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Abstract 

 

Changes in observed social networks may signal an underlying change within an 

organization, and may even predict significant events or behaviors.  The breakdown of a 

team’s effectiveness, the emergence of informal leaders, or the preparation of an attack 

by a clandestine network may all be associated with changes in the patterns of 

interactions between group members.  The ability to systematically, statistically, 

effectively and efficiently detect these changes has the potential to enable the anticipation 

of change, provide early warning of change, and enable faster response to change.  By 

applying statistical process control techniques to social networks we can detect changes 

in these networks.  Herein we describe this methodology and then illustrate it using three 

data sets.  The first deals with the email communications among graduate students. The 

second is the perceived connections among members of al Qaeda based on open source 

data.  The results indicate that this approach is able to detect change even with the high 

levels of uncertainty inherent in these data. 
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1.  INTRODUCTION  
 

Organizations are not static, and over time their structure, composition, and 

patterns of communication may change.  These changes may occur quickly, such as when 

a corporation restructures, but they often happen gradually, as the organization responds 

to environmental pressures, or individual roles expand or contract.  Often, these gradual 

changes reflect a fundamental qualitative shift in an organization, and may precede other 

indicators of change.  It is important to note, however, that a certain degree of change is 

expected in the normal course of an unchanging organization, reflecting normal day-to-

day variability.  The challenge of Social Network Change Detection is whether metrics 

can be developed to detect signals of meaningful change in social networks in a 

background of normal variability. 

 

Organizations can be represented with many different networks.  Relationships 

between people form social networks.  Relationships between people and their 

knowledge, resources, tasks, beliefs, and other dimensions all form networks as well.  

The collection of these networks is referred to as a meta-network (Krackhardt and Carley, 

1998). One advantage in representing organizations using meta-networks is the ability to 

mathematically quantify and represent complex interrelated organizational behavior.  In 

addition, network representations of organizations can have a visual appeal that enhances 

insight and understanding of organizational dynamics.  If we accept the notion that 

organizations consist of a meta-network of relationships, the data collected on the 

organization over time can be used to construct observed instances of the network.  Due 

to normal fluctuations in behavior and data collection errors, it is conceivable that an 

observed network might differ slightly from the actual underlying network of 

organizational relations.  How then, can we detect statistically meaningful changes in the 

organization, within this meta-network representation?  This paper proposes an approach 

that is focused on social networks, but could be expanded to include other network 

dimensions in the future. 

 

Social Network Analysis (SNA) is an approach to studying and analyzing groups 

of actors and their ties.  When applied to communication networks, SNA enables us to 

quantitatively analyze the patterns of information flow through time and space (Monge & 

Contractor, 2003).  These techniques can be used to characterize the roles of individuals 

in groups, compare subgroups with one another, or describe the informal structure of 

large organizations (Wasserman & Faust, 1994).   

 

There has been a recent increase in temporal social network data (McCulloh, 

et.al., 2007).  Unobtrusive tools now exist to extract network data from e-mail servers, 

from news media, from written documents within an organization.  This allows an analyst 

to construct multiple network observations of an organization, whether it is daily, weekly, 

yearly, or any other temporal breakdown.  With the increased emergence of observed 

instances of social networks over time, improved methods of detecting meaningful 

change are needed.  Simply looking for obvious drastic changes may be insufficient for 

many applications. 
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2. BACKGROUND 
 

Current methods of change detection in social networks are limited.  Hamming 

distance (Hamming, 1950) is often used in binary networks to measure the distance 

between two networks.  Euclidean distance is similarly used for weighted networks 

(Wasserman and Faust, 1994).  While these methods may be effective at quantifying a 

difference in static networks, they lack an underlying statistical distribution.  This 

prevents an analyst from identifying a statistically significant change, as opposed to 

normal and spurious fluctuations in the network.  Social Network Change Detection 

significantly improves on previous attempts to detect organizational change over time by 

introducing a statistically sound probability space and uniformly more powerful detection 

methods. 

 

Several methods for studying social networks over time have been proposed in the 

literature.  Exponential Random Graph Models (ERGM) include structural variables to 

predict future graph evolution (Handcock and Morris, 2005; Goodreau, 2007; Robins, et. 

al., 2007).  The software package SIENNA is often used to study longitudinal data 

(Snijders, et. al., 2007).  The Network Probability Matrix (NPM) approach makes 

different assumptions than the ERGM and uses historic relationships to predict future 

networks (McCulloh, et. al. 2007).  Conceptual models such as preferential attachment 

and fitness models have been used to predict the future behavior of network evolution 

through time.  While it may yet be unclear which method more closely resembles the true 

evolution of networks, all methods provide an analyst with a means to understand a 

possible underlying statistical distribution for social network measures.  Statistical 

distributions have been fit to several data sets, using the NPM and empirical approaches 

(McCulloh, et. al., 2007; Baller, et. al., 2008).  Findings indicate that measures of average 

centrality, average betweenness, and density are all normally distributed for networks of 

greater than 30 nodes.  These findings suggest that the necessary assumptions for many 

statistical process control charts may be satisfied for these three measures. 

 

Social Network Change Detection is a process of monitoring networks to 

determine when significant changes to their organizational structure occur and what 

caused them.  We propose that techniques from SNA, combined with those from 

statistical process control can be used to detect when significant changes occur in a 

network.  In application, it requires the use of statistical process control charts to detect 

changes in observable network measures.  By taking measures of a network over time, a 

control chart can be used to signal when significant changes occur in the network.  We 

describe our technique below.  First, providing an overview of the relevant SNA and 

statistical process control approach, then describing the impact of applying this to 

relational data, and which social network measures are suitable for monitoring.  We 

follow that with demonstrations of the technique on two distinct network data sets, the 

emails between Army officers in a graduate program, the patterns of communication 

between members of Al-Qaeda. 

 

Social Network Analysis 
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SNA provides the basis for how networks are modeled, measured, and compared.  

A typical social network can be modeled on a graph with people represented as vertices 

and links between them as edges. (Scott, 2002; Wasserman and Faust, 1994).  These 

edges can represent a wide variety of links including exchanged emails, shared religious 

beliefs, or attendance at the same university.  Edges may be weighted to show the 

importance of the link.  For example, the weight could be how many emails were sent 

over the data collection time period.  Edges may also be directed to show who is 

initiating the link and who receiving it.  The simplest social networks have just one edge 

set that is un-weighted and undirected. 

 

There are many network measures that can be calculated from a given graph.  

Network measures can be calculated from the entire graph or for each individual node.  

Centrality network measures such as betweenness and closeness are widely used for their 

easily applied practical applications in determining how information spreads through a 

social network.  For illustration this paper will use one graph level measure, density 

(Coleman and Moré, 1983); and two individual node measures averaged over the graph, 

closeness (Freeman, 1979) and betweenness (Freeman, 1977).  These are chosen because 

they are commonly used in the literature and represent a range of the types of measures 

available for change detection. 

 

Despite the practicality of these measures, several problems arise from their 

usage.  First, these individual measures must be translated into a network picture of the 

entire graph.  This may be as simple as averaging the measures across the entire graph 

and using that as the measure for each time period.  An alternative method would be to 

use either the maximum or minimum value from nodes within the graph as the sample.  

Unlike in Everett and Borgatti’s paper (1999) one cannot recalculate the network measure 

by collapsing the graph into a single node and analyzing its links with nodes outside the 

group because our group involves the entire graph and the result would be trivial.  One 

must thus explore how both the individual measures and average measures are distributed 

and whether the average is good representation for the entire graph.  A second difficulty 

with these measures is their normalization.  In order to compare measures across different 

time periods, they must be normalized.  For a steady sized group this should not be an 

issue, but in the case of an expanding or contracting group, issues arise as to whether 

results can be used across the different scales of group size.  In other words, the network 

measures may change in different ways with respect to the current group size and thus 

provide inconsistent information about the group even absent of any changes within the 

group.  For this research, the Organizational Risk Analyzer (ORA) developed by 

Kathleen Carley at the Center for Computational Analysis of Social and Organizational 

Systems at Carnegie Mellon University is used to compute the average network measures 

from all group information (Carley, 2007). 

 

Statistical Process Control 

 

The second component for social network change detection is Statistical Process 

Control (SPC).  SPC is a technique used by quality engineers to monitor industrial 

processes.  They use control charts to detect changes in the mean of the industrial process 
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by taking periodic samples of the product and tracking the results against a control limit.  

Once a change has been detected, the engineers determine the most likely time the 

change occurred to reexamine and reset the process to avoid financial loss for the 

company by making substandard or wasteful product.  Control charts are usually 

optimized for their processes to increase their sensitivity for detecting changes, while 

minimizing the number of false alarms – signals when no change has actually occurred in 

the process. 

 

The control chart investigated for this project was the cumulative sum (CUSUM).  

The CUSUM control chart is a widely used control chart derived from the sequential 

probability ratio test (SPRT) (Page, 1961).  The SPRT was derived in turn from the 

Neyman and Pearson (1933) most powerful test for a simple hypothesis. 

 

The decision rule of the CUSUM chart runs off the cumulative statistic 
t

j

it
kZC

1

)(  
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i

Z  is the standardized normal of each observation, 

x

i

i

x
Z

)(
0  

and the common choice for k is 0.5 (McCulloh, 2004), which corresponds to a 

standardized magnitude of change of 1.  The CUSUM control chart sequentially 

compares the statistic 
t

C  against a control limit A  until AC
t

.  Since we are not 

interested in concluding that the network is unchanged, the cumulative statistic is 

},0max{
1ttt

CkZC  

The statistic 
t

C is compared to the constant control limit, h .  If hC
t

, then the 

control chart signals that an increase in a network measure has occurred.  Since this rule 

only detects increases in the mean, a second cumulative statistic rule must be used to 

detect decreases in the mean. 

},0max{
1ttt

CkZC  

which signals a decrease in a network measure’s mean when hC
t

. 

 

The CUSUM control chart was selected for two reasons.  First, this chart is well 

suited to detecting small changes in the mean of a process over time.  In terms of a social 

network, this is a desired quality because one would not expect a social network to 

change dramatically between short time periods.  By casual observation, one could 

conclude that a person’s friends generally stay the same from week to week and not 

expect drastic changes in that social network.  In addition, drastic changes in the network 

are normally quite obvious, but since the CUSUM is good at detecting slight changes it 

may be able to provide early warning for drastic changes, or reveal when more subtle 

changes have occurred.  A second benefit of the CUSUM control chart is its built-in 

change point detection.  After the control chart signals, the most likely change point is 

found by tracing the C statistic back to the last time it was zero.  This allows the time of 

the change in the network to be calculated quickly and easily. 
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3.  METHOD 
 

Social network change detection algorithms are implemented in much the same 

way a control chart is implemented in a manufacturing process.  The average graph 

measures for density, closeness, and betweenness centrality are calculated for several 

consecutive time-periods of the social network.  When these measures appear to have 

stabilized over time, the “in-control” mean and variance for the measures of the network 

are calculated by taking a sample average and sample variance of the stabilized measures.  

The subsequent, successive social network measures are then used to calculate the 

CUSUM’s C
+
 and C

-
 statistics.  These were then compared to a control limit to determine 

when or if the control chart signals a change in the mean of the monitored network 

measure.  Upon receiving a signal, the change point is calculated by tracing the signaling 

C
+
 or C

-
 statistic back to the last time period it was zero.  In order to continue running the 

control chart after a signal, the in-control mean and variance are recalculated after the 

network measures have stabilized following the change.   

 

The suspected time periods when the network appears to be significantly 

changing can be estimated using the CUSUM statistic.  The network can then be studied 

in depth across these time periods in the wide variety of network measures to determine 

the extent of changes to the network structure.  Further study can also be directed towards 

determining changes in the environment in which the network operates during those time-

periods. 

 

 

4.  DATA 
 

 Two data sets are used to demonstrate the efficacy of the social network change 

detection approach.  The first data set is email traffic from a group of 24 Army officers in 

a one year graduate program at Columbia University.  This program is known as the 

Tactical Officer Education Program.  The second data set is an open source Al-Qaeda 

social network.  Details of these data sets are provided. 

 

Tactical Officer Education Program e-mail Network 

 

The Tactical Officer Education Program (TOEP) is a one-year graduate program 

run as a joint effort by the United States Military Academy (USMA) and Columbia 

University.  Each year, twenty-four Army officers (referred to in this study as TOEPs 1 

through 24) enter the program to earn a Master’s degree in Social-Organizational 

Psychology with a concentration in Leadership and to prepare for service as mentors for 

West Point’s cadet companies during the following two years.  Social network data on 

email communication was collected for 24 weeks. Details regarding the data collection 

and network properties are described in McCulloh, et. al. (2007).   
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The data were pre-processed before any social network change detection 

algorithms were performed.  The first step of processing the raw data was to remove all 

emails sent outside of the TOEP network.  The primary concern of the study was to 

examine how email communication changed within the exclusive group of TOEP 

students.  This required that records of emails sent to non-TOEPs and email addresses of 

non-TOEPs in messages that were sent to mixed parties were deleted.  Thus, all 

subsequent network pictures would only involve the email communication among the 24 

TOEPs.  Despite our best efforts though, the network information can only be viewed as 

“near” complete as emails sent using Webmail are not collected because of limitations of 

the data collection software (McCulloh, et. al. 2007). 

 

The data were then separated it into weekly time periods.  Too much variance 

existed in the data set if it were to be divided into monthly time periods (McCulloh, et. al. 

2007).  This variance was due to communication patterns that changed between months 

of schoolwork (e.g.,  October and February) and those of long break periods (e.g., 

December and March).   These large changes in communication patterns would prevent 

unbiased calculation of the baseline measurements with which to calibrate the control 

chart.  Dividing the data based on days provided too much resolution and was also 

unacceptable as network communication patterns change dramatically from weekdays to 

weekends. 

 

The network measures of interest were selected because they should theoretically 

follow or approximate a normal distribution due to the central limit theorem.  For 

veracity, the measures’ distributions were verified so that usage of the CUSUM Control 

Chart could be justified.  Each of the network measures were fit with five continuous 

distributions:  normal, uniform, gamma, exponential, and chi-squared.  Least Squares was 

used to determine the best overall distribution for each measure.  The distribution with 

the best fit for betweenness and density network measures was the Gamma Distribution.  

This invalidated further usage of the CUSUM Control Chart to detect changes in these 

network measures over time.   

 

Observing that the average network measures followed a distribution other than 

the normal distribution, violates the central limit theorem and warranted further 

investigation.  Upon deeper exploration of the data, it was found that certain subjects 

stopped sending email at some point in the study and did not send email again.  The 

principal investigator interviewed these subjects and found that they had experienced 

technical problems during the study and had reformatted their hard drive, thereby erasing 

the collection patch.  Other subjects began to rely on webmail, which bypassed the 

collection patch.  Therefore, the communication data collected was incomplete and not 

identically distributed.  Subjects, whose data collection was incomplete, were eliminated 

from further study.  Average network measures calculated on the reduced data set did 

follow a normal distribution.  A communication network for the reduced data set is 

shown in Figure 1 for the week of 29 October 2007. 



7 

 

 
Figure 1 Email Network of Active TOEPs During Week of 29 October 2007 

 

Using this much smaller, but complete network, the three network measures of 

interest were all found to be normally distributed.  Determining baseline values, however, 

was still not possible because the network contained too much variance.  There was no 

stable network measure behavior. In order to account for the variance caused by differing 

schedules week to week, we examined a copy of the TOEP planning calendar for the 

entire year.  The calendar combined with interviews with participants allowed 

investigators to determine the number of significant events from a variety of categories 

that occurred each week.  The significant events based on qualitative assessments by the 

participants were Academic Requirements, the Next Week’s Academic Requirements, 

Administrative Events (such as a class trip or cancelled class), Group Projects, Social 

Gatherings, and Days Off. 

 

Using MINITAB Statistical Software, analysis of variance (ANOVA) tests were run on 

predictors to determine if they were statistically significant factors in determining 

network measures.    Days Off was the most significant factor, due to Christmas break in 

the middle of the 24 week study, however once these weeks were removed from the 

study, Days Off was no longer a significant factor in any model.  The best linear 

regression model obtained from first semester (12 weeks) data for closeness based on the 

number of group projects, the number of social gatherings, and the number of emails sent 

each week found in Table 1 was, 

 

)EmailsofNumber(0074.0)GatheringsSocial(11.0)ProjectsGroup(11.018.0Closeness  
 

 

 

Table 1 ANOVA Table for Closeness Predictors 

Predictor Coefficient SE Coefficient T P VIF 

Constant 0.18 0.034 5.4 0   
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Group Projects -0.11 0.05 -2.1 0.05 1.3 

Social 0.11 0.04 2.89 0.01 1.3 

Number of Emails 0.0074 0.00084 8.77 0 1 

 

This model has an adjusted R
2
 value of 79.8%, accounting for a large majority of 

the variance in the network measure and a predictive R
2
 value of 70.9%.  Slightly 

surprising from this model is the effect of group projects on closeness.  An increase in 

group project work was correlated with a decrease in communication.  This might be due 

to the fact that as a group project comes due, the subjects may communicate more with 

their immediate team of group members, and communicate more face-to-face, but overall 

they decrease communication outside of their working groups and through email in order 

to focus on the project.  The positive effects of Social Gatherings and more emails sent 

over the week had the foreseen effect of improving group closeness. 

 

The model created from the first semester was used to predict the average 

closeness value for the second semester.  The CUSUM control chart was applied to the 

residual error between the prediction and the actual second semester data.  This allowed 

the investigators to conduct real-time monitoring of a social group for change. 

 

Al Qaeda Communications Network 

 

The Center for Computational Analysis of Social and Organizational Systems 

(CASOS) at Carnegie Mellon University created snapshots of the annual communication 

between members of the al Qaeda organization from its founding in 1988 until 2004 from 

open source data (Carley, 2006).  The data is limited in that we do not know the type, 

frequency, or substance of the communication and all links are non-directional, meaning 

we do not know who initiated communication with whom.  Finally, the completeness of 

the data is uncertain since it only contains information available from open sources.  The 

data is unique in that it provides a network picture of a robust network over standard 

time-periods of one year.   
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Figure 2 Monitored al Qaeda Communication Network for Year 2001 

 

Using the network snapshots for each year time-period, the average social 

network measures were calculated and plotted for betweenness, closeness, and density.  

Each of these measures increased from 1988 until 1994, and then leveled off.  There are 

many possible reasons for this burn-in period, such as the quality of our intelligence 

gathering on al Qaeda and the rapid development and reorganization of a fast growing 

organization.  In al Qaeda’s early years, access to the infant organization may have been 

limited, as well as the resources devoted to tracking a small, new, and relatively 

unaccomplished terrorist network.   The organization itself may have also been changing 

drastically during its first years by actively recruiting new members, and shifting its 

structure to accommodate new resources and infrastructure.  For this reason, the averages 

for each measure and standard deviation were calculated over the five years that follow 

the burn-in period that ended in 1994.  The CUSUM control chart was then used to 

monitor the three measures above from 1994 to 2004.  Figure 3 displays the plot of each 

average social network measure in the Al-Qaeda network.  The general trends for each of 

these measures are the same throughout the entire time period. 
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Figure 3 Plot of Selected Network Measures of al Qaeda Organization 

 

5. RESULTS 
 

The approach proposed in this paper was found to be successful at predicting the 

most significant events in both data sets.  Although the approach varied slightly between 

the two data sets, we have been able to show that statistical process control is effective at 

identifying organizational change in these two social groups.  For the TOEP data set, 

there were relatively few nodes and many time periods.  Therefore, variance effects were 

much stronger.  It was necessary to control for this effect by constructing a statistical 

model and conducting statistical process control on the model residuals.  With the al 

Qaeda data set, however, we were able to conduct statistical process control directly on 

the network measures, due the greater stability of the network measures. 

 

Being able to predict the closeness of the TOEPs communication network was 

essential in explaining much of the variance in the network.  The control chart could then 

be used to determine when the network changed away from the model.  In effect, when is 

the model no longer providing a good prediction?  Using the closeness model developed 

from data obtained during the first semester of the TOEP graduate program, predicted 

values were calculated for each week of the second semester using the number of social 

gatherings and group projects from the TOEP calendar and the number of emails sent by 

observation.  These were compared with the observed network measures. The residuals 

were verified as normally distributed to meet the prerequisites of the CUSUM Control 

Chart.  The C
+
 and C

-
 statistics were calculated for each week using a k value of 0.5 and a 

control limit of 3.  By running a Monte Carlo simulation with these settings, we were able 

to predict that the CUSUM would have a false alarm rate of once out of every 59 

observations or practically once every year.  A graph of the CUSUM statistic is in Figure 

4. 
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Figure 4 Plot of closeness CUSUM statistic for nine active TOEPs 

 

Figure 4 indicates that the control chart signals on Week 23 (see Table 2).  Week 

23 was the week that the TOEPs took the comprehensive exam for their graduate 

program.  It was the most significant academic event of the year.  Tracing the C
-
 statistic 

back to the last time it was zero, the most likely change point was during Week 21.  Upon 

first examination, Week 21 looks like it should be a typical academic week, with no 

unusual events or graded projects.  However, based on interviews conducted with TOEPs 

after the signal was detected, it was discovered that Week 21 was a critical preparation 

week prior to the comprehensive exam when the study questions for the exam were sent 

to the students.  Thus, the CUSUM control chart signals on Week 23 as it represents a 

significant departure from the value predicted by the model. 

 

Table 2 CUSUM Statistic Values for Closeness Network Measure 

Week Closeness Model Z C+ C- 

15 0.3332 0.4712 -1.9714 0.0000 1.4714 

16 0.5134 0.3798 1.9086 1.4086 0.0000 

17 0.2760 0.3798 -1.4829 0.0000 0.9829 

18 0.3332 0.3562 -0.3286 0.0000 0.8114 

19 0.5406 0.5243 0.2329 0.0000 0.0786 

20 0.6536 0.5745 1.1300 0.6300 0.0000 

21 0.4977 0.3916 1.5157 1.6457 0.0000 

22 0.1258 0.2913 -2.3643 0.0000 1.8643 

23 0.2646 0.4215 -2.2414 0.0000 3.6057 

24 0.5226 0.4152 1.5343 1.0343 1.5714 

 

 The CUSUM control chart implemented on the residuals of a communication 

model proved to be effective at detecting organizational change in the TOEP program.  It 

is also interesting to note, that a decrease in communication can indicate that a major 

event is about to occur, as the subjects rely less on email and more on face-to-face 

communication and study groups. 
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The success of social network change detection on the TOEP data set warranted 

further investigation.  The al Qaeda data set offered data with more nodes, that were 

aggregated over a much larger time period.  At the same time, we were able to identify at 

least one major event in al Qaeda’s history.  The question was asked, “can we identify 

September 11 from the social network?” Perhaps more importantly, “can we identify the 

point in time when the organization changed into such a threatening menace?” 

 

The reference value, k, and the control limit, h, were set at 0.5 and 4 respectively 

for all of the social network control charts based on no other reason than widely used 

industry standards (McCulloh, 2004).  This would correspond to a false alarm once every 

168 years.  Figure 5 shows the CUSUM statistic for the average closeness that is plotted 

in Figure 4.  It can be seen that the CUSUM statistic in Figure 5 is a more dramatic 

indication of network change than simply monitoring the network measure in Figure 4.  

This is a result of the CUSUM statistic taking into account previous observations and 

deviations from the mean in the network measure.  A single observation of a network 

measure that is slightly higher than normal may not indicate a change in the network; 

however multiple observations that are slightly higher than normal may indicate a shift in 

the mean of the measure. 

 
Figure 2 Plot of Closeness CUSUM Statistic of al Qaeda 

 

Recall that the CUSUM will detect either increases or decreases in a measure, but 

not both.  Therefore, two control charts must be run for each social network measure 

monitored.  One chart is used to detect increases and the other chart for decreases.  Table 

3 displays the CUSUM statistic values for closeness measure.  The trends in the data for 

the closeness measure are the same as the betweenness and density measures.  
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Table 3 CUSUM Statistic Values for Closeness Network Measure 

Time Closeness Z C
+
 C

-
 

1994 0.0027 -0.8729 0.0000 0.3729 

1995 0.0030 1.0911 0.5911 0.0000 

1996 0.0028 -0.2182 0.0000 0.0000 

1997 0.0028 -0.2182 0.0000 0.0000 

1998 0.0031 1.7457 1.2457 0.0000 

1999 0.0030 1.0911 1.8368 0.0000 

2000 0.0032 2.4004 3.7372 0.0000 

2001 0.0034 3.7097 6.9469 0.0000 

2002 0.0024 -2.8368 3.6101 2.3368 

2003 0.0015 -8.7287 0.0000 10.5655 

2004 0.0004 -15.9300 0.0000 25.9955 

 

It can be seen in Table 3 that the CUSUM statistic exceeds the control limit of 4 and 

signals that there might be a significant change in the al Qaeda network between the 

years 2000 and 2001.  Therefore, an analyst monitoring al Qaeda would be alerted to a 

critical, yet subtle change in the network prior to the September 11 terrorist attacks. 

 

The CUSUM control chart also has a built in feature for determining the most 

likely time that the change occurred.  This time is identified as the last point in time when 

the CUSUM statistic is equal to zero.  For all measures, this point in time is 1997.  To 

understand the cause of the change in the al Qaeda network, an analyst should look at the 

events occurring in al Qaeda’s internal organization and external operating environment 

in 1997. 

 

Several very interesting events related to al Qaeda and Islamic extremism 

occurred in 1997.  Six Islamic militants massacred 58 foreign tourists and at least four 

Egyptians in Luxor, Egypt (Jehl, 1997).  United States and coalition forces deployed to 

Egypt in 1997 for a bi-annual training exercise were repeatedly attacked by Islamic 

militants.  The coalition suffered numerous casualties and shortened their deployment.  In 

early 1998, Zawahiri and Bin Laden were publicly reunited, although based on press 

release timing, they must have been working throughout 1997 planning future terrorist 

operations.  In February of 1998, an Arab newspaper introduced the “International 

Islamic Front for Combating Crusaders and Jews.”  This organization established in 

1997, was founded by Bin Laden, Zawahiri, leaders of the Egyptian Islamic Group, the 

Jamiat-ul-Ulema-e-Pakistan, and the Jihad Movement in Bangladesh, among others.  The 

Front condemned the sins of American foreign policy and called on every Muslim to 

comply with God’s order to kill the Americans and plunder their money.  Six months 

later the US embassies in Tanzania and Kenya were bombed by al Qaeda.  Thus, 1997 

was possibly the most critical year in uniting Islamic militants and organizing al Qaeda 

for offensive terrorist attacks against the United States. 
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6. CONCLUSION 
 

Control charts are a critical quality-engineering tool that assist manufacturing 

firms in maintaining profitability (Montgomery, 1991; Ryan, 2000).  The TOEP and al 

Qaeda examples demonstrate that social network monitoring could enable analysts to 

detect important changes in the monitored communication of both command and control 

networks as well as terrorist networks.  Furthermore, the most likely time that the change 

occurred can also be determined.  This allows one to allocate minimal resources to 

tracking the general patterns of a network and then shift to full resources when changes 

are determined1. 

 

This paper describes an algorithm for change detection, and then demonstrates its 

ability to detect changes in networks. No doubt other change detection methods will 

emerge.  Our point, is that it is critical to be able to detect change in networks over time 

and to determine when those changes are not simply the random fluctuations of chance.  

The strengths of the proposed method are its statistical approach, ability to quantify the 

rate of false alarm, a wide range of social network metrics suitable for application, its 

ability to identify change points in organizational behavior, and its flexibility for various 

magnitudes of change.  The proposed method is limited to normally distributed network 

measures, and a period of dynamic equilibrium must be assumed to estimate parameters 

of the control chart.  Other limitations of the algorithm cannot yet be determined as this is 

the first application of statistical process control methods to the problem of social 

network change detection.  Future research will provide much greater insight into the 

strengths and limitations of this approach to the problem.  The remainder of this section 

will identify specific areas of caution when interpreting findings and identify areas for 

future research. 

 

The empirical results described in this paper, such as the detection of change in 

the al Qaeda network should be viewed with caution.  We present them here purely to 

illustrate the methodology. Limitations on the data make it difficult to determine the 

validity of the results; thus, we should simply view these results as showing the promise 

of this methodology.  The IkeNet data is a small sample capturing only email traffic and 

not all communication and interaction among participants.  The fact that even in this 

small sample of behavior we were able to systematically detect a key change suggests the 

value of the proposed approach..  The al Qaeda data, was based on open source 

information.  As such it is an incomplete representation of interaction in that terror 

network.  We cannot be sure that we have the entire communication network, or even a 

true picture of the observed communication network.  However, the fact that our 

technique detects a change corresponding with the 9/11 attacks is intriguing.  This work 

suggests that our approach may provide some ability to detect change even when there is 

incomplete information. 

                                                 
1 Two social network change detection algorithms (Shewhart X-Bar and the Cumulative Sum) are 

available in the “Statistical Network Monitoring Report” in the software tool, Organizational Risk Analyzer 
(ORA) available through the Center for Computational Analysis of Social and Organizational Systems 
(CASOS), http://www.casos.cmu.edu. 
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 That being said, it is important that future work examine the errors associated 

with this technique, both the false positives and false negatives.  Future work should also 

consider the sensitivity of this approach to missing information, and to the reason why 

the information is missing.  For example, data sets collected post-hoc that focus on 

activity around an event, such as the al Qaeda data are prone to errors of missing nodes 

and as a result links prior to the event.  Whereas, data sets collected based on opportunity, 

such as the IkeNet data, are prone to missing links among the nodes. 

 

In order to rectify the above shortcomings, future research should focus on near-

complete datasets with high resolution.  Higher resolution involves taking many 

snapshots of the network.  This may mean, simply an increase in frequency, e..g. changes 

by month, or it may mean a longer time horizon, e.g., more years.  The right choice will 

depend on the problem where we want to detect network change.  More data points will 

provide more opportunities to detect changes while they are still small, instead of 

allowing them to incubate and grow as was the case for the al Qaeda data.  Larger 

datasets will also provide near continuous network measures permitting the use of control 

charts for continuous data.  Near complete data means that the data should cover the 

communication network with little or no missing information for a large contiguous 

period.  Here one might consider simply tracking a group in general, as opposed to 

focusing on tracking relative to a specific event.  Data such as that on the US Congress or 

Supreme Court that is regularly output might provide a good source of data. 

 

Another limitation of this approach is that it assumes that network measures are 

normally distributed.  Research on the distributions is needed.  Preliminary work on these 

distributions suggests that the assumption of normality does not hold for small networks, 

extremely sparse networks, and for certain metrics (Kim and Carley, working paper).  

Future work should consider these factors to determine the range of networks for which 

this approach will work.  Clearly, if the network measures are normally distributed, the 

CUSUM control chart can be used to monitor network change.  If they are not, a different 

control chart must be used or a new approach at the problem made.  Future work should 

address this issue. 

 

Future research should also look at the sensitivity of the optimality constant, k and 

control limit values of the CUSUM Control Chart for network measure change detection.  

As stated earlier, these values are generally arbitrarily chosen and then optimized for the 

process.  By using further Monte Carlo simulations, a researcher should determine which 

parameter value would be best in detecting certain types of changes such as sudden large 

changes or slow creeping shifts.  Usage of control charts on comparing models and 

observations should also be studied to see what specific conclusions can be obtained. 

 

Multi agent simulations would also provide valuable insight into the performance 

of control charts for social network change detection applications.  Simulations would 

allow an investigator to introduce various changes into a simulated organization and 

evaluate the time to detect for different algorithms.  Simulations provide an efficient 

means of evaluating change detection on social networks.  More importantly, however, is 
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the ability to create more controlled experiments, by fixing certain variables, exploring 

others, and using many replications to estimate error.  Simulation studies will be 

extremely useful in exploring extensions of this methodology.   

 

Social network change detection is important for identifying significant shifts in 

organizational behavior.  This provides insight into policy decisions that drive the 

underlying change.  It also shows the promise of enabling predictive analysis for social 

networks and providing early warning of potential problems.  In the same way that 

manufacturing firms save millions of dollars each year by quickly responding to changes 

in their manufacturing process, social network change detection can allow senior leaders 

and military analysts to quickly respond to changes in the organizational behavior of the 

socially connected groups they observe. The combination of statistical process control 

and social network analysis is likely to produce significant insight into organizational 

behavior and social dynamics.  Immediate applications to counter terrorism are obvious.  

As a scientific community we can hope to see more research in this area as network 

statistics continue to improve. 
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