parameters are set a priori 

based on traditional social network analysis or management intuition.   

3.6    Conclusion 

In summary, many dynamic facets of human capital – ranging from power and 

social relations to task, knowledge, and resources – are crucial in understanding the 

relative contribution of individuals to team performance.  Findings of this study indicate 

that a resource-based view focusing on knowledge provides the most robust link between 

individual performance and team performance.  My knowledge and task-based 

perspectives confirm empirically that key contributors may not always be obvious actors 

such as leaders and managers, but rather those “everyday actors who offer something 

absolutely unique, with a special history in every respect” (Barnard, 1938).  In 

understanding and managing team performance, the knowledge and skill possessed by 

those “everyday actors” may just represent the most critical human capital of all. 
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4.1    Introduction 

To learn, according to Merriam-Webster (2005), is to gain knowledge or 

understanding of or skill in by study, instruction, or experience.  Research on 

organizations has found that such capacity is not restricted to individuals.  Indeed, 

organizations, much like individuals, “learn” new behaviors in response to their collective 

experience (Argote, 1999; Huber, 1991; Levitt and March, 1988).  Within organizational 

units, similar adaptation results in “group-level learning” (Edmondson, 1999; London, 

Polzer, and Omoregie, 2005).  Although organizational learning research provides a 

useful framework for examining cross-firm performance and strategic innovation, one of 

its practical limitations has been its predominant focus on macro-level outcomes with 

comparatively less consideration given to the actual mechanisms of learning.  Thus, while 

prior literature provides substantial evidence that organizations do in fact learn, reasons 

how and why they learn or even issues related to more existential questions such as why 

organizations should learn at all have received less attention.  My objective in this study 

is to open up the “black box” of learning at the group level and to propose and test the 

theory that a significant portion of such group learning behavior is associated with the 

network characteristics of what Wegner (1986) called “transactive memory,” or the 

extent to which group members are familiar with other members’ knowledge.  Groups 
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may be able to enhance their productivity by shaping such network characteristics in 

ways that positively affect learning (Cyert and March, 1992) as well as other 

organizational outcomes (Krackhardt and Stern, 1988).  Therefore, identifying transactive 

memory and its network structure as mechanisms of group learning can help practicing 

managers foster group environments that are conducive to promoting the positive 

outcomes generally associated with organizational learning across many types of 

industries, firms, and processes (Argote, 1999; Yelle, 1979). 

As pointed out by Huber (1991), for a work group to actually make use of its 

collective experience, learning must encompass not only knowledge creation and 

management but also knowledge retention.  Just as in the case of an individual person, a 

group cannot apply knowledge that it cannot “remember” (de Holan and Phillips, 2004).  

Thus, retention of knowledge is often aided by procedures and standards stored in 

written or electronic form (Anand, Manz, and Glick, 1998).  In addition to such physical 

or process-related storage, cognitive structures and shared mental models are also 

critical to “organizational remembering” (Espinosa et al., 2002; Larson and Christensen, 

1993; Liang, Moreland, and Argote, 1995; Reagans, Argote, and Brooks, 2005).  In 

particular, the cognitive structure known as transactive memory has been found to 

positively influence group performance (Austin, 2003; Lewis, 2004; Moreland, Argote, 

and Krishnan, 1996; Stasser, Stewart, and Wittenbaum, 1995; Waller, Gupta, and 

Giambatista, 2004).  Transactive memory, according to Wegner’s (1986) original 

definition, is a shared system for encoding, storing, and retrieving information used by 

two individuals.  The key word in his definition is “shared.”  Conceptually, the only 

difference between an individual person’s memory and “transactive memory” is that 

transactive memory is shared so that the burden of storing and recalling knowledge is 

shouldered reciprocally by each individual.  Wegner’s original theory concentrated on 

dyadic relationships, but subsequent work has found evidence of transactive memory at 

the level of groups (Austin, 2003; Lewis, 2004; Ren, Carley, and Argote, 2006) and 

organizations (Monge and Contractor, 2001; Palazzolo, 2005).  Whether referring to 

dyads, groups, or organizations, transactive memory is analogous to distributed 

computer memory in which information is stored on several different computers but 

potentially accessible by each of the computers as long as linkages exist between them; 
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linkages to memory on other computers expand a single computer’s memory without 

requiring the computer to have additional storage capacity (Wegner, 1995).  In a similar 

way, members of a group of workers with a well-developed “group transactive memory” 

have access to a greater and richer level of task-related knowledge and information than 

would be available in single group member’s memory (Brandon and Hollingshead, 

2004; Hollingshead and Brandon, 2003; Wegner, Erber, and Raymond, 1991).  For 

example, if group member A knows that group member B is an expert in knowledge area 

K, then the necessity for A to acquire or maintain B’s level of knowledge concerning K 

may be reduced.  In addition, if a communication path exists between A and B, even 

other group members connected to A by other communication paths may similarly end 

up relying on B for the needed expertise about knowledge area K.  

This paper theorizes that the level of such transactive memory in a work group 

partially accounts for the relationship between collective group experience and current 

period performance, thereby explaining a significant portion of a group’s learning 

behavior.  The study takes an important first step in testing this theory by using data 

obtained from 1,456 employees and 87 managers in 118 electricity industry work groups 

to analyze the mediating characteristics of transactive memory networks.  Results of 

empirical tests show not only how transactive memory helps explain group learning but 

also how its small-world structure moderates the memory’s mediating effect.  Finally, 

discuss the study’s findings and describe practical implications and limitations as well as 

how the findings may extend to inter-group, organization, inter-organizational, and even 

societal levels. 

4.2    Networks and Transactive Memory 

Networks contain a wealth of information about the content and configuration of 

various types of relationships between organizational actors and between actors and their 

resources (Wellman and Berkowitz, 1988).  A network is simply a set of nodes (also 

called “vertices” or “points”) along with the set of connections (also interchangeably 

called “ties,” “edges,” or “links”) that exist between pairs of those nodes (Diestel, 2005; 

Harary, 1969; Wassermann and Faust, 1994).  In applying the network concept to 
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organization theory, nodes can represent virtually any factor or attribute of production, 

including people, roles, knowledge, tasks, and resources.  In similar fashion, a 

connection between two nodes can represent any relationship or interaction particular to 

the entities contained in the network.5 Thus, networks can reveal informal aspects of 

performance that may not be obvious from organization charts or management reports 

(Krackhardt and Stern, 1988; Prietula and Simon, 1989).   

Although increased attention has been focused on such networks in the past 

decade, their existence and importance was clearly recognized by the early twentieth 

century.  For example, Follet’s (1924) prophetic work on leadership and conflict 

resolution depended heavily on the informal structure of communication networks and 

homophily6 in groups and emphasized the intrinsically dynamic nature of these 

relationships in psychological and social science settings.  Barnard (1938: 114-123) 

dedicated an entire chapter to informal organizational networks in his seminal work on 

management leadership, averring that such networks are both necessary antecedents and 

natural consequences of formal organization.  More recently, in their epilogue to the 

second edition of A Behavioral Theory of the Firm, Cyert and March (1992: 233-234) 

described network conceptualizations as richer, more accurate portrayals of 

organizational structure than traditional hierarchies and stressed the need to understand 

how interactions within those structures lead to organizational outcomes.    

Despite the rich history of networks in the strategy, leadership, and sociology 

literatures, surprisingly little research has examined their relationship to transactive 

memory development.  Although prior research on sociotechnical systems (Trist and 

Murray, 1993) suggests that the extent to which organizations learn is influenced by 

complex interactions between explicit structural attributes of organizations and the 

social and knowledge-seeking relationships between organizational members, only one 

relevant work combined learning with the network perspective.  A simulation study by 

Carley (1992) examined network structures over a virtual time horizon and found that 
                                                 
5 Some social network perspectives use the term network interchangeably with simple graph.  Diestel’s (2005) notion of a network as 
a directed, valued graph defaults to a simple graph if the connections between nodes are bi-directional and weights of all connections 
are equal.  Diestel’s more precise, graph-theoretic definition of a network is used as a foundation for the discussion of transactive 
memory networks later in the paper. 
6 Homophily refers to the tendency for interaction to be based on similarity between agents, such as same gender, same age cohort, 
same ethnicity, etc. (Lazarsfeld & Merton, 1954). 
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“hierarchical” (or centralized decision-making) structures were generally better able to 

withstand impacts of turnover than “team” (or distributed decision-making) structures.  

However, conclusions with respect to network effects on learning were limited because 

learning resulted only from homophily or information-seeking interactions rather than as 

a result of equally important individual and collective task-related experience. 

While the specific links between network structure and transactive memory have 

remained relatively unexplored, recent research on knowledge transfer and distribution 

suggests that networks indeed play an important role in organizational performance 

outcomes.  For instance, Rulke and Galaskiewicz (2000) found support for the 

connection between social network composition and knowledge distribution in their 

survey of thirty-nine teams of MBA students.  In their study, group structure was found 

to be unrelated to performance when groups were dominated by generalists, but 

decentralized groups were associated with higher performance than centralized groups 

when the groups were composed predominantly of specialists. A similar field study 

examining only the leadership and operational structure of organizations found that 

hierarchical structures as well as configurations with highly connected “cores” and 

sparsely connected “peripheries” were negatively related to performance (Cummings 

and Cross, 2003).  Such “core-periphery” networks are generally lower in 

communication density, leading to lower group productivity (Reagans and Zuckerman, 

2001).   Communication also interacts with knowledge distribution in organizations to 

regulate the exchange of knowledge.  In organizations where individuals who were 

members of cohesive “knowledge pools” were also weakly connected via 

communication ties to members in other knowledge pools, knowledge transfer occurred 

more easily (Reagans and McEvily, 2003). 

Although most studies of networks and performance outcomes have found 

positive relationships, at least one study suggests that not all network effects are 

significant.  In Sparrowe, Liden, Wayne, and Kraimer’s (2001) field study encompassing 

teams in several different organizations, for example, the density, or the proportion of 

the actual number to the maximum number of ties, of advice-sharing networks did not 

significantly affect manager-rated performance of the teams.  This suggests that the level 
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of advice sharing alone may not capture the workings of group transactive memory.  

Without some form of knowledge organization, mere increases in density may in fact 

result in decreases in performance due to higher levels of coordination and transaction 

costs. 

4.3    A Small-World Model of Transactive Memory 

The general model of organizational (Womer, 1979; Yelle, 1979) or group-level 

(Liang et al., 1995) learning posits that the current effort required to produce a unit of 

output is a function of the cumulative amount of output produced over a period of time, 

implying that current performance is a function of cumulative previous experience 

(Figure 4.1).  “Cumulative previous experience” acts as a proxy for a work group’s 

knowledge built up over time and stored in the group’s “memory” – that is, in explicit 

routines, standards and technologies along with the collective memories of the 

individuals in the group.  Prior studies have shown that when collective group 

experience is associated with changes in productivity (Argote, 1999) or quality (Lapre, 

Mukherjee, and Van Wassenhove, 2000) in the current period the group is leveraging its 

knowledge gained from experience in order to improve current performance – that is, the 

group is learning.   

 

Learning is thus an evolutionary process that converts group knowledge (as 

represented by cumulative group experience) into contributions to current performance.  

But while critical for performance, knowledge alone, particularly knowledge possessed 

individually by members of the group, is not sufficient for group performance.  

Members must be aware of other members’ knowledge and sufficiently connected to 

them to access the knowledge in a timely manner (Borgatti and Cross, 2003).  This 

Figure 4.1. General Model of Group and Organizational Learning   
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“network” view holds that the performance contributions of individuals comprising the 

group depend not only on members’ knowledge, resources, and experience but also on 

the network relations between the group members (Brown and Duguid, 2000; Burt, 

1992; Cross, Borgatti, and Parker, 2001; Davenport and Prusak, 1998; Doreian and 

Stokman, 1997).  Indeed, in the network paradigm, the relations themselves are 

productive resources and influence the extent to which team members contribute to 

economic production (Coleman, 1988; Cummings and Cross, 2003; Granovetter, 1985; 

Lin, 2001) and innovation (Burt 2004; Kratzer, Leenders, and van Engelen, 2004).  

Thus, the requirement of shared awareness of members’ knowledge combined with the 

network aspect of group knowledge distribution suggests that group transactive memory 

is also organized as a network. 

In addition to knowledge awareness, another essential component of transactive 

memory systems is communication between group members.  Transactive memory tends 

to be greater in groups with stronger communication ties based on shared responsibility, 

joint decision making, and conversations that are both work and non-work-related 

(Hollingshead, 1998).   Thus, for transactive memory to exist in a work group, two 

networks must exist and operate simultaneously – (1) a communication network linking 

individuals in a social context and (2) a “cognitive knowledge network” (Monge and 

Contractor, 2003) linking individuals with other individuals’ knowledge required for the 

group’s tasks.  The first type of network describing actor-to-actor communication 

linkages is well known in social network research (Harary, 1969; Wassermann and 

Faust, 1994; Wellman and Berkowitz, 1988).  These networks evolve for a variety of 

reasons, including friendly chat as well as task-oriented dialogue, and oftentimes enable 

knowledge transfer socially (Friedkin and Johnsen, 1999) or even “serendipitously” 

(Kilduff and Tsai, 2003).  The structure of the communication network affects members’ 

access to information and hence their level of control of relevant resources within the 

network (Burt, 1992; Everett and Borgatti, 2002; Freeman, 1979; Mechanic, 1962).   

The communication network is defined as a valued digraph containing a node for 

each group member along with ties between the nodes representing the extent to which 

communication channels exist between group members.  Communication between 
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individuals may or may not be perceived as reciprocal, thus values between nodes may 

not be symmetric.  As shown in the example in Figure 4.2, values for network relations 

are based on representations of tie strength between individuals.  

 

Depending on the level of individual task interdependence in the group, the 

location of individuals within these communication networks can affect task 

performance (Brass, 1984).  With greater social interaction between members, barriers 

to information access and knowledge resources are lower and explicit knowledge 

transfer is greater (Cummings and Cross, 2003; Nonaka, 1994).  Although in a recent 

study by Shaw, Duffy, Johnson, and Lockhart (2005) the impact of social capital losses 

on performance was found to be the same regardless of communication network density, 

data for their study were collected from a restaurant chain with 92 percent annual 

turnover, indicative of an environment providing very little opportunity for 

communication networks to evolve.  In less volatile contexts, groups with higher 

Figure 4.2  Example of a Communication Networka  
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a The network has 8 nodes (representing the individuals in the organization) connected by 20 directed, 
valued ties (representing the relative strength of the ties between the individuals). 
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numbers of communication gaps generally have been found to have lower performance 

(Rosenthal, 1997), inferring that stable networks with a higher percentage of 

communication connections perform better.  Supporting this contention, Reagans and 

Zuckerman (2001) found that intra-group communication levels were positively 

associated with the productivity of corporate R&D teams.  Even over relatively short 

periods of time, simply working or training together on similar tasks enables work group 

members to develop an awareness of other members’ expertise that is critical to 

performance (Bottger, 1984; Liang et al., 1995; Littlepage, Robison, and Reddington, 

1997).  Hence, the ability of groups to enhance performance over time depends in part 

on the relative social connectedness of its members. 

In contrast to a communication network, which links individuals, the second type 

of network required for transactive memory to exist is a “cognitive knowledge network” 

(Monge and Contractor, 2003) linking individuals with other individuals’ knowledge.  A 

cognitive knowledge network is essentially the set of all actors’ views of the levels of 

knowledge possessed by other actors in the network.  Even though cognitive knowledge 

networks are perceptual, for the construct to have comparative meaning across members 

a “true” knowledge network is presumed to exist comprised of all members connected 

with their respective levels of each knowledge area relevant to completing group 

objectives, tasks, or activities.  The amount, structure, accuracy, and consensus of the 

cognitive knowledge networks can then be assessed relative to the “true” knowledge 

network.   Typically, “true” knowledge networks are heterogeneous in their distributions 

of expertise levels across individuals but may exhibit clustering around task assignments 

(Reagans and McEvily, 2003; Shafer, Nembhard and Uzumeri, 2001; Uzumeri and 

Nembhard, 1998).  Such knowledge networks are comprised of ties from members to 

knowledge areas representing the levels of knowledge that individuals have concerning 

focal knowledge areas.  For example, “experts” in a particular area would have the 

highest value on the tie between themselves and the knowledge area for their area of 

expertise, while individuals with little or no knowledge in that area would have ties with 

correspondingly lower values.  Figure 4.3 graphically depicts a “true” knowledge 

network for the hypothetical group introduced in Figure 4.2.   
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Cognitive knowledge networks are not traditional social network structures 

linking nodes with other nodes (whether or not the nodes are of the same type or in 

distinct node groups).  Rather, cognitive knowledge networks are comprised of “hybrid” 

linkages that connect nodes with ties between other nodes.  To represent such hybrid 

linkages graphically, a generalized graph concept called an iterad7 is thus introduced as 

a valued, directed path, ijk� , between node i and the link, if it exists, between node j and 

                                                 
7 The iterad neologism builds on an anatomical analogy to an iter, or a type of passageway connecting different areas of the brain.  
The pronunciation is “EYE-ter-ad.” 

Figure 4.3.  Example of a “True” Knowledge Networka 
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a The knowledge network is depicted for an organization of 8 individuals (see Figure 2) who 
collectively possess 12 different areas of knowledge.  The network has a total of 20 nodes 
(representing the individuals and knowledge areas in the organization) connected by 23 undirected, 
valued ties (representing the relative levels of the knowledge possessed by each individual) 
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node k (see Figure 4.4).  An iterad therefore represents the value assigned by node i to a 

particular relation between nodes j and k.  In the context of cognitive knowledge 

networks, an iterad corresponds to the level of knowledge that actor i believes actor j 

possesses about knowledge area k.  Iterads are conceptually similar to relations 

described by Krackhardt’s (1987) cognitive social structures but generalize his idea to 

any combination of complex multi-modal relations.  In addition, iterads enable efficient 

graphical representation of complex perceptual networks. 

 

Iterads are thus useful for visualizing a cognitive knowledge network for a group 

of N actors with K possible knowledge areas as the graph induced by the iterads ijk�  that 

exist between all actors i∈{1…N} and knowledge areas k∈{1…K} possessed by actors 

j∈{1…N}, where i ≠ j.  Figure 4.5 shows a cognitive knowledge network for the actors 

in Figure 4.2 and the knowledge areas possessed by those actors shown in Figure 4.3. 

Then, building on the communication network and cognitive knowledge network 

concepts, a transactive memory network is defined by combining linkages in the 

communication network with linkages in the cognitive knowledge network to create a 

new network representing who knows who knows what.  More precisely, a transactive 

memory network is represented by the graph obtained by the concatenation (or union) of 

the nodes and ties in the communication network with the nodes and iterads in the 

Figure 4.4.  Example of an Iterada   
 
 

 

i 

j 

k 

ijk�

 
 

a Iterad ijk� is the directed link between node i and the connection between node j and k. 
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cognitive knowledge network.  As depicted in Figure 4.6, the set of ties between group 

members simply represents the communication network (i.e., the value of the 

communication linkages between any two actors).  The set of iterads between group 

members and knowledge areas possessed by other members represents the cognitive 

knowledge network.  

At a group level, the formation of transactive memory can be characterized as the 

collective outcome of the encoding of episodic memory of individuals comprising the 

group.  Episodic memory is the form of explicit or declarative long-term memory 

Figure 4.5.  Graphical Depiction of a Cognitive knowledge networka 

 
 

 

8
67

4

1 3

2

5

B

C

D

A

E

F

G

H

I

J

K L

8
67

4

1 3

2

5

B

C

D

A

E

F

G

H

I

J

K L

 
 

a The network depicts 34 iterads linking each of the 8 individuals in Figure 2 with the respective  
knowledge areas possessed by other individuals (see Figure 3).  For clarity, values of each iterad are 
not shown 
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associated with an individual’s ability to recall events (and their contexts) experienced at 

a specific time and place (Squire, 1992; Tulving, 1983).  For example, in a work group 

setting, being introduced to a team member with a different role, observing another 

member’s response to a task-related operation, or learning about another member’s 

expertise based on some type of referral (e.g., from another person or a database) are 

types of episodic memory events.  Common features of experiences stored in episodic 

memory are gradually stored in semantic memory, the other form of explicit long-term 

memory associated with an individual’s ability to access a broader base of knowledge, 

rules, concepts, and mental representations quickly and effortlessly (Squire, 1992; 

Figure 4.6.  Graphical Depiction of a Transactive Memory Networka 
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a The network combines the communication network from Figure 2 with the cognitive knowledge 
network from Figure 5. For clarity, values of each iterad and each directed communication tie are not 
shown. 
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Yonelinas, 2002).  In this process, episodic memory reduces its sensitivity to particular 

events so that the information about them can be generalized.  Actors’ familiarity with 

the knowledge of other actors in the same task-situated social cluster occurs quickly and 

is high and relatively accurate due to the higher frequency of episodic memory events 

within such clusters and hence the greater opportunity for episodic memory to transition 

to semantic long-term memory before forgetting sets in.  Conversely, the existence of 

fewer episodic memory events among actors in different task-situated knowledge 

structures results in lower levels of semantic memory concerning the knowledge that 

respective actors in one task-situated social cluster have about the knowledge of actors 

in the other task-situated social cluster.  The lower the level of a cluster’s semantic 

memory about and hence awareness of the knowledge of actors in other task-situated 

social clusters, the weaker the ties between those clusters. 

Thus the episodic-semantic memory model suggests that as team members work 

together on common tasks, regular and more frequent episodic memory events combined 

with social interaction in the context of those events results in the formation of task-

situated clusters of actors.  As actors from different clusters interact in less frequent 

social or task situations, ties between clusters emerge, providing clusters with weak 

(Granovetter, 1973) but low cost (Robins, Pattison, and Woolcock, 2005) access to 

knowledge from other clusters.    

Prior research has shown that the accuracy of actors’ perceptions of other actors’ 

knowledge can influence how much impact an organization’s transactive memory will 

have on performance (Austin, 2003).  Higher performance has been associated with 

work groups whose members accurately discern and incorporate task-relevant 

knowledge of other members (Henry, 1995; Littlepage et al., 1997; Waller et al., 2004), 

but no studies have specifically addressed the impact of transactive memory on the 

ability of a group to improve performance based on cumulative experience, that is, based 

on learning. Research suggests that, over time, communication and advice network 

linkages are updated based on what members need or desire to know for given tasks, 

their awareness or belief concerning who has the requisite knowledge, their access to 

those presumably knowledgeable members, and the costs associated with asking those 
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members for the relevant advice (Borgatti and Cross, 2003).  The episodic-semantic 

memory model infers that the “awareness” dimension forms through repeated episodic 

updates of task-related communication and advice channels, ultimately leading to the 

broad and accurate understanding of the roles and expertise of other members, lower 

transaction costs associated with knowledge transfer, and clearer accountability for 

member productivity suggested by Wegner (1995).   Groups with higher levels of 

transactive memory, other things equal, are able to access task-related information and 

apply a wider range of experience to problem solving more quickly than other groups 

(Liang et al., 1995).  Thus, a group’s level of transactive memory should not only be 

associated with higher performance at a single point in time but also be partially 

responsible for a group’s ability to learn from experience.  

Of course, transactive memory can only partially explain group learning because 

other group psychological, contextual, and structural factors such as trust (Levin and 

Cross, 2004), cognitions (Fiol and Lyles, 1985), routines (Cohen and Bacdayan, 1994; 

Levitt and March, 1988; Nelson and Winter, 1982), and information technology (Tippins 

and Sohi, 2003), as well as individual learning characteristics (Mazur and Hastie, 1978; 

Shafer et al., 2001) and knowledge transferred from other groups (Darr, Epple, and 

Argote, 1995), all may account for variations in levels of learning.  Thus, transactive 

memory is expected to partially explain group learning, leading to my first hypothesis 

(see “H1” in Figure 4.7) that  

Hypothesis 1: The relationship between a group’s collective experience and its 

performance is partially mediated by the amount of the group’s transactive 

memory. 

As mentioned previously, the episodic-semantic memory model suggests not 

only that the amount of transactive memory changes over time but also that the 

perceptions that individual group members have about other members’ knowledge tend 

to “cluster” according to social relationships maintained in the repeated performance of 

a task.  This clustering is consistent with empirical evidence of “knowledge pools” 

(Reagans and McEvily, 2003; Singh, 2005) in work teams.  Reagans and McEvily 
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(2003) found that when such knowledge pools were connected to each other through 

socially connected members of the respective pools, knowledge transferred more easily 

within the network.  Thus, the way knowledge is concentrated in task-centered clusters 

keeps it embedded in the work group while making it potentially accessible through 

extant communication links outside those clusters.  

 

The clustered structure of transactive memory is distinct from the amount of 

transactive memory in a group.  Assuming the conditions are met for the existence of 

transactive memory (i.e., the presence of both a communication network and a cognitive 

knowledge network), it is proposed that the extent to which transactive memory actually 

bears upon the effectiveness of the work group depends on whether such memory is 

structured to enable efficient access to knowledge distributed throughout the group.  

Thus, the efficiency of a group’s transactive memory depends not only on how quickly 

and accurately team members can access knowledge of group members in their own 

knowledge clusters but also on how easily they can access knowledge of members in 

other clusters.  That is, efficiency rests on the network of social ties and iterads within 

such knowledge clusters along with ties and iterads between the clusters themselves.   

Figure 4.7.  Small-World Theory of Transactive Memory and Learning 
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The model that is proposed to maximize transactive memory efficiency is the 

“small-world network” model (Kochen, 1989; Milgram, 1967; Watts and Strogatz, 

1998).  Small-world networks are composed of clusters of nodes connected to other 

node clusters throughout the network.  Within clusters, nodes are more highly connected 

to each other than to nodes outside of the cluster.  However, the path between any two 

random nodes remains relatively short because typically at least one node in each cluster 

is connected to a node in another cluster.  Thus even as the size of the network increases, 

the efficiency with which one node can access another node anywhere in the network is 

virtually the same.   

Such structures have been found to characterize a variety of complex physical, 

biological, and social phenomena (Albert and Barabási, 2002; Strogatz, 2001).  For 

example, the efficient functioning of memory in humans depends on distributed 

functionality yet high connectivity between various physical memory areas in the brain 

via neural shortcuts (Mountcastle, 1997; Roxin, Riecke, and Solla, 2004).  Other 

examples include the network of hyperlinks in the Internet and the network of social 

relations in the spread of infectious diseases (Bar-Yam, 1997).  Watts and Strogatz 

(1998) demonstrated that the neural network of the worm Caenorhabditis elegans, the 

power grid of the western United States, and the collaboration graph of Hollywood film 

actors are all similarly structured as small-world networks.  The authors further 

suggested that such networks are generic for many networks found in nature.  Small-

world networks have even been popularized by the concept of “six degrees of 

separation” (Guare, 1990) and the “Kevin Bacon Game” (University of Virginia, 2005). 

The structure of group transactive memory implied by the episodic-semantic 

memory model – that is, a network comprised of densely connected clusters (or sub-

groups) that also have easy access to other densely connected clusters – is also 

consistent with the small-world network model.  In small-world networks, clustering 

promotes efficient local information sharing, while connections between clusters 

promote reachability between any two nodes throughout the network.  The extension of 

small-world network characteristics to transactive memory is similarly dependent on 

these twin concepts.  Within knowledge-centric clusters of work group members, 
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communication links arising from knowledge-seeking, homophily, or proximity create 

rich channels (Adler and Kwon, 2002) through which members can opportunistically or 

intentionally transfer knowledge (Ancona and Caldwell, 1992a; Kilduff and Tsai, 2003; 

Nonaka, 1994; O’Reilly, Caldwell, and Barnett, 1989) and thus improve group 

performance (Oh, Chung, and Labianca, 2004).  As group members spend more time 

working together, stronger communication networks promote reachability that enables 

the group’s experience working together to enhance productivity (Reagans et al., 2005).8  

Moreover, the evolution of stronger ties within knowledge clusters results in higher 

levels of transfer of tacit and complex knowledge, while the development of ties 

between clusters, although possibly weaker, is sufficient to account for transfer of less 

complex explicit knowledge between various network regions (Hansen, 1999).  Such 

patterns are weaker or non-existent in groups with underdeveloped communication 

networks, where higher percentages of more socially isolated members may potentially 

constrain the positive effect of knowledge sharing on productivity (Thomas-Hunt, 

Ogden, and Neale, 2003).  

While the inference that transactive memory is structured as a small-world 

network may be appealing upon first glance, it is not immediately apparent that group or 

even organization-level transactive memory networks are large enough to exhibit small-

world characteristics.  This would be arguably true were the transactive memory 

network only composed of communication linkages between members.  However, given 

that transactive memory networks are comprised of group member communication links 

as well as each member’s iterads indicating perceptions of every other member’s level of 

knowledge, the maximum number of nodes and iterads in the transactive memory 

network is on the order of N 2K.  Thus, even for the relatively small group of eight 

members in the example introduced in Figure 2, the size of the transactive memory 

network is on the order of 82
�12, or 768.  For more practical sizes of knowledge 

networks, the size of a transactive memory network for a team with only eight members 

                                                 
8 Katz (1982) found that teams comprised of members who largely had been together for more than five years exhibited significantly 
less frequent intra-team communication than teams with lower average tenures, leading to reduced team performance.  However, his 
study measured communication in terms of overall frequency as opposed to potential for communication as represented by changes 
in the density of network linkages.  Hence, declines in gross intra-team communication frequency may arguably be explained by 
reductions in longer-tenured groups’ needs for communication due to changes in knowledge stocks and group efficacies without 
concomitant reductions in network density.  The network view holds that the richness of the communication interconnections can 
persist and grow irrespective of gross communication frequencies. 
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would be 1,200 or higher. 

Thus, the implication of small-world network theory is that the most efficient 

group transactive memory is characterized by highly connected, knowledge-centric 

communication clusters connected by relatively few communication links between 

clusters.  When social connections between team members are clustered around task-

related knowledge areas of team members, their learning is embedded in knowledge 

pools that evolve as members work together.  In “small world” transactive memory 

networks, at least one member of such knowledge clusters is also connected with at least 

one member of another knowledge cluster, shortening the geodesic distance between 

members needing task-related advice or knowledge.  It is anticipated, then, that the 

extent to which transactive memory affects group learning is dependent on the “small-

worldliness” of the transactive memory network, engendering my second hypothesis 

(see “H2” in Figure 7) that  

Hypothesis 2:  The magnitude of the partial mediation effect of transactive 

memory on the relationship between cumulative group experience and group 

performance depends on the degree to which the transactive memory network is 

structured as a small-world network.  

The example of a transactive memory network shown in Figure 6 displays such 

small-world properties in its arrangement in three distinct clusters.  Nodes 2 and 8 

comprise one cluster around knowledge areas D, F, and J.  Similarly, nodes 6 and 7 

form a second cluster around knowledge areas B, L, and K despite the relatively weak tie 

between node 3 and knowledge area B.  The third and largest cluster is composed of 

nodes 1, 3, 4, and 5 combined with knowledge areas A, C, E, G, H, and I.  Each cluster is 

characterized by relatively strong and dense social ties and iterads within the cluster 

itself.  Connections between clusters are provided by somewhat weaker ties between 

nodes 1 and 2, nodes 2 and 7, and nodes 3 and 7 (see Figure 2 for tie weights).  In 

addition, the example shows how quickly a transactive memory network even in a small 

work group can become very complex.  Despite the complexity, however, efficiency 

remains high because even the most distant nodes are separated by a path going through 
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only three other nodes.  For example, although actor 3 is an expert in knowledge area C, 

her expertise is accessible by node 8 (who apparently has little or no expertise in 

knowledge area C) through node 8’s (strong) connection to node 2, node 2’s (weak) 

connection to node 1, node 1’s (strong) connection to node 5, and node 5’s strong social 

tie and iterad connected to knowledge area C.  Node 1’s strong social connection to node 

3 could also prove beneficial in future exchanges as node 1 increases awareness of node 

3’s knowledge about C.  Thus, task-centric and socially-situated knowledge in each 

cluster reinforces the strength of the social connections as well as the levels of intra-

cluster knowledge awareness.  Ties between clusters are weaker, thus lowering 

transaction costs while guaranteeing reachability between nodes in different clusters. 

4.4    Method 

Data 

The study population is comprised of four U.S. companies engaged in the 

production and sale of electricity to industrial, commercial and residential consumers.  

Because of concerns in the electricity industry about knowledge retention due to 

anticipated high levels of retirement (Greene, 2005), the companies volunteered access 

to their workforces in return for insight from the study that they believed could be useful 

in their human resource strategies.  Participants were also assured in writing that no 

information would be published that could be traceable by competitors to their 

respective organizations, thus I report no identifying information, including size and 

geographic information.  Other than access to employees (which represented a 

substantial contribution), no direct financial support was provided by participating 

companies, and no financial inducements were provided to participating employees in 

return for their completing the surveys.  While a field study is clearly not a random 

sample, I believe the commitment of the companies to the research objectives enabled a 

high level of access to managers and groups for initial and follow-up access as needed 

and helped promote the high level of participation crucial to reliable empirical network 

studies (Stork and Richards, 1992). 
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Within the participating companies, 120 groups representing five distinct areas – 

plant operations, distribution system maintenance, installation services, and customer 

call center services – agreed to complete the extensive network survey.  In addition, two 

to four managers per group were separately surveyed and interviewed with regard to 

performance of teams about which they were knowledgeable.  In all, 1,503 employees 

and 87 managers participated in the study.  Fifteen surveys (from nine employees on one 

team of 18 and six employees on another team of 15) could not be used because the level 

of missing data at the group level exceeded the 15 percent threshold discussed below.  

Out of a total of 1,488 employees on the remaining 118 teams, 1,456 provided usable 

surveys, representing a net participation rate of 97.8 percent.  Of the 32 employees who 

did not complete surveys, most were unavailable due to training or illness; four refused 

to complete the survey and, in accordance with survey guidelines, their refusals were not 

documented or reported to managers in any way.  Data collection began in December, 

2004 and continued until August, 2006.     

I administered printed surveys of knowledge, social, and transactive memory 

networks in person to all participants at their work sites during work hours. The surveys 

took each group approximately 30 to 45 minutes to complete.  Employees participated 

voluntarily and without separate pay.  Because of the importance of high response rates 

for network-oriented studies, repeat visits were scheduled usually within one week as 

needed to survey group members unavailable during the initial survey meetings. Twenty 

teams were surveyed in a pilot phase to validate survey construction and administration 

procedures.  Meetings with team managers confirmed the survey instrument validity 

with only cosmetic changes in the instrument at each group and company.  In limited 

cases, I conducted some manager follow-up conversations by phone. 

In cases where the overall survey participation rate for a group was below 85 

percent, all surveys for that group were rejected.  Omitted data for employees on work 

groups with low levels of missing data were be imputed using dyadic reconstruction, 

which has been shown to provide acceptable results when non-response levels do not 

exceed 15 percent (Robins, Pattison, and Woolcock, 2004; Stork and Richards, 1992).  

Dyadic reconstruction is based on presumed transitivity with other team member 
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responses where possible or with the median team response otherwise.   

In addition to survey data and manager interviews, archival data was obtained 

where feasible to help validate performance ratings.  Such data have limited value in a 

cross-sectional group study because the standards and measures of performance across 

groups vary widely.  However, the data were useful in corroborating the relative 

rankings of groups with common managers. 

Measures 

Dependent Variable 

Manager-rated Team Performance.  Manager ratings of group performance 

have been found to be reasonable predictors of actual team performance (Heilman, 

Bock, and Lucas, 1992) and were assessed by external leaders using three items adapted 

from Roe, Dienes, Ten Horn, and Zinovieva (1995) and Schippers, Den Hartog, 

Koopman, and Wienk (2003).  The three items are:  “This team’s performance exceeds 

the performance of other teams,” “This team meets or exceeds performance targets,” and 

“There are no or few complaints about the quality of this team’s work” (1=Strongly 

Agree, 5=Strongly Disagree).  The average of Cronbach’s alpha computed across sets of 

common managers was 0.88, indicating strong internal validity of the survey questions. 

The responses were reverse coded and averaged to compute manager-rated team 

performance for each work group.   

Although not used in the formal statistical analyses, employee versions of the 

same three questions were also asked of each group member as a means of providing a 

modest measure of consistency.   The three items are:  “Our team’s performance exceeds 

the performance of other teams,” “Our team meets or exceeds our performance targets,” 

and “There are no or few complaints about the quality of our team’s work” (1=Strongly 

Agree, 5=Strongly Disagree).  The items were reverse coded and averaged for each work 

group.  The average Cronbach’s alpha (weighted by group size) across all 118 groups is 

0.85.  Average group member self-ratings, while predictably systematically higher (by 

an average of 7.9 percent, significant at p<0.01) due to well-documented biases in self-
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assessment (Dunning, Heath, and Suls, 2004), they correlated very highly with manager 

ratings (r=0.89).  

While both cross-sectional and self-ratings raise the possibility of common 

method bias, they do permit comparison of performance across teams with tasks of 

varying complexity and generally incompatible performance criteria.  In addition, 

Evans’ (1985) study of correlated error in interaction models found that common 

method bias does not induce artifactual interaction and that true interactions can in fact 

be attenuated, suggesting that if anything such bias might result in understatement of 

observed interactions. 

Independent Variables 

Average Group Tenure.  Each type of work group in the sample measured 

output differently, and even output measures for groups of the same type across different 

companies varied considerably.  Thus, average group tenure – or the average number of 

years that members have been part of their current work group – is used as a proxy for 

collective group experience.  At the group level, tasks of work groups included in the 

study are uniform with respect to group type.  For example, a plant team’s task is to 

maintain production facilities and reliably produce electricity when called upon to do so.  

As group members focus on such shared group tasks over time, better coordination and 

communication along with the development of shared knowledge structures lead to 

improved performance (Klimoski and Mohammed, 1994; Liang, Moreland, and Argote, 

1995).  Thus, the amount of time members have spent working as an intact group 

captures the nature of specific occurrences shared by team or group members such as 

engaging in group training, dealing with emergency conditions, or overcoming 

widespread outages.  While the measure is quantitative, its purpose is also to capture 

qualitative elements of experience, which according to Tesluk and Jacobs (1998) adds 

another important but often neglected dimension to the robustness of group experience 

measures.   

Transactive Memory Network Density.   The amount of transactive memory in 

a work group is represented by the density of the group’s transactive memory network, 
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or the proportion of actual transactive memory compared to the maximum possible 

transactive memory.  As introduced earlier (see Figure 6), a transactive memory network 

is comprised of the union of a communication network and a cognitive knowledge 

network.  Thus, transactive memory network density is a combination of the density of 

the underlying communication and knowledge networks.   

The first component of group transactive memory network density is the density 

of the communication network (see Figure 2).  A group’s communication network is 

formally defined as a valued graph represented by the square, asymmetric matrix C[i, j], 

with i∈{1…N} rows, one for each of N team members, and j∈{1…N} columns, also 

one for each team member.  Each cell in C[i, j] represents the level of communication 

between individual i and individual j.   

Values for network relations in the communication networks of the groups in this 

study were based on responses to the question “Please indicate approximately how often 

you communicate with your team members for any reason.” Communication levels were 

measured on a Likert scale from 1 to 5 (1=Once per Month (or less), 5=More than Once 

per Day).  Although individual reports of connections with others are not perfect 

reflections of their actual interactions (Bernard, Killworth, and Sailer, 1982), group 

members are quite good at remembering long-term or typical patterns of interaction with 

other members (Freeman, Romney, and Freeman, 1987).  Respondents report frequently 

contacted, close, core network ties with those whom they have many types of 

relationships more reliably than they do more distant, simple relations (Kogovšek and 

Ferligoj, 2004), and those close ties are also more accessible in memory (Brewer, 1995; 

Burt, 1986; Verbrugge, 1977).  Thus, even though respondents’ answers on the survey 

reflect their typical interpersonal environment rather than a mathematically accurate 

representation of communication, it is argued that the survey instrument is acceptable for 

identifying the key communication patterns needed in this study. 

Communication Network Density, DC, is then defined as the proportion of actual 

communication compared to maximum possible communication.  Since diagonals 

(which would represent self-communication) are not considered, the maximum level of 
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communication would be 5N(N-1).  Thus, DC  is calculated as: 
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The second component of group transactive memory network density is the 

density of the cognitive knowledge network.  Introduced earlier (see Figure 5), a 

cognitive knowledge network K[i,j,k] for a group of N actors with K possible knowledge 

areas is now formally defined as the graph induced by the iterads ijk�  that exist between 

all actors i∈{1…N} and knowledge areas k∈{1…K} possessed by actors j∈{1…N}, 

where i ≠ j.  Because team members were generally limited to thirty minutes to complete 

the survey, it was not possible to survey team members on their detailed perceptions of 

values of other members’ knowledge over all knowledge areas.  Similar limitations have 

been documented in previous network research (Krackhardt, 1987).  Thus, this study 

used a simplified form of cognitive knowledge network, focusing on whether team 

members perceive others to be experts in each knowledge area for the group’s task.  In 

the cognitive knowledge network represented by the matrix K[i,j,k], the iterad ijk�  in 

each cell is thus set to a value of 1 if team member i perceives team member j to be an 

expert about knowledge area k, otherwise the cell value is 0.  Values of entries in the 

cognitive knowledge matrix were based on responses to the following survey question: 

“For each knowledge area, please indicate the team member or 

members (including yourself) whom you believe are experts in that 

particular knowledge area.  If you cannot identify anyone for a certain 

area, leave it blank.  If there is more than one, list them all.” 

Knowledge areas were elicited based on task-related training materials, 

personnel descriptions, and interviews with managers and subject-matter experts.   

Knowledge awareness as revealed by survey responses was assumed to be a “true” 

representation of knowledge awareness.  Variables for transactive memory accuracy and 

consensus (introduced in the “Control Variables” section below) control for variance of 
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the actual group transactive memory networks from the ideal (for example, due to 

incorrectly identifying someone as an expert).  Since self-ratings of expertise are subject 

to overconfidence bias (Dunning, Heath, and Suls, 2004), those self-nominations were 

excluded from consideration in calculating transactive memory network density (future 

studies will examine the effects of these “reflexive iterads”).  

Cognitive knowledge network density, DK, is obtained by finding the proportion 

of a group’s actual cognitive knowledge compared to its maximum possible cognitive 

knowledge.  The actual cognitive knowledge for a group is sum of all the cells in the 

matrix K[i,j,k].  The maximum possible cognitive knowledge for a given group depends 

on the number of distinct experts (excluding self-nominations) identified for each 

knowledge area.  Summing the number of distinct knowledge experts in each knowledge 

area over all knowledge areas and multiplying that value by N-1 yields the maximum 

possible cognitive knowledge, Kmax, for that group.  Thus, DK is calculated as: 
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Transactive memory network density, DT, for a group is the weighted 

combination of the densities of the group’s communication and cognitive knowledge 

networks:  

 KKCCT D�D�D +=  (4.3) 

where 0=+ KC �� , and global values of C�  and K� were determined by iterative 

optimization of the statistical model to minimize the sum of squared errors. 

Small-World Quotient.  The extent to which group transactive memory exhibits 

small-world characteristics is captured in the “Small-World Quotient,” or SWQ (Kogut 

and Walker, 2001; Davis et al., 2003; Uzzi and Spiro, 2005).  As discussed previously, 

small-world networks are characterized by high clustering accompanied by low average 

distance between nodes.  The “clustered” nature of group transactive memory is 
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measured by calculating a dynamic, multi-dimensional version of the clustering 

coefficient (Watts, 1999) for the transactive memory network.  The clustering coefficient 

reflects the average tendency of group members’ transactive memory “neighborhoods” 

to be relatively highly connected.  In calculating the clustering coefficient, the 

proportion of actual connections in every member’s “neighborhood” is compared to total 

possible connections.  Values for each member are then averaged to obtain the group’s 

clustering coefficient.  Since the group transactive memory network is a union of two 

networks – the communication and cognitive knowledge networks, a group member’s 

neighborhood consists of both ties to other members as well as other iterads.  

Accordingly, I define a group member’s “neighborhood” as the collection of:  

(1)  group members to whom the focal member is connected via communication 

ties,  

(2)  ties from the focal member to the knowledge areas in which one or more 

members in the neighborhood view the focal member as expert (thus, this 

excludes ties resulting from self-nominations), 

(3)  agent-to-knowledge ties to which the focal member is connected via his or 

her iterads, 

(4)  ties between group members defined in (1), 

(5)  iterads formed between group members in (1) and the ties defined by (2), 

and 

(6)  iterads formed between group members in (1) and the ties defined by (3).   

For example, Figure 4.8 shows the neighborhood of group member 1 based on 

the transactive memory network example depicted in Figure 4.6.  Group member 1’s 

neighborhood is comprised of members 2, 3, 4, and 5; the ties between member 1 and 

knowledge areas H and I; the member-to-knowledge ties 2-to-D, 3-to-B, 4-to-G, 4-to-H, 

4-to-I, 5-to-A, 5-to-G, and 5-to-H; and the total of twelve ties between these sets of 

neighborhood elements – specifically, the two connections between member 5 and 
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members 3 and 4, along with the ten iterads τ 3-1-H, τ 4-1-H, τ 4-1-I, τ 5-1-I, τ 2-4-I, τ 3-4-G, τ 3-5-

A, τ 4-5-G, τ 4-5-H, and τ 5-4-G.  

 

The clustering coefficient, CCi, for any group member i is the ratio of Ci, the 

actual number of ties between the elements of i’s neighborhood, to max
iC , the maximum 

number of ties between those elements, where  

max
iC  = maxmaxmax

�jkj CCC ++  ; 

max
jC  = 

2
)1( −−− ii jj  = maximum number of ties between group members in i’s 

neighborhood (excluding i); 

max
jkC  = iikj−  = maximum number of ties between members of i’s neighborhood 

and the ties between i and i ’s expert knowledge areas; 

Figure 4.8.  Transactive memory network “neighborhood” for group 
member 1  
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1
)(J1  =  maximum number of iterads connecting 

members of i ’s neighborhood with the member-to-knowledge pairs to 

which member i is connected; 

  j-i  =  number of nodes in set J∈{members to whom i is directly connected}; 

  ki  =  number of nodes in set K∈{knowledge areas in which member i is 

acknowledged as an expert by one or members of i ’s neighborhood}; 

)(J jH   =  number of J(j)-to-knowledge area pairs to which i is connected by an 

iterad, and 

xH   =  number of x-to-knowledge area pairs to which i is connected via an 

iterad, where member x is not part of i’s communication neighborhood. 

Returning to the example in Figure 4.8, the maximum number of transactive 

memory connections in member 1’s neighborhood is  

 35)]73()04[()24(
2

)34( =⋅+⋅+⋅+⋅ . 

Thus, the clustering coefficient for group member 1 is 12/35 or 0.34.  The 

clustering coefficient for the entire transactive memory network, or CC, is the average of 

CCi over all i∈{1…N group members}.  This component of the SWQ reflects the 

tendency of team members to cluster around both common connections to one another 

and knowledge areas related to the shared group tasks.   

In addition to high clustering, small-world networks exhibit low average distance 

between group members.  Thus, the SWQ incorporates this dimension using a measure 

of characteristic path length (CPL) of the communication network.  Assuming that the 

communication network C[i, j] is fully connected (that is, every member is reachable 
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through one or more connections with other members9), then the distance between any 

two members is the shortest length of the possible paths connecting them. The CPL is 

obtained by averaging the shortest distances between every pair of nodes.     

Combining the CC and CPL into a single measure, SWQ, requires recognition 

that small-world networks have clustering coefficients much higher than clustering 

coefficients of random graphs and characteristic path lengths that are on the same order 

as characteristic path lengths of random graphs (Watts and Strogatz, 1998).  Following 

Watts and Strogatz, for a random transactive memory network of n members, k 

knowledge areas, d average number of communication edges per member, and dk 

average number of iterads per member, the clustering coefficient CCrandom is 

approximated by )]1(/[)( ++ kndd k , and the characteristic path length CPLrandom between 

members is approximated by (ln n)/(ln d).  The SWQ is calculated by dividing the ratio 

of CC to CCrandom by the ratio of CPL to CPLrandom.  Higher SWQ values more strongly 

indicate that the focal network exhibits small-world characteristics.    

Control Variables 

Average Task Experience.  Measures of experience based on both tenure 

(McDaniel, Schmidt, and Hunter, 1988; Medoff and Abraham, 1981; Schmidt, Hunter, 

and Outerbridge, 1986) and the number of times a task is performed (Lance, Hedge, and 

Alley, 1989; Vance, Coovert, MacCallum, and Hedge, 1989) have been shown to have 

positive yet curvilinear associations with individual performance.  However, as 

suggested by Quiñones et al. (1995) and Tesluk and Jacobs (1998), measures that 

represent both time and task perspectives of experience are more robust.  Because of the 

nature of the group tasks in this study, it is argued that role tenure is also a reasonable 

measure for task experience (i.e., the number of times various tasks have been 

performed).  For example, the task of a steamfitter in a power plant is generally focused 

on maintenance and repair work involving piping, valves, and gaskets for transporting 

high- and low-pressure steam, oil, and air.  Routine maintenance frequency, procedures, 

and job-time allocations are centrally prescribed and thus the number of times a 
                                                 
9 In this study, the lowest weighting on a communication linkage is 0.20, corresponding to a frequency of communication of less than 
once per month.  Thus, the assumption that the communication network of each group is fully connected is valid. 
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steamfitter has performed assigned tasks is largely a function of the member’s tenure as 

a steamfitter.  Other team members’ levels of experience are similarly associated with 

their role or position tenure.  Thus, this measure is calculated at the group level as role 

tenure averaged over all team members. 

Average Organization Tenure.  Organizational commitment, which generally 

has been found to have positive effects on performance (Mowday, Porter, and Steers, 

1982), has been found to decay as a function of tenure.  New organization members have 

been found to exhibit high levels of commitment that dissipate with increasing time in 

the organization (Wright and Bonett, 2002), resulting in lower group performance.  

Thus, if significant, this measure is expected to have a negative coefficient and is 

calculated at the group level as the average number of years each member has been in 

the organization of which the group is a part.   

Turnover.  Turnover is defined as “the degree of individual movement across 

the membership boundary of a social system” (Price, 1977).  While not all findings 

regarding turnover have been negative (see Jovanovic, 1979, and Guthrie, 2001), most 

studies that incorporate turnover as an independent or interactive variable have found 

deleterious effects.  For example, McElroy, Morrow, and Rude (2001) found that 

turnover adversely affected profitability, productivity, service costs, and customer 

satisfaction in 31 financial services firms.  Huselid’s (1995) study of nearly 1,000 firms 

found that firm-level turnover was associated with lower sales per employee as well as 

inferior financial performance.  Further studies by Batt (2002) and Shaw, Duffy, 

Johnson, and Lockhart (2005), found similar negative impacts on performance as 

turnover increased.  Experimental research by Argote et al. (1995) found that turnover 

affected groups with complex tasks less than those with simple, non-decomposable 

tasks.  All of these findings suggest that turnover can be a crucial control variable in 

performance studies.  In this study, turnover rates are relatively stable and thus are 

measured for the twelve months preceding the month in which the survey was 

administered.  It is expected that turnover will have a negative coefficient and is 

calculated as the number of separations for the year divided by average monthly 

employment for the year (U.S. Department of Labor, 2006). 
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Transactive Memory Consensus.  Moreland (1999) stressed that the level of 

agreement among team members concerning how knowledge is distributed is an 

important dimension of transactive memory.  Prior research suggests that 

communication in group task settings, even over relatively short periods of time, leads to 

reasonably accurate awareness of other actors’ knowledge (Bottger, 1984; Liang, 

Moreland, and Argote, 1995; Littlepage, Robison, and Reddington, 1997).  However, 

Austin (2003) found that the level of “task transactive memory consensus” is positively 

associated with group performance.  Austin’s original measure assumes that each team 

member recognizes only one other team member as a potential expert in a given 

knowledge area.  This restriction could lead to overstating the level of agreement, since 

members may believe that multiple members are experts.  Thus, to build on Austin’s 

measure yet reflect a more robust level of expertise awareness in groups, transactive 

memory consensus is defined as the extent to which members agree that any number of 

members are experts in each knowledge area. 

To compute this measure, for each knowledge item k in the cognitive knowledge 

network, K[i,j,k], I first calculate the average “distance” between each group member’s 

perception of experts and every other member’s perception as the average Hamming 

distance between member i ’s perceived experts vector K[i,j,k], and all other agents’ 

perceived experts vectors K[1,j,k], …, K[i-1,j,k], K[i+1,j,k], …, KA[N,j,k], i≠j.  The 

average Hamming Distance between agents for a given knowledge area is then 

normalized by dividing by the maximum Hamming distance, N.  After this process is 

repeated for each knowledge area, the k normalized distance values are then averaged to 

obtain a group average Hamming distance over all knowledge areas.  Finally, the value 

of the group’s Transactive Memory Consensus is obtained by subtracting the group 

average Hamming distance from 1 to indicate that a high score is associated with high 

transactive memory consensus.   

Although knowledge of which team members have useful connections outside 

the work team is also associated with improved team performance (Ancona and 

Caldwell, 1992b), impacts from these external transactive memory references are 

outside the scope of this study and will be examined in future research. 
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Transactive Memory Accuracy.  According to Krackhardt (1990), the accuracy 

of individuals’ perceptions of network relationships influences the strengths and patterns 

of interactions within those networks.  With respect to group knowledge, the extent to 

which perceptions of individuals regarding the knowledge possessed by others are 

consistent with the knowledge actually possessed by those other team members leads to 

better group performance on problem-solving tasks (Libby, Trotman, and Zimmer, 1987; 

Littlepage and Silbiger, 1992).  Transactive memory accuracy, or TMA, measures the 

extent to which group members’ perceived levels of other members’ knowledge are 

consistent with actual levels of knowledge possessed by those other members.   Austin 

(2003) validated this approach and found that such accuracy was positively associated 

with self and manager ratings of team performance.   

As previously mentioned, members’ status as perceived experts in one or more 

knowledge areas is presumed to be revealed by values in the cognitive knowledge 

network.  In this study, for all knowledge areas k where KA[i,j,k]=1 and i≠j, member i is 

considered an expert.  However, in addition to asking members about their “awareness” 

of others as experts, the network survey asked members to rate themselves regarding 

their relative level of expertise in each knowledge area.  As introduced earlier (see 

Figure 3), the resulting “knowledge network” is defined as a valued graph represented 

by the bipartite matrix, K[i, k], with i∈{1…N} rows, one for each team member, and 

k∈{1…K} columns, one for each knowledge area listed on the survey.  Each cell in K[i, 

k] represents the relative level of knowledge that individual i has concerning knowledge 

area k.  Values for network relations were based on responses to the question,  

“For each knowledge area required for tasks performed by your team, 

please check the box that corresponds to your evaluation of your ability 

in that particular area.”   

Knowledge levels were measured on a Likert scale from 1 to 5 (1=Very Low, 

5=Very High), and responses were coded from 1 to 5, with 1 representing little or no 

knowledge of a particular area and 5 representing expert knowledge.   

The TMA measure is calculated by averaging the values in a “transactive 
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memory accuracy matrix,” TMA[i,k].  This matrix summarizes average values of actual 

knowledge possessed by members perceived as experts.  The value of a cell in TMA[i,k] 

represents the average of the actual levels of knowledge about k possessed by those 

group members perceived by member i to be expert in k.  Thus, the value for a cell is 

obtained by first identifying the group members identified by i as expert in knowledge 

area k – that is, any member j  where KA[i,j,k]=1, j∈{1, 2, …, N}, i≠j.  The value of 

TMA[i,k] is simply the average of the knowledge network values K[jk,k] for each of the 

members j where KA[i,j,k]=1.  The final TMA measure for a group is the average of the 

values in every cell of the matrix TMA[i,k], or  
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For example, in Figure 4.4, member 1 identified group members 4 and 5 as 

experts on knowledge area G.  As shown in Figure 4.3, members 4 and 5 rated their own 

levels of knowledge of area G as 0.8 and 0.65, respectively.  Thus, the value of 

TMA[1,G] is the average of 0.8 and 0.65, or 0.725.  A similar process is repeated for 

each cell in TMA[i,k].  The values in TMA[i,k] are then averaged over all actors and 

knowledge areas to compute a group measure of transactive memory accuracy.  

Although conceptually similar to Austin’s (2003) measure, this approach permits 

members to identify more than one expert in each knowledge area. 

Task and Outcome Interdependence.  Interdependence is essentially a measure 

of how much team members depend on one another to perform their jobs (Gully, 

Incalcaterra, Joshi, and Beaubin, 2002; Wageman, 1995).  This perspective has typically 

been characterized by both a task and an outcome dimension.  According to Thompson 

(1967), levels of task interdependence can range from low or “pooled” interdependence, 

in which tasks are performed separately and in any order, to medium or “sequential” 

interdependence, in which some tasks are required to be completed before others, to high 

or “reciprocal” interdependence, in which pairs of tasks require outputs from each other 

before completion.  In addition to Thompson’s technological perspective, task 

interdependence can also be viewed as a characteristic of team members’ behavior in 
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executing their work (Shea and Guzzo, 1989; Wageman 1995).  For example, workers 

who help one another complete their tasks even though those tasks are not necessarily 

assigned are more task interdependent than workers who do not.  Task interdependence 

has been positively linked to effectiveness outcomes such as productivity, satisfaction, 

and manager ratings of performance (Campion, Medsker, and Higgs, 1993; Kiggundu, 

1983; Pearce and Gregerson, 1991). 

Outcome (or goal) interdependence, on the other hand, reflects the extent to 

which team members believe their individual goal attainment depends on the successful 

goal attainment of other team members.  Team effectiveness has been shown to be 

higher when team members share greater degrees of outcome interdependence (Hyatt 

and Ruddy, 1997).  However, impacts are to some extent dependent on demographic and 

tenure diversity, with teams having lower diversity and higher longevity displaying the 

greatest impacts of goal interdependence on satisfaction and commitment (Schippers et 

al. 2003).  

Both task and outcome interdependence have been found to be positively 

associated with attitudinal outcomes such as job satisfaction and commitment over and 

above individual job characteristics (Van Der Vegt, Emans, and Van De Vliert, 2000, 

2001).  However, job satisfaction appears greatest when teams exhibit high goal 

interdependence in conjunction with high task interdependence (Van der Vegt, Emans, 

and Van de Vliert, 2001).  Since the structuring and assignment of tasks infers 

interdependence that can influence the levels of team commitment (Bishop and Scott, 

2000) as well as interaction in executing the task (Hackman and Morris, 1975), it is 

expected that groups with higher task interdependence will show greater impacts of 

social and knowledge network attributes on organizational learning.  

Task interdependence is measured by responses to the following five questions:  

(1) “I have to obtain information and advice from others on my team to complete my 

work” (reverse coded), (2) “I depend on the contributions of others on my team for the 

completion of my work” (reverse coded), (3) “I have a one-person job; I rarely have to 

check or work with others,” (4) “I have to work closely with others on my team to do my 
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work properly,” and (5) “In order to complete their work, other team members have to 

obtain information and advice from me” (reverse coded).  Like other survey questions, 

responses were on a Likert scale (1=Strongly Agree, 5=Strongly Disagree, weighted 

average Cronbach’s �=0.85).    

Outcome interdependence is measured by responses to the following two 

questions:   (1) “Members of our team are informed about the goals we should attain as a 

unit” and (2) “Members of our team receive feedback on the basis of our collective 

performance.  Responses were on a Likert scale (1=Strongly Agree, 5=Strongly 

Disagree) with a weighted average Cronbach’s alpha of 0.84.  Only two questions could 

be included in the survey because of length limitations.   

Group Size.  Group size can influence transactive memory by affecting 

communications within the group and by changing the amount of information needed to 

maintain a high level of group expertise (Wittenbaum, Vaughan, and Stasser, 1998); 

larger groups require each group member to remember information about more people.  

Number of Knowledge Areas.  The number of knowledge areas required for the 

group task may affect the efficiency of the transactive memory network (Ashworth and 

Carley, 2006).  Similar to larger groups, groups with more knowledge areas have more 

to “remember” about each agent in the group.  

Other Controls.  Since the data are cross-sectional, all model specifications 

included fixed effects of company and group type to control for unobserved 

heterogeneity across groups (Hausman and Taylor, 1981), including those arising from 

geographic location and physical layout.  In addition, demographic controls are included 

for age, gender, race, Hispanic origin, and educational level.  Group-level “age” was 

calculated as the average age of the group members.  Gender at the group level was 

calculated as the average of responses coded as “0” for female or “1” for male.  Thus, 

values represented the percentage of the team that is male.  Since the only races 

represented in all survey responses were African-American and Caucasian, the “race” 

variable was calculated as the average of responses coded “0” for African-American or 

“1” for Caucasian.  Thus, values for “race” simply indicated the percentage of a team 
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that is Caucasian.  Consistent with U.S. Census Bureau (2005) norms, the survey 

included a separate category for Hispanic origin, coded as “0” for non-Hispanic and “1” 

for Hispanic.  Thus, values for Hispanic origin indicated the percentage of a group that is 

Hispanic.  Education level was calculated as the average of the number of years of 

education reported by each group member. 

Empirical Model 

In the analysis, I used ordinary least squares (OLS) regression procedures for 

testing moderated mediation as recommended by Muller, Judd, and Yzerbyt (2005).  The 

following equation was used to test for the relationship between average group 

experience and performance: 

 icggcicgicgicg �TCControls�pAvgGroupEx�ePerformanc ++++= −1411  (4.5) 

As a first step in testing for mediation, the following equation then tests for a 

significant relationship between the independent variable (average group experience) 

and the proposed mediating variable (transactive memory network density, or TMND): 

 icggcicgicgicg �TCControls�pAvgGroupEx�TMND ++++= −1411  (4.6) 

With the following equation I then test for the significance of the effect of the 

mediator (transactive memory network density) on performance, controlling for average 

group experience: 

 icggcicgicgicgicg �TCControls�TMND�pAvgGroupEx�ePerformanc +++++= −14121  (4.7) 

To establish whether mediation has occurred, the coefficient �1 in Equation 4.7 

(the residual direct effect of average group experience on performance) is then compared 

to the coefficient �1 in Equation 4.5.  Mediation is said to have occurred if �1 in Equation 

4.7 is significantly smaller in magnitude than �1 in Equation 4.5. 

Finally, Equations 4.8-4.10 test for the moderating effect of the small-world 

structure on the mediator, transactive memory network density:  
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 )*(321 icgicgicgicgicg SWQpAvgGroupEx�SWQ�pAvgGroupEx�ePerformanc ++=  

 icggc �TypeCo +++   (4.8) 

 )*(321 icgicgicgicgicg SWQpAvgGroupEx�SWQ�pAvgGroupEx�TMND ++=  

 icggc �TypeCo +++   (4.9) 

 )*(321 icgicgicgicgicg SWQpAvgGroupEx�SWQ�pAvgGroupEx�ePerformanc ++=  
 )*(54 icgicgicg SWQTMND�TMND� ++  

 icggc �TypeCo +++   (4.10) 

According to Muller, Judd, and Yzerbyt (2005), to establish moderated 

mediation, the overall effect of the independent variable (�1 in Equation 4.8) must be 

significant but not dependent on the proposed moderator, SWQ (that is, �3=0 in Equation 

4.8).  In addition, the following conditions must hold: 

� either the effect of the independent variable on the mediator depends on the 

moderator (�3≠0 in Equation 4.9) or the partial effect of the mediator on the 

dependent variable depends on the moderator (�5≠0 in Equation 4.10), or both; 

� if �3≠0 in Equation 4.9, then there must also be a partial effect of the mediator 

on the outcome on average (that is, �4≠0 in Equation 4.10); and 

� if �5≠0 in Equation 4.10, there must also be a significant overall effect of the 

independent variable on the mediator (that is, �2≠0 in Equation 4.9). 

Based on Cohen’s (1988) method of statistical power analysis, assuming 

anticipated effect sizes in the small to moderate range (2 to 10 percent), the likelihood is 

greater than 0.99 that the sample of 118 groups will yield a model R 2 that is significant 

at an alpha level of 0.05.  Although Cohen’s analysis does not take into account the 

interaction terms, which can proportionately reduce the effective power, it was assumed 

that the terms are not perfectly reliable but do not reduce power to an unacceptable level.   

4.5    Results 

Descriptive statistics and Pearson correlations are provided in Tables 4.1a and 
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4.1b.  Company and group type fixed effects were not significant (at p<0.10) in any of 

the statistical models, indicating an apparent absence of significant systematic effects 

due to company or group type.  In addition, the only control variables that exhibited 

significance in most models were turnover, transactive memory consensus, outcome 

interdependence, and group size. The coefficient for gender was positive and significant 

in the models testing the mediator, transactive memory, as the dependent variable; 

however, the coefficient is not significant (p values range from 0.33 to 0.73) in tests with 

group performance as the dependent variable, suggesting that significance in the former 

case is possibly an artifact of the relatively recent increase to 25 percent female in the 

electricity industry in the last fifteen years.  Although each statistical model included all 

controls, Tables 4.2 and 4.3 summarize only the results of variables with significant 

coefficients.  Remaining coefficients are reported separately in Table 4.4. 

 

Table 4.1a.  Summary Statistics (sample of 118 groups). 
 

  Variable Mean Std. Dev. 

1 Group Performance 3.05 0.53 
2 Average Group Experience 5.04 1.90 
3 TM Network Density  0.00 0.13 
4 Small World Quotient 0.00 1.60 
5 Average Task Experience 9.33 3.78 
6 Average Organization Tenure 19.85 5.22 
7 Turnover 0.06 0.09 
8 TM Consensus 0.90 0.05 
9 TM Accuracy 0.66 0.10 

10 Task Interdependence 3.20 0.50 
11 Outcome Interdependence 3.35 0.64 
12 Group Size 12.61 5.63 
13 Number of Knowledge Areas 32.08 9.09 
14 Gender 0.78 0.27 
15 Age 47.60 3.83 
16 Race 0.86 0.14 
17 Ethnicity 0.09 0.10 
18 Years of Education 13.22 0.68 
        



   

 98    

      



   

 99    

Table 4.2 presents results of statistical models testing the hypothesis that the 

amount of transactive memory mediates the relationship between cumulative group 

experience and group performance.  In column 1 of Table 4.2, the coefficient for average 

group experience is positive and significant, indicating that average group experience is 

positively associated with average manager ratings of group total performance.  Not 

surprisingly, this confirms the relationship between the group learning constructs 

depicted in Figure 1.  Column 2 of Table 4.2 reflects the model based on Equation 6, 

which tests the significance of the independent variable, average group experience, on 

the hypothesized mediating variable, transactive memory network density.  The 

Table 4.2.  Test of transactive memory density mediation (Hypothesis 1) of 
relationship between average group experience and group performance. 

          

Variable 

1 
(DV=Group 

Performance) 

2 
                

(DV=TMND) 

3 
(DV=Group 

Performance) 
        
  Average Group Experience 0.126*** 

(0.022) 
0.017*** 

(.005) 
0.099*** 
(0.022) 

  Transactive Memory Network 
  Density (TMND) 

    1.604*** 
(0.437) 

  ωc  0.237*** 
(0.040) 

0.251*** 
(0.043) 

0.247*** 
(0.042) 

  Turnover -1.832*** 
(0.522) 

-0.210‡ 
(0.111) 

-1.496** 
(0.501) 

  Transactive Memory Consensus 1.275‡ 
(0.756) 

-0.392* 
(0.161) 

1.904* 
(0.734) 

  Outcome Interdependence 0.122‡ 
(0.071) 

-0.023 
(0.132) 

0.159* 
(0.068) 

  Size 0.008 
(0.008) 

-0.010*** 
(0.002) 

0.024** 
(0.009) 

  Company Fixed Effects? N.S. N.S. N.S. 

  Group Type Fixed Effects? N.S. N.S. N.S. 

  Adjusted R2 0.553 0.646 0.605 

   N=118     ‡ p<.10,  * p<.05,  ** p<.01,  *** p<.001, N.S. = Not significant.  Standard errors are heteroskedasticy robust. 
   Other control variables were generally not significant and are reported separately in Table 4.3.  
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coefficient in this case is positive and significant, confirming that the level of group 

transactive memory increases with the amount of time that groups work together.  In 

addition to demonstrating a significant effect of the treatment on the mediator (Baron 

and Kenny, 1986), Kraemer et al. (2002) point out that the mediator must occur during 

treatment and be correlated with the treatment variable.  While it is possible that 

transactive memory within a group can be aided by prior knowledge of members (for 

example, based on the reputation or title of an expert who joins the team), the relative 

density of the transactive memory network grows predominantly in accordance with the 

episodic-semantic memory model and thus co-evolves with average group experience.  

In addition, as shown in Table 4.1b, average group experience is strongly correlated with 

the proposed transactive memory mediator.  Thus, the additional criteria suggested by 

Kraemer et al. (2002) for qualifying a mediating variable are satisfied.  In column 3 of 

Table 4.2, the coefficient of the mediator, transactive memory network density, is 

strongly positive and significant.  The coefficient of the treatment variable, average 

group experience, is also strongly positive and significant, except that the coefficient is 

significantly reduced from 0.126 (at p<0.001) in the model without mediation (column 

1) to 0.099 (column 3).  Thus, results provide support for Hypothesis 1.  

Table 4.3 presents the results of statistical tests for the hypothesis that the 

magnitude of the mediating effect of transactive memory depends on the degree to 

which the transactive memory is structured as a “small-world” network.  The first step in 

establishing moderated mediation is shown in column 1 of Table 4.3.  The coefficient 

for average group experience, similar to the unmoderated model in Table 4.2, is strongly 

positive and significant.  Moreover, the coefficient of the proposed moderating variable 

(the small-world quotient, SWQ) and the coefficient of the variable representing the 

interaction between average group experience and SWQ (Average Group 

Experience*SWQ) are not significant, indicating that SWQ does not moderate the effect 

of the treatment variable on group performance.  As shown in column 2 of Table 4.3, the 

coefficient of the treatment variable (average group experience) is strongly significant 

(similar to the unmoderated case in Table 4.2, column 2), indicating the treatment’s 

effect on the mediator when controlling for the proposed moderator, SWQ.  The full 

model of moderated mediation is provided in column 3 of Table 4.3.  In column 3, the 
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coefficient of the variable representing interaction between the mediator (transactive 

memory network density, or TMND) and the theorized moderator (small-world quotient, 

or SWQ), TMND*SWQ, is positive and significant.  In accordance with standards of 

moderated mediation suggested by Muller et al. (2005), coefficients of both the 

interaction variable, Average Group Experience*SWQ in Table 4.3, Column 2, and the 

Table 4.3  Test of moderating effect of “small-worldness” on mediating variable 
(Hypothesis 2).  

        

Variable 

1 
(DV=Group 

Performance) 

2 
               

(DV=TMND) 

3 
(DV=Group 

Performance) 
        
Average Group Experience 0.118*** 

(0.022) 
0.018*** 

(.005) 
0.0640** 
(0.022) 

Small-World Quotient (SWQ) 0.007 
(0.093) 

-0.060** 
(0.020) 

0.237** 
(0.074) 

Average Group Experience*SWQ 0.024 
(0.019) 

0.009* 
(0.004) 

0.008 
(0.018) 

Transactive Memory Network 
Density (TMND) 

    1.389** 
(0.445) 

TMND*SWQ     
0.842** 
(0.282) 

ωc  0.242*** 
(0.040) 

0.260*** 
(0.055) 

0.256*** 
(0.045) 

Turnover -1.815*** 
(0.513) 

-0.272* 
(0.109) 

-1.800*** 
(0.503) 

Transactive Memory Consensus 0.552 
(0.769) 

-0.316‡ 
(0.163) 

0.754 
(0.707) 

Outcome Interdependence 0.102 
(0.069) 

-0.022 
(0.015) 

0.139* 
(0.062) 

Size 0.007 
(0.008) 

-0.009*** 
(0.002) 

0.018* 
(0.008) 

Company Fixed Effects? N.S. N.S. N.S. 

Group Type Fixed Effects? N.S. N.S. N.S. 

Adjusted R2 0.591 0.677 0.684 
N=118     ‡ p<.10,  * p<.05,  ** p<.01,  *** p<.001, N.S. = Not significant.  Standard errors are heteroskedasticy robust.  
Other control variables were generally not significant and are reported separately in Table 3.  
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interaction variable, TMND*SWQ in Table 4.3, Column 3, are positive and significant.  

Further, the results satisfy the additional necessary condition (see Muller et al., 2005) 

that the partial effect of the mediator on group performance in Column 3 be significant.  

Thus, I also find support for Hypothesis 2. 

Since the use of an ordinal dependent variable potentially causes problems for 

OLS regression which may yield inefficient estimates (McCullagh and Nelder, 1989), 

the analysis was also conducted using an ordered probit regression model (which is 

preferential to an ordered logit regression since the standard errors are normally 

distributed).  By including multiple intercepts, this procedure allows for the possibility 

that respondents potentially did not perceive the hierarchically ordered categories as 

equally distant.  The ordered probit results were very similar in terms of both magnitude 

and significance of all variables. 

To test for robustness of the small-world quotient, following Uzzi & Spiro 

(2005), I introduced the separate numerator and denominator values comprising the 

SWQ, as well as squared terms for SWQ and its components, as controls in additional 

statistical models.  None of these values was significant at p<0.10, indicating that 

models in Table 4.3 incorporating the SWQ measure are not affected by potential 

curvilinearity of SWQ or its components.  

4.6    Discussion 

The work groups in this study exhibited a characteristic positive relationship 

between cumulative group experience and group performance: as average group tenure 

increased, manager ratings of combined productivity and quality increased accordingly.  

The amount of group transactive memory partially mediated this positive relationship, 

with results suggesting that transactive memory accounts for approximately 21 percent 

of the impact of cumulative experience on group performance.  The magnitude of the 

mediation was further found to be moderated by the extent to which the transactive 

memory network was organized as a small-world network.  These results suggest that 

transactive memory plays a crucial role in group learning and that the role is heavily 
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dependent on the small world structure of the transactive memory network.  Contrary to 

findings of Uzzi and Spiro (2005), which suggest that the small-world effect follows an 

inverted-U-shaped function, the findings of this study suggest that transactive memory 

cannot be “too” small-world-like.  Instead, those groups whose transactive memory 

structures exhibited the greatest resemblance to “perfectly” small-world networks – that 

is, networks whose clustering coefficients were much greater than those in random 

networks coupled with characteristic path lengths nearly identical to those of random 

networks – had the greatest positive effects from their transactive memory.  Thus, while 

Simon’s (1957) principle of bounded rationality infers that the impact of transactive 

memory has an upper bound beyond which the individual memories of organizational 

members are saturated with social and knowledge connection, the results regarding the 

small-world structure of transactive memory seem to indicate that transactive memory 

can indeed continue to be effective at very high levels.  Although members cannot have 

maximum-strength ties to everyone nor can they possess maximum expertise in every 

knowledge area (Pavitt, 2003), the small worlds that characterize socially-situated, task-

centered interaction in groups may provide an evolutionary compromise enabling deep 

explicit and tacit knowledge to reside in clustered transactive memory structures that do 

not exceed the bounds of rationality.  Apparently, small-world transactive memory 

networks enable groups to maximize effectiveness of organizational memory even as the 

group grows and accumulates richer bodies of knowledge without the burdensome need 

for every member to be connected to every other member. 

Thus, the key implication of small-world transactive memory theory is that the 

most efficient transactive memory is characterized by highly connected, knowledge-

centric communication clusters which in turn are connected by relatively fewer or 

weaker communication links between clusters.  When social connections between team 

members are clustered around task-related knowledge areas, their learning becomes 

embedded in task-oriented clusters as the group accumulates time working together.  In 

small-world transactive memory networks, at least one member of each knowledge 

cluster is also connected with at least one member of another knowledge cluster, 

reducing the number of connections with other members that a typical member must go 

through to reach those who possess relevant task-related advice or knowledge.  Hence, 
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the most efficient group transactive memory networks more closely resemble “small-

world” networks and thus experience higher rates of group learning. 

Another potentially useful outcome of the analysis is the coefficient, ωc, 

introduced previously in Equation 3.  ωc, equal to approximately 25 percent in each of 

the six models in Tables 4.2 and 4.3, represents the relative significance of 

communication in the determination of the mediating effect of transactive memory 

network density.  The complement of ωc is ωk, representing the relative weight of the 

cognitive knowledge network density in the determination of the effect of transactive 

memory network density.  Thus, the importance of the network of perceived expertise 

appears to be about three times the importance of the communication network.  A 

practical implication of this result could be that the effectiveness of team-building 

activities may be increased by incorporating task-related activities in addition to social 

and morale-boosting activities. 

While the theory and outcomes presented thus far have focused on the group 

level, prior research suggests that the small-world model of transactive memory may 

scale to other levels of organizational structure (Robins et al., 2005), including inter-

group (Ancona and Caldwell, 1992b) and inter-organization (Haunschild, 1993; 

Nooteboom, 1999; Robins and Alexander, 2004; Stuart, 1998) levels.  Even though not 

all behavioral processes are necessarily operative at inter-group and inter-organizational 

levels, the instances of social or serendipitous interaction between groups and 

organizations leading to weak ties between socially situated knowledge clusters still 

result from the episodic-semantic memory mechanism.  Building on the group-level 

example presented earlier, if team member X from another work group T communicates 

with group member A and knows that team member B is an expert in knowledge area K, 

the necessity for X to acquire B’s level of knowledge diminishes while team T’s access 

to the knowledge of B increases to the extent that X is connected to A and others in team 

T.10  To the extent that the episodic-semantic memory model can be expected to result in 

                                                 
10 As a practical example, if a “customer service department” team member knows a member of a “human resource department” team 
who is an expert in developing employee benefits self-service programs, the customer service team member may be able to refer a 
fellow customer service team member to the human resource team member for advice on development of similar self-service 
processes being developed for the organization’s external customers. 
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ties between groups whose members socialize extemporaneously (see Kilduff and Tsai’s 

[2003] “serendipitous” connections) or purposefully (in project team, task force, or 

matrix-organization assignments, for example), organizational level transactive memory 

would be expected to be structured as a small-world network composed of 

interconnected small-world group transactive memory networks.  Strong ties between 

groups with similar group tasks (such as product assembly teams) would enable transfer 

of explicit and tacit knowledge relevant to the group task, while weaker ties between 

groups with different group tasks would facilitate innovation and cross-functional 

cooperation.   Likewise, in inter-organizational settings, boundary-spanning activities of 

executives sitting on multiple boards of directors, mid-level executives participating in 

inter-firm alliances, or managers and specialists taking part in industry standards 

committees all provide mechanisms for development of transactive memory 

characterized by strong, dense, knowledge-centric ties within organizations connected to 

Figure 4.9. Small-World Transactive Memory Networks at the 
Organizational and Inter-Organizational Levels 
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other organizations by weaker communication ties and knowledge iterads.  Thus, 

transactive memory networks may similarly evolve at group, organization, inter-

organization, and alliance levels (see Figure 4.9), inferring that such networks mirror the 

theoretical and methodological scaling suggested by Abbott’s (2001) “fractal” ontology 

of sociological development.  Fractal structures are created using the same mathematical 

rules at every level of complexity and thus appear similar at all scales of magnification 

(Mandelbrot, 1982).  While the specific shape of a transactive memory network may not 

be identical at every level, its configuration as a small world irrespective of dyadic, 

group, or organizational level is certainly consistent with Abbott’s ideas.   

Given that the scaling of transactive memory networks depends primarily on the 

episodic-semantic memory mechanism rather than other individual, group, or 

organization-level psychological factors, the small-world transactive memory model 

may actually provide one of the mechanisms supporting Abbott’s fractal theory of 

sociology (2001).  For example, Marshall McLuhan (1964: 7-8) theorized that changes 

in the hidden patterns of interactions within a society’s communication network result 

from the interactions themselves.  As intrinsic, dynamic extensions of human 

interaction, transactive memory networks and their small-world structures may help 

explain the very existence and variety of learning and performance outcomes not only at 

group and organizational levels but at societal levels as well.  As evolutionary outcomes 

in their own right, small-world transactive memory networks may also prove to be 

important measures and predictors of such societal development.  Indeed, small-world 

transactive memory may provide the first evidence that McLuhan was right – the 

“medium really is the message.” 

Thus, potentially at many levels, the small-world nature of transactive memory 

has important implications for organizational learning and performance and suggests 

several avenues for additional research.  For example, in organizations composed of 

multiple units, connections between members of different groups may facilitate 

innovation in both similar and dissimilar groups as well as enable exploitation of 

specialization resident in dissimilar groups.  In this case, the theory may help account for 

March’s (1991) exploration and exploitation behaviors in organizational learning, 



   

 108    

suggesting that exploitation may originate predominantly within groups, while 

exploration originates in search behaviors guided by transactive memory connections 

between groups.   

The model also has implications for predicting and managing the effects of 

turnover on performance.  In the early 1980’s, Staw (1980) and Mobley (1982) argued 

convincingly for organizational researchers to examine the consequences of turnover in 

addition to its antecedents.  In particular, Staw (1980) called for greater attention to 

longitudinal impacts of turnover in both field and experimental studies.  During the same 

time frame, Tichy (1981) and Rogers (1987) suggested that network perspectives be 

applied to organizational research to look more closely at interactive mechanisms 

underlying behavioral outcomes such as turnover.  But after more than two decades, 

neither the longitudinal consequences of turnover nor the effect of turnover in different 

network environments has seen much research progress.  Turnover is still treated 

predominantly as an outcome variable (Glebbeek and Bax 2004), continuing to result in 

“more and more independent and moderator variables [in] already crowded models 

predicting turnover” (Krackhardt and Brass, 1994, p. 208).  Of those studies that have 

considered the consequences of turnover, only a handful have examined how social and 

knowledge networks might increase or decrease such consequences (Johns 2001), and 

very few studies have examined turnover’s impact on time dependent outcomes such as 

organizational learning rates.  

The results in Tables in 4.2 and 4.3 suggest that transactive memory has durable 

effects on performance even in the face of very significant turnover.  Moreover, 

relatively lower effects of turnover in the fully specified transactive memory model of 

Table 4.2, column 3, further suggests that the amount of group transactive memory may 

significantly moderate the effect of turnover on performance.  When turnover was 

specified as the independent variable and transactive memory network density was 

introduced as a moderating variable, results indicated that turnover moderated the effect 

of turnover to such an extent that turnover itself was no longer statistically significant.  

Only the transactive memory network density (TMND) and the interaction between 

turnover and TMND were significant.  Results of Muller et al.’s (2005) test of mediated 
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moderation (not to be confused with the test of ‘moderated mediation’ conducted in 

Tables 4.2 and 4.3) showed that the small-world structure of transactive memory 

partially mediated its moderating influence on the effect of turnover on performance.  

This outcome suggests that groups with sufficient transactive memory may suffer little 

to no effects of moderate levels of turnover and that bolstering transactive memory and 

its small world structure may help insulate groups from the potentially negative effects 

of knowledge loss due to downsizing or employee retirements. This latter direction 

could have important implications for current global concerns over losses of knowledge 

due to “baby-boomer” retirements (DeLong, 2004).  Systematic loss of knowledge due 

to retirement may be reduced by the tendency of new (replacement) members to benefit 

from the knowledge embedded in the clusters of which the departing members were a 

part (Moreland and Levine, 1992).  Hence, the moderating effects of transactive memory 

density and structure can help ameliorate the impact of knowledge lost in such 

departures.  Additional research should be conducted to examine the dynamics and 

limits of transactive memory’s interactive effects on turnover. 

In addition to turnover, other behavioral phenomena in groups and organizations 

may be explained at least in part by small-world transactive memory.  For example, 

specialization may not represent simply a choice of individuals or an assignment by 

managers but rather an outcome of socially-situated learning that induces such 

specialization as a by-product of the formation of highly efficient transactive memory.  

Similarly, the small-world model has implications for the formation of structural holes 

(Burt, 1992).  In addition to resulting from self-monitored brokerage of social capital, 

structural holes may also be the result of the co-evolution of sparse ties linking 

knowledge-centric clusters and reflecting boundary-spanning behavior within small-

world transactive memory networks.  Thus, structural holes may partially reflect the 

social “bridges” between knowledge clusters that evolve in small-world transactive 

memory networks as means of facilitating innovation and overcoming impediments to 

the transfer of internal knowledge (Szulanski, 1996).  At the inter-firm level, these same 

bridges upon which firms may depend in part for innovation are difficult to maintain in 

the face of “incessant external developments,” potentially resulting in decreased 

organizational learning (Sorensen and Stuart, 2000).  The small-world transactive 
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memory model suggests that this may be due to the level of external developments 

exceeding the capacity of the transactive memory network at firm boundaries.  The 

model also suggest that solutions to such “ravages of corporate aging” could lie in 

reinforcing the transactive memory network possibly by stimulating iterads from 

multiple levels within the firm to fresh sources of external information concerning 

competitive changes. 

The small-world transactive memory model may also offer scientific insight into 

how communities of practice evolve and operate.  A “community of practice” is a group 

of people who have worked together over a period of time and who share accepted task 

routines (whether documented or not) that have evolved within the social context of the 

group members (Wenger, 1998).  Group members may be part of many communities of 

practice both within and external to the group.  For example, a company manager may 

be part of an internal accounting department community focused on compliance with 

new governmental regulations while at the same time participating in a similar 

community composed of accountants representing other company divisions, a 

community of similarly-engaged specialists from a regional professional interest group, 

and yet another community in an industry-level group focused on the same regulatory 

requirements.  Research on communities of practice indicates that such task-centered 

and oftentimes overlapping social structures that emerge within and between 

organizations may facilitate organizational learning (Barley, 1988; Bourdieu, 1977; 

Brown and Duiguid, 1991; Hutchins, 1991a, 1991b; Lave and Wenger, 1991).  The 

emergence of transactive memory networks patterned as small worlds may provide the 

blueprint for the evolution of communities of practice within and among groups, 

organizations, and professional fields.  Such “communities” may in effect represent task-

centered social structures within a single group or within groups of similar task-centered 

social structures simultaneously inside and among organizations, and their evolution as 

small-world networks may be a determinant of their effectiveness as mechanisms of 

organizational learning. 

Even absorptive capacity at the group (Tiwana and McLean, 2001) or 

organization (Cohen and Levinthal, 1990) level may develop in advance of or in parallel 
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with small-world transactive memory.  Small-world transactive memories guarantee that 

the level of reachability from one member to another will remain high and virtually 

constant even as the number of organizational members and knowledge areas grows.  

This high level of reachability of nodes from any point in the network facilitates a key 

element of absorptive capacity – the identification of relevant knowledge.  

Simultaneously, the embedding of such knowledge in dense, socially-connected clusters 

may further facilitate development of absorptive capacity by helping to ensure that the 

knowledge so identified will actually be assimilated, adapted, and applied to improve 

organizational performance.  The similarity of evolutionary patterns of transactive 

memory development at a group level suggests that absorptive capacity may be an 

important group-level performance predictor as well. 

Small-world transactive memory networks may also explain the coherence of 

complex adaptive systems in the face of change (Holland, 1995) and the relative rarity of 

so-called “complexity catastrophes” (Kauffman, 1993; Perrow, 1999).  For example, in 

an NK topology (Kauffman, 1993), an organization’s level of fitness and suitability for 

survival are dependent on combinations of N binary attributes (such as the 

organization’s strategy, structure, technology, etc.) along with the interaction of any 

particular attribute with K∈{1…N-1} other attributes (Levinthal, 1997).  For fixed levels 

of N, the likelihood of a complexity catastrophe increases as K increases.  Small-world 

transactive memory viewed as one of the N endogenous attributes may inherently limit K 

to levels of interaction substantially below catastrophe levels.  On the other hand, even if 

small-world transactive memory acts exogenously (i.e., it is not one of the N attributes), 

it may account for the selection of other, more optimal combinations of attributes well 

beyond localized “basins of attraction” (Kauffman, 1993; Levinthal, 1997).  Thus, 

potential performance declines associated with increasing complexity could be averted 

through the tendency of small-world transactive memory to self-organize densely into 

social and knowledge clusters within easy reach of one another through relatively 

weaker and/or sparser social connections, thereby acting as a “governor” to keep 

network interaction below catastrophic levels.   

Beyond the potentially advantageous outcomes suggested by small-world 
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transactive memory, there also may be negative consequences.  For instance, the self-

regulative aspects of small-world transactive memory may account for deleterious 

outcomes of entrainment such as competency traps (Levitt and March, 1988).  Even 

though weak ties within the small-world may help identify more optimal combinations 

of group attributes, those same ties may also constrain groups to established ways of 

thinking (Uzzi and Spiro, 2005).  Thus, while some of those paths might indeed identify 

better combinations of attributes, being constrained to the same sources of knowledge 

limits access to even more innovative thinking that may be available elsewhere in the 

network or external to it. 

Despite the promising implications of the findings of this research, as in any one-

period study, results must be viewed with caution, especially with respect to inferences 

of causality.  The outcomes of this study, while potentially useful, should be expanded to 

longitudinal settings so that dynamic aspects can be allowed to change over time and 

stronger inferences of causality can be examined.  In addition, in any network study, 

endogeneity can bias coefficient estimates and overall model reliability.  Because of the 

inevitable interrelationships in social networks, it is impossible to control for such 

endogeneity.  Thus, this limitation persists despite apparently interesting results.   

Another potential threat is simultaneity, particularly between transactive memory 

network density (TMND) and the proposed moderator of TMND’s mediating effect, the 

small-world quotient.  Kraemer et al. (2002) stress that a moderator must occur before 

treatment and must not be correlated with the treatment variable.  In the case of the tests 

for moderated mediation (Hypothesis 2), although SWQ is not correlated with average 

group experience and has no significant moderation of the impact of average group 

experience on group performance, nevertheless SWQ is weakly (at p<0.05) correlated 

with TMND, the mediating variable it is supposed to moderate.  It is also arguable that 

the “small-worldness” of a transactive memory network does not strictly precede the 

density of the transactive memory network, potentially confounding the conclusion that 

SWQ moderates TMND’s mediating effect.  Finally, the fact that the companies in the 

data sample are all in the same industry clearly limits the study’s external validity.  The 

study attempted to minimize the lack of generalizability by encompassing multiple 
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group types in vertical divisions of the companies in an attempt to increase the extent to 

which the groups in the study could be analogous to similar types of groups in other 

industries.  Moreover, the study results were not sensitive to fixed effects of company or 

group type, suggesting that transactive memory is a durable and generalizable group 

construct. 

4.7    Conclusion 

By observing and understanding how changes occur in small-world transactive 

memory networks, it may be possible to magnify positive effects of changes in 

interaction patterns while anticipating and even mitigating negative effects.  Transactive 

memory networks, like other types of informal organizational structures, emerge at 

every organizational level, and the findings of this study suggest that bolstering their 

densities and small-world properties can result in improved group performance.  The key 

implication of the small-world transactive memory is that the positive effect of 

cumulative group experience on group performance is operative at least in part through 

the group’s transactive memory.  Further, the mediating effect of transactive memory is 

strongest in groups whose transactive memory structures more closely resemble small-

world networks.  The greater challenge may now lie in determining how such small-

world transactive memory networks can be successfully induced where they do not exist 

and repaired when they have become dysfunctional. 
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��
FUTURE RESEARCH 

�

�

 
In extending the work conducted in Chapter 4 to a truly dynamic, longitudinal 

analysis, the level of data collection would likely prove infeasible.  Thus, in this chapter I 

propose a simulation methodology employing one additional data collection along with a 

modified version of the computer model used in Chapter 3 (“Construct”).  

5.1    Extension of Simulation Model 

The proposed extension of Construct adds the capability of agents to “learn from 

experience.”  The extension requires to new elements.  First, “knowledge” areas should 

have continuous levels of depth along the range [0, 1] that may have starting values 

specified by the user.  Agents can have any starting level but may progress to deeper 

(higher) levels of knowledge based on learning and experience in addition to social 

interaction with other agents.  For example, in the study in Chapter 4, actors may have 5 

starting levels of knowledge for each knowledge area, corresponding to the Likert scale 

values described in Section 4.4.  In the simulation model, an actor’s starting knowledge 

level of “2” for a knowledge area would be represented as 2/5, or 0.4, in Construct.  The 

actor would progress to higher levels if and only if the actor gains enough experience and 

has enough memory to add the knowledge.  Thus, knowledge would not simply diffuse 

based on homophilistic or information-seeking interactions alone but would also evolve 

based on “learning from experience” which may or may not include such interactions.   

Second, the proposed extension would permit an agent’s knowledge in specific 



   

 116    

areas to be enhanced by training and experience in addition to knowledge transferred 

from other agents.  In the current version of Construct, the same pre-set number of tasks 

is assigned to be completed by the group for every time period of the simulation.  Thus 

the experience gained by repetition of tasks to which agents are assigned is essentially 

lost.  In a more realistic learning model, if tasks are performed only infrequently, 

knowledge depreciates and “forgetting” limits the value of the experience.  If too many 

tasks are assigned at once, agents’ “bounded rationality” likewise limits the amount of 

experience that can be converted to actionable knowledge.  The extended version of 

Construct would link the number of tasks completed by the team, as well as the team’s 

task completion accuracy for those tasks, to the agents’ knowledge and experience levels 

in addition to their likely social interactions.  Thus, agents represented in the simulation 

model would be capable of “learning-by-doing” (that is, learning from experience), 

enabling both the agents themselves and the entire group of agents to perform more tasks 

per period (representing increased productivity) with the same or even better accuracy 

(representing improved quality).  

The proposed model of experienced-based learning for an individual agent builds 

on theoretical and empirical work by Mazur and Hastie (1978), Uzumeri and Nembhard 

(1998), and Shafer, Nembhard, and Uzumeri (2001).  In these models, individuals learn 

both conceptual and motor skills based on the following hyperbolic function: 

  it
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�

�

++
+=)( ,  (5.1) 

where  

 )( itit cy   =  performance of individual i on task t after cit accumulated task 

completions, 

       it	  = highest possible level of performance of individual i on task t, 

       itp  = prior expertise based on training or similar or past experience, 

       itr  = cumulative number of tasks required to get to ½ of it	 , 

       it�  = knowledge retention rate of agent i doing task t, and 
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       it�  = error term, 

subject to 0≠++ ititit rpc .   

Within the current Construct simulation model, performance is measured as 

accuracy of the entire group (or organization).  In the extended version, three new 

measures of performance are proposed for each simulation time period: 

• Accuracy of individual i in executing task t, 

• Productivity of individual i in executing task t, measured as the number of 

tasks t completed during the time period, and 

• Productivity of the group, measured as the total number of all types of tasks 

completed during the time period. 

For simplicity, it can be assumed that 1=it	  and 0>itr  for all agents performing all 

tasks.  Thus, agent-level learning curves will be of the form shown in Figure 5.1.  

Distributions of the itp , itr , and it�  parameters can be estimated based on empirical 

literature and data validated in interviews with managers and subject matter experts.  

Figure 5.1. Agent-level Learning Curves. 
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5.2    Revised Regression Model of Group Learning 

For analyses of simulation results over multiple time periods, the full regression 

models in Equations 4.7 and 4.10 should be restated as cross-sectional time series 

functions.  For example, the general form of the re-stated model for Equation 4.7 would 

be 

 )ln()ln()ln( 1,21,1 −− += ticgticgicgt TMND�pAvgGroupEx�ePerformanc   

 icgtgcicg �TCControls� ++++ −141  (5.2) 

while the re-stated model for Equation 4.10 would be 

 )ln()ln()ln( 1,21,1 −− += ticgticgicgt SWQ�pAvgGroupEx�ePerformanc   

 )*ln( 1,1,3 −−+ ticgticg SWQpAvgGroupEx�  

 )*ln()ln( 1,1,51,4 −−− ++ ticgticgticg SWQTMND�TMND�  

 icgtgc �TypeCo +++   (5.3) 

5.3    Combined Empirical and Simulation Methodology 

To use a simulation model in a longitudinal empirical analysis, the model must 

first be calibrated.  Calibration requires that empirical data be collected on all or some 

significant subset of the sample of the groups surveyed in the study.  I call this the 

“second survey administration.”  The first step in calibration is calculating and recording 

all measures for the groups in the second survey administration.  Then, using data from 

the first survey administration for those same groups, the extended version of Construct 

outlined in section 5.1 would be executed both with different input assumptions and for 

different numbers of time periods.  For example, input assumptions could be varied as to 

the relative levels of homophilistic versus information-seeking behavior, and time period 

assumptions could be varied initially from 50 to 250 time periods in increments of 50.  

For each combination of input and time period assumptions, groups are ranked based on 

dependent variable results at the end of each simulation.  The simulation-based rankings 

are then compared to the ranking obtained using empirical performance outcomes from 
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the second survey administration.  The set of assumptions shown to best match the 

empirical results should then be used in simulations of all groups (based on the first 

survey administration) to create data sets for examining the time series impacts of 

transactive memory network characteristics on group learning.  To calibrate the 

simulations with calendar time, it can be assumed that the number of simulation time 

periods associated with the selected set of assumptions equates to the period of time 

elapsed between the first and second survey administrations.  

Once the assumptions have been calibrated, simulations can be executed for all 

groups to create learning curve data that can be analyzed using ordinary least squares 

regression (for example, using models suggested in Equations 5.2 and 5.3).  Distributions 

of parameters used in agent-level learning curves should be estimated based on 

assumptions derived from prior empirical research (for example, see Uzumeri and 

Nembhard, 1998 and Shafer, Nembhard, and Uzumeri, 2001) and validated by archival 

data and interviews with group managers.    

The resulting simulations are necessarily expected to create a large amount of 

data.  For example, for each group and simulation time period, essentially all variables 

used in the empirical analysis of Chapter 4 are calculated based on each period’s 

Figure 5.2. Process for combining simulation and empirical methods. 
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simulation results.  For the learning curves to be useful in a cross-sectional analysis, at 

least 48 to 50 calendar months of data for each group are required.  With completed sets 

of simulation-induced data, boundaries of theory can be explored using conventional 

hierarchical regression techniques.  In addition, sensitivities to changes in assumptions as 

well as agent-level parameter distributions can be conducted to examine robustness of the 

computational outcomes. 
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APPENDIX 
�

 

Appendix A.   Capability Evaluation Factors 
 

Capability Evaluation Factor 
Mapping to Construct 

in Simulation 
Framework 

Hierarchy Organizational Context 
Network Organizational Context 
Team –   
     Standard Organizational Context 
     Autonomous Organizational Context 
     Distributed Organizational Context 
Matrix Organizational Context O

rg
an

iz
at

io
n 

D
es

ig
ns

 
(7

) 

Bureaucracy Organizational Context 
People (Agents, Actors) Resources 
Technological Agents Technology 
Unit-level (I.e., group-level) Actors Resources 
Knowledge Resources 
Physical/Financial Capital Resources 
Tasks  Technology 

E
nt

iti
es

 
(7

) 

Units of Units actors Resources 

Physical Action 

A
ct

io
ns

 
(2

) 

Cognitive Action 

Number of Agents Unlimited Resources 
Number of Knowledge Units Unlimited Resources 
Number of Physical/Financial Resources 
Unlimited 

Resources 

Number of Tasks/Actions Unlimited Technology 
Number of Units Unlimited Resources 
Number of Levels Unlimited Organizational Context 
Number of Locations Unlimited Resources 
Ownership Type Organizational Context 
Organization Strategy Strategy 
Cooperation Interactive Processes 
Conflict Interactive Processes 
Competition Interactive Processes 
Peace/War External Environment 
Complexity External Environment 
Product/Market/Action Diversity External Environment 

E
nt

ity
 a

nd
 E

nv
ir

on
m

en
t 

C
ha

ra
ct

er
is

tic
s 

(3
6)

 

Environmental Uncertainty External Environment 
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Type (Customizable Categories) Organizational Context 
Growth Rate (No. of Agents) Organizational Context 
Industry growth External Environment 
Age (relative to organization life cycle) Organizational Context 
Centralized/Decentralized Organizational Context 
Legal Form Organizational Context 
Military Form (if any) Organizational Context 
Ethnic Context External Environment 
Religious Context External Environment 
Political Context External Environment 
Internal Trust Interactive Processes 
Historical Motivation History 
Organizational Culture Organizational Culture 
Empowerment Organizational Context 
Leadership Organizational Context 
Organizational Justice Interactive Processes 
Goal-Setting Interactive Processes 
Cohesiveness Psychosocial Traits 
Formality Organizational Context 
Multi-culturalism Organizational Context 
Efficiency Performance 
Productivity Performance 
Information Diffusion Performance 
Accuracy Performance 
Consensus Performance 
Adaptive Capability Performance 
Errors Performance 
"Fitness" Function (multivariate objective) - often 
measured as wealth 

Performance 

Exceptions/Omissions Performance 
Turnover Performance 
Custom-defined Performance Pe

rf
or

m
an

ce
 M

ea
su

re
s 

(1
2)

 

Other Performance 
Race Composition 

Gender Composition 
Age Composition 
Ethnicity Composition 
Religious Affiliation Composition 
Political Affiliation Composition 
Organizational Role Composition 
Education Level Composition 
Experience Level Composition 
Training Level Composition 
Tenure in organization Composition 
Tenure in role Composition 
Physical Location/Movement Composition 
Information Processing Capabilities Composition 
Personality Psychosocial Traits 
Intelligence Psychosocial Traits 
Trust Psychosocial Traits 
Cooperativeness Psychosocial Traits 
Commitment to Organization Attitudinal 
Satisfaction Attitudinal 
Intention to Leave Attitudinal 
Beliefs/Values Psychosocial Traits 
Morale Psychosocial Traits 

A
ge

nt
 C

ha
ra

ct
er

is
iti

cs
 

(2
4)

 

Emotion Psychosocial Traits 
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Temporal/Chronological Representation Action 
Efficacy Psychosocial Traits 
Affect Psychosocial Traits 
Turnover (Quitting) Behavioral 
Absenteeism Behavioral 
Citizenship Behaviors Behavioral 
Social Psychosocial Traits 
Self Aware Psychosocial Traits 
Multi-goal Psychosocial Traits 
Self Directed Psychosocial Traits 
Influenced by others Psychosocial Traits 

A
ge

nt
 B

eh
av

io
ra

l 
A

tt
ri

bu
te

s 
(1

2)
 

Task Oriented Psychosocial Traits 
Capability (Skill) Composition 
Knowledge (Cognition) Composition 
Working (short-term) Memory Composition 
Long-Term Memory Composition 
Transactive Memory  Psychosocial Traits 
Adaptive Capability (Learning) Composition 

A
ge

nt
 

C
og

ni
tiv

e 
A

tt
ri

bu
te

s (
7)

 

Forecasting/Planning Composition 
Task assigned by:  
     Manager Technology 
     Self-assignment Technology 
     Fixed Technology 
Interdependence Technology 
Complexity Technology 
Location Technology 
Physical Layout/Environs Technology 

T
as

k 
C

ha
ra

ct
er

is
tic

s 
(8

) 

Type Technology 
Social Network: People to People       
      Formal Authority Technology 
      Informal  Friendship Informal Network Environment 
      Formal Communication Interactive Processes 
      Informal Communication Informal Network Environment 
Capabilities Network: Actor to Resources  
      People to Resource Technology 
      Technology to Resource Technology 
      Unit to Resource Technology 
      Unit of Units to Resource Technology 
Knowledge Network: Actor to Knowledge  
      People to Knowledge Composition 
      Technology to Knowledge Technology 
      Unit to Knowledge Composition 
      Unit of Units to Knowledge Technology 
Task Assignment: Actor to Task  
      People to Tasks Technology 
      Technology to Tasks Technology 
      Unit to Tasks Technology 
      Unit of Units to Tasks Technology 
Action Assignment: Actor to Action  
      People to Actions Action 
      Technology to Actions Action 
      Unit to Actions Action 
      Unit of Units to Actions Action 
Workforce: People to Unit Technology 
Skills Needed: Knowledge to Resources Technology 
Skills for Tasks: Knowledge to Task Technology 
Unit Competence: Knowledge to Unit Technology 

In
fo

rm
al

 a
nd

 F
or

m
al

 N
et

w
or

k 
R

ep
re

se
nt

at
io

n 
(5

7)
 

Unit of Units Competence: Knowledge to Unit of Technology 
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Units 
Resource Needs: Resources to Tasks Technology 
Core Competence: Resource to Unit Technology 
Core Processes: Task to Organization Technology 
Information: Knowledge to Knowledge Technology 
Substitutes: Resources to Resources Technology 
Task-to-task relations:  
      Coincidence Technology 
      Precedence Technology 
      Coordination Technology 
Inter-Unit (Unit-to-Unit)  
      Alliance Strategy 
      Competition Strategy 
      Knowledge Flow Interactive Processes 
      Supply Chain Interactive Processes 
      Coordination Interactive Processes 
      Accountability Strategy 
      Overlap Strategy 
      Leadership Strategy 
Action Types  
      Communication Action 
      Resource Action 
      Political/Social  Action 
      Economic Action 
      Other Action 
Action Ability: Actor to Action  
      Execution Action 
      Capability Action 
Action Outcomes: Action to Effects  
      Intention Action 
      Prediction Action 
      Result Action 
Action Impacts: Effects of Units' Actions  
      Enablement Performance 
      Disablement Performance 
      Encouragement Attitudinal 
      Discouragement Attitudinal 
Inter-Effect: Effect to Effect  
      Reinforcement Action 
      Inhibition Action 
Add Agents Technology 
Drop Agents Technology 
Add Links between agents Informal Network Environment 
Drop Links between agents Informal Network Environment 
Add Knowledge Technology 
Drop Knowledge Technology 
Add Links Agents to Knowledge Composition 
Drop Links Agents to Knowledge Composition 
Add Links Knowledge to Knowledge Technology 
Drop Links Knowledge to Knowledge Technology 
Add Resources Technology 
Drop Resources Technology 
Add Links Agents to Resources Technology 
Drop Links Agents to Resources Technology 
Add Links Knowledge to Resources Technology 
Drop Links Knowledge to Resources Technology 
Add Links Resources to Resources Technology 

N
et

w
or

k 
E

vo
lu

tio
n 

(5
2)

 

Drop Links Resources to Resources Technology 
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Add Tasks Technology 
Drop Tasks Technology 
Add Links Agents to Tasks Technology 
Drop Links Agents to Tasks Technology 
Add Links Knowledge to Tasks Technology 
Drop Links Knowledge to Tasks Technology 
Add Links Resources to Tasks Technology 
Drop Links Resources to Tasks Technology 
Add Links Tasks to Tasks Technology 
Drop Links Tasks to Tasks Technology 
Add Units Composition 
Drop Units Composition 
Add Links Agents to Units Composition 
Drop Links Agents to Units Composition 
Add Links Knowledge to Units Technology 
Drop Links Knowledge to Units Technology 
Add Links Resources to Units Technology 
Drop Links Resources to Units Technology 
Add Links Tasks to Units Technology 
Drop Links Tasks to Units Technology 
Add Links Units to Units Informal Network Environment 
Drop Links Units to Units Informal Network Environment 
Add Actions Action 
Drop Actions Action 
Add Links People to actions Action 
Drop Links People to actions Action 
Add Links Knowledge to actions Action 
Drop Links Knowledge to Actions Action 
Add Links Resources to Actions Action 
Drop Links Resources to Actions Action 
Add Links Tasks to Actions Action 
Drop Links Tasks to Actions Action 
Add Links Units to actions Action 
Drop Links Units to actions Action 
Innovation/Discovery Interactive Processes 
Culture/Socialization Interactive Processes 
Turnover Interactive Processes 
Recruitment Interactive Processes 
Promotion Interactive Processes 
Goal Interdependence Interactive Processes 
Outcome Interdependence Interactive Processes 
Norms Psychosocial Traits 
Training   Technology 
Misinformation Interactive Processes 

In
te

rn
al

 P
ro

ce
ss

es
 

(1
1)

 

Negotiation Interactive Processes 
Communication Frequency Interactive Processes 
One-to-one Personal Interactive Processes 
Email Technology 
Avatars Technology 
Databases Technology 
Referential DataBases Technology 
Group Meetings Interactive Processes 
Broadcast Technology 
Phone/Fax Technology 
Voice Mail Technology 
Books/Manuals Technology 

C
om

m
un

ic
at

io
n 

C
ha

ra
ct

er
is

tic
s 

(1
2)

 

Memos Technology 
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Appendix B.  Actor Vector 
 

1 LDR Project Manager 
2 M1 Art Director 
3 M2 Technical Lead 
4 S1 Design Lead 
5 S2 Interactive Lead 
6 S3 Data Architect 
7 S4 Application Architect 
8 EE1 Designer 
9 EE2 Web Developer 

10 EE3 Usability Engineer 
11 EE4 Business Analyst 1 
12 EE5 Business Analyst 2 
13 EE6 Software Engineer 1 
14 EE7 Software Engineer 2 
15 EE8 Software Engineer 3 
16 EE9 Software Engineer 4 

 
 
Appendix C.   Knowledge Vector 
 

S1 Project Management Training/Experience 
S2 Administrative Training 
S3 Software Engineering Experience 
S4 Team Supervision Experience 
S5 General Programming Supervision Experience 
S6 Application Architecture Design 
S7 Creative Design  
S8 Screen Design 
S9 Network Management 

S10 Data Modeling 
S11 Database Programming 
S12 Content Design and Development 
S13 Usability/Navigation Design 
S14 Web Development (HTML) 
S15 ATG Dynamo Platform 
S16 Unix/Java/C++ Programming 
S17 Interwoven Platform 
S18 Interface Design/Development 
S19 Apache Platform 
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Appendix D.   Task Vector 
 

T1 Project Management 
T2 Administration 
T3 Detailed Supervision 
T4 Reporting 
T5 Usability/Wireframe 
T6 Comps Design 
T7 Content Development 
T8 Screen Design 
T9 Application & Network Management 

T10 Data Model 
T11 Application Architecture – Flows 
T12 Application Architecture – Content 
T13 Application Architecture – Screen Objects 
T14 Application Architecture – Interface Design 
T15 Application Architecture – Technology 
T16 Development – Data Repository 
T17 Development – Screens 
T18 Development – Content 
T19 Development – Interfaces 
T20 Testing – Integration  
T21 Testing – System  
T22 Testing – User Acceptance 
T23 Migration 
T24 Deployment 

 
Appendix E.   Social Network Matrix ( N � nnN ˆˆ × ) 
 

 LDR M1 M2 S1 S2 S3 S4 EE1 EE2 EE3 EE4 EE5 EE6 EE7 EE8 EE9 
LDR 0 1 1 1 0 0 1 0 1 0 0 0 0 1 0 0 
M1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 
M2 1 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 
S1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 
S2 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 
S3 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 
S4 1 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 

EE1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 
EE2 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 
EE3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
EE4 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 
EE5 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 
EE6 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 
EE7 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 
EE8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
EE9 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 
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Appendix F.    Assignment Matrix ( NT � tnT ˆˆ× ) 
 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 
LDR 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
M2 0 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
S1 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
S2 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 
S3 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 
S4 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

EE1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 
EE2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 
EE3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 
EE4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 
EE5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 
EE6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 
EE7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 
EE8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 
EE9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

 

Appendix G.     Raw Skill/Knowledge Matrix ( NS � snS ˆˆ× ) 
 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 
LDR 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 0 0 

M1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 0 
M2 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0 0 
S1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 
S2 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 
S3 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 
S4 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 

EE1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 
EE2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 
EE3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 
EE4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 
EE5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 
EE6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 
EE7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
EE8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 
EE9 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 
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