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Abstract 
 
Social network analysis (SNA) has become an important analytic tool for analyzing 
terrorist networks, friendly command and control structures, arms trade, biological 
warfare, the spread of diseases, among other applications.  Detecting dynamic changes 
over time from an SNA perspective, may signal an underlying change within an 
organization, and may even predict significant events or behaviors.  The challenges in 
detecting network change includes the lack of underlying statistical distributions to 
quantify significant change, as well as high relational dependence affecting assumptions 
of independence and normality.   Additional challenges involve determining an algorithm 
that maximizes the probability of detecting change, given a risk level for false alarm.   
 
A suite of computational and statistical approaches for detecting change are identified 
and compared. The Neyman-Pearson most powerful test of simple hypotheses is extended 
as a cumulative sum statistical process control chart to detect network change over time.  
Anomaly detection approaches using exponentially weighted moving average or scan 
statistics investigate performance under conditions of potential time-series dependence.  
Fourier analysis and wavelets are applied to a spectral analysis of social networks over 
time.  Parameter values are varied for all approaches.  The results are put in a 
computational decision support framework. 
 
This new approach is demonstrated in multi-agent simulation as well as on eight different 
real-world data sets. The results indicate that this approach is able to detect change even 
with high levels of uncertainty inherent in the data. The ability to systematically, 
statistically, effectively and efficiently detect these changes has the potential to enable the 
anticipation of change, provide early warning of change, and enable faster appropriate 
response to change.  
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1 Introduction 
 
Terrorists from al-Qaeda attacked America on 11 September 2001.  Some suggest 

that these terrorists began to plan and resource this attack as early as 1997.  If social 
network analysts could monitor the social, email, or phone networks of these terrorists 
and detect organizational changes quickly, they may enable military leaders to respond 
prior to the successful completion of their attack. Social network change detection 
(SNCD) is a novel approach to this problem.  It combines the area of statistical process 
control and social network analysis.  The combination of these two disciplines is likely to 
produce significant insight into organizational behavior and social dynamics.  

 
Statistical process control is a statistical approach for detecting anomalies in the 

behavior of a stochastic process over time.  This approach is widely used in 
manufacturing as a means for quality control.  Manufacturing systems experience similar 
issues of high correlation, dependence, and non-ergodicity that is common in relational 
network data.  I posit that applying statistical process control to graph-level network 
measures is effective at rapidly detecting changes in longitudinal network data.   

 
It is important to note that I am not predicting change, but rather detecting that a 

change occurred quickly and making some inference about the actual time of change.  
For example, before a terrorist commits an attack, there will be a change in the social 
network as the organization plans and resources the attack.  SNCD may allow an analyst 
to detect the change in the social network, prior to the successful completion of the 
attack.  In a similar fashion, corporate managers may wish to detect changes in the 
organizational behavior of their companies to capitalize on innovation or prevent 
problems.  For example, the CEO of Dupont became aware of the U.S. recession in late 
2008 in time to enact a crisis management plan averting financial disaster for the 
company.  In this example, the economic change had already occurred.  Dupont’s success 
was not in predicting a recession, but rather detecting that it had occurred quickly, in time 
to respond.   

 
SNCD may offer executives and military analysts a tool to operate inside the normal 

decision cycle.  Figure 1 represents some measure of interest over time.  It could be the 
revenue of a company, the combat power of an enemy, or for our purposes a measure of 
interest from a social network.  When do we conclude from this measure that a change 
may have occurred?  Let us assume that by conventional methods we can detect a change 
in organizational behavior as of “today”, the vertical line in Figure 1. This time point 
might be too late to take preventative or mitigating action.  In other words, this could be 
the point of inevitable bankruptcy for the company, or the successful culmination of a 
terrorist attack.  Identifying that a change occurred by time period E might allow the 
analyst to respond to the change before it is too late; get inside the decision cycle.   

 
Change detection is more challenging than it may seem at first.  We can see a sudden 

change in the measure between time D and time E, however, this may look very similar 
to the peak at time A.  Furthermore, if we assert that a change in fact occurs at time A, 
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there may exist a large amount of time periods to investigate for the cause of any change.  
If we can identify more likely points in time when change may have occurred, we can 
reduce the costs in terms of time and resources to search for the potential causes of 
change.  Identifying the likely time that a change may have occurred is called change 
point identification. 

 
Another problem that we face is detecting the change as quickly as possible after the 

change occurred.  Can we improve the ability to get inside the decision cycle by detecting 
the change at time D, or even better at time B?  This is called change detection.  This 
thesis is a first attempt to investigate this challenging problem in longitudinal network 
analysis. 

 
 

 
 

Figure 1. Example of Change Detection 
 
 

1.1  Importance of  Change in  Longitudinal  Social  Networks 
 

This thesis addresses a new area of research that is a national need.  Research 
agencies throughout the Department of Defense (DoD) and the U.S. Government have 
demonstrated recent interest in pursuing research in the area of social network analysis.  
Particular interest is in stochastic and predictive modeling of these networks.  The 
National Research Council (NRC) (2005) in a recent report on Network Science 
identified a lack of understanding in the stochastic behavior of networks.  They further 
stated that there existed a great need for this understanding in order to develop effective 
predictive models.  Twenty percent of the research tasks in the Office of Naval 
Research’s (ONR) recent broad agency announcement 07-036 were in the area of social 
networks.  One of the research tasks were for “real time methods for the analysis of 
networks.”  Another task was to develop “metrics extracted in real time to diagnose 
effective or ineffective collaboration or negotiation,” and for creating “unobtrusive data 
collection methodologies” for social networks.  The U.S. Army Research Institute for the 
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Behavioral and Social Sciences (ARI) has requested research in social networks to 
“investigate individual unit and organizational behavior within the context of complex 
networked environments” in their fiscal year 2008 BAA.  The U.S. Army Research 
Office has already budgeted over $1 Million per year for faculty and cadets at the U.S. 
Military Academy to study the stochastic behavior of networks.  The National Academies 
identified the need for research in this area as early as 2003 in the Dynamic Social 
Network Modeling and Analysis workshop in Washington, DC. 

 
While this research will not predict network behavior, it will provide an approach 

for more accurately detecting that a change occurred and when that change likely 
occurred.  This is an important first step for any predictive analysis.  If a social scientist 
can accurately detect change and the time change occurred, only then can he investigate 
the cause of change with any real success.  Therefore, I posit that this approach will 
contribute to longitudinal network analysis in general, enabling future researchers to 
address the problem of prediction. 

 
Much research has been focused in the area of longitudinal social networks 

(Sampson, 1969; Newcomb, 1961; Romney, 1989; Sanil, Banks, and Carley, 1995; 
Snijders, 1990, 2007; Frank, 1991; Huisman and Snijders, 2003; Johnson et al, 2003; 
McCulloh et al, 2007a, 2007b).  Wasserman et al. (2007) state that, “The analysis of 
social networks over time has long been recognized as something of a Holy Grail for 
network researchers.”  Doreian and Stokman (1997) produced a seminal text on the 
evolution of social networks.  In their book they identified as a minimum, 47 articles 
published in Social Networks that included some use of time, as of 1994.  They also noted 
several articles that used over time data, but discarded the temporal component, 
presumably because the authors lacked the methods to properly analyze such data.  An 
excellent example of this is the Newcomb (1961) fraternity data, which has been widely 
used throughout the social network literature.  More recently, this data has been analyzed 
with its’ temporal component (Doreian et al., 1997;  Krackhardt, 1998; Baller, et al. 
2008).   

 
Methods for the analysis of over time network data has actually been present in 

the social sciences literature for quite some time (Katz and Proctor, 1959; Holland and 
Leinhardt, 1977; Wasserman, 1977; Wasserman and Iacobuccci 1988; Frank, 1991).  The 
dominant methods of longitudinal social network analysis include Markov chain models, 
multi-agent simulation models, and statistical models.  Continuous time Markov chains 
for modeling longitudinal networks were proposed as early as 1977 by Holland and 
Leinhardt and by Wasserman.  Their early work has been significantly improved upon 
(Wasserman, 1979; 1980; Leenders, 1995; Snijders and van Duijn, 1997; Snijders, 2001; 
Robins and Pattison, 2001) and Markovian methods of longitudinal analysis have even 
been automated in a popular social network analysis software package SIENA.  A related 
body of research focuses on the evolution of social networks (Dorien, 1983; Carley, 
1991; Carley, 1995; Carley 1997; Dorien and Stokman, 1997) to include three special 
issues in the Journal of Mathematical Sociology (JMS Vol 21, 1-2; JMS Vol 25, 1; JMS 
Vol 27, 1).  Evolutionary models often use multi-agent simulation.  Others have focused 
on statistical models of network change (Feld, 1997; Sanil, Banks, and Carley, 1995; 
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Snijders, 1990, 1996; Van de Bunt et al, 1999;  Snijders and Van Duijn, 1997).  Robins 
and Pattison (2001, 2007) have used dependence graphs to account for dependence in 
over-time network evolution. We can clearly see that the development of longitudinal 
network analysis methods is a well established problem in the field of social networks. 
Table 1 provides a comparison of the dominant methods for longitudinal network 
analysis. 

 
The literature shows that there exist four network dynamic states in longitudinal 

social networks.  A network can exhibit stability.  This occurs when the underlying 
relationships in a group remain the same over time.  Observations of the network can 
vary between time periods due to observation error, survey error, or normal fluctuations 
in communication.  A network can evolve.  This occurs when interactions between agents 
in the network cause the relationships to change over time.  A network can experience 
shock.  This type of change is exogenous to the social group.  Finally, a network can 
experience a mutation.  This occurs when an exogenous change initiates evolutionary 
behavior. 

 
Much of the research in longitudinal social networks has focused on evolutionary 

change.  Markov methods and multi-agent simulation are effective at helping social 
scientists understand evolutionary change.  However, a careful review of the literature did 
not reveal any research in detecting shock or mutations in the network.   

 
SNCD provides a statistical approach for detecting changes in a network over 

time.  In addition to change detection, change point identification is also possible.  
Identifying changes and change points in empirical data, will allow social scientists to 
better isolate factors affecting network evolution as well as the relatively new concept of 
shock.  Moreover, knowing when a network change occurs provides an analyst insight in 
how to bifurcate longitudinal network data for analysis.  

 
A complete review of methods for longitudinal social network analysis is beyond 

the scope of this thesis.  The reader is referred to Wasserman and Faust (1994); Dorien 
and Stokman (1997); and Carrington, Scott and Wasserman (2007).  Essentially, methods 
for longitudinal social network analysis have been focused on modeling and testing for 
the significance of social theories in empirical data.  These methods have not been 
designed to detect change over time.  This thesis is focused on detecting change in a 
social network over time. 
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Table 1. Dominant Methods for Longitudinal Network Analysis 

 Markov Chain Multi-Agent Statistical SNCD 
Problem 
Addressed 

1. Network 
evolution based 
on Markovian 
assumptions. 
2. Determine 
how underlying 
social theories 
affect group 
dynamics. 

1. Network 
evolution based 
on node-level 
behavior. 
2. Evaluate the 
impact of social 
intervention on 
group 
dynamics. 

1. Compare the 
properties of 
networks at 
different points 
in time. 

1. Detect 
change (shock, 
evolution, or 
mutation) over 
time in 
empirical 
networks. 

Key 
Assumptions 

1. Future 
behavior of 
network is 
independent of 
the past. 
2. There is no 
exogenous 
change in the 
network. 

1. Node level 
behavior can 
drive group 
behavior. 
2. Underlying 
social theories 
affecting group 
dynamics are 
known. 

Assumptions 
vary, but 
include such 
things as dyadic 
independence/ 
dependence, 
over-time 
independence, 
one node class. 

Group behavior 
can be inferred 
from 
longitudinal 
social networks 

Limitations for 
change detection 

1. Does not 
account for 
exogenous 
change. 
2. Markov 
assumption. 

1. Used to 
model both 
exogenous and 
evolutionary 
change, but not 
to detect 
change. 
2. Underlying 
social theories 
must be known. 

1.  Does not 
handle over-
time 
dependence. 
2.  Not a 
longitudinal 
approach. 
 

1. Ergodicity 
and dependence 
is not fully 
addressed. 

Strengths Determining 
significant 
social theories 
affecting group 
dynamics. 

Simulating 
group dynamics 
in a social 
network. 

Comparing 
social 
networks. 

Detecting 
changes in 
empirical social 
networks over 
time. 

 
 
 
1.2  Application 
 

This thesis will provide insight into the stochastic behavior of social networks.  In 
addition, algorithms will be proposed that detect subtle changes in a social network.  
Imagine Joe Analyst working in an intelligence center trying to understand the dynamics 
of global terrorism.  He currently has a wide array of tools to assist him.  He can piece 
together social networks from news papers and broadcasts, intercepted voice 
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communication, and intelligence gathered from field agents.  He can model this 
information with social networks and use various measures to identify individuals who 
are well connected, influential, or connect otherwise disconnect terrorist cells.  In other 
words, he can tell you who was likely responsible for an attack in the past, and who was 
influential in the organization.  But, what about today?  Have influential members 
become less important?  Are other members of the organization assuming more 
influential positions in the social network?  Can we detect a change in the social network 
of a terrorist organization as they increase their communication before they are able to 
execute their planned terrorist attack?  These are the questions that this research will help 
answer.   

 
Applications are not limited to the military.  Consider a civilian company, whose 

managers can identify major leadership challenges before they affect the productivity of 
the company.  The introduction of e-mail and cell phones into the workplace has 
significantly changes the dynamics of communication.  In the past, workers had limited 
peers available that they could ask about problems, before they had to seek guidance 
from senior management.  Today, the available peers to consult are limited only by a 
person’s social network.  With growing on-line communities of practice, this network is 
becoming larger and larger.  While it may be good that workers are able to resolve 
problems at a lower level, senior managers are unable to influence decisions with their 
senior judgment and experience.   This research will provide those managers with a tool 
to detect potential problems in their organization, by detecting subtle changes in the 
social network of employees. 
 
 
1.3  Contribution 
 

Several contributions to science are derived from this thesis.  I formally present a 
framework to understand longitudinal networks building off of Doreian’s (1997) work in 
network dynamics.  I introduce a methodology to detect changes in networks over time.  
Issues of over-time dependence and periodicity are addressed.  I introduce a model of a 
network in dynamic equilibrium and compare it to competing models in the literature.  I 
then tie this model to a multi-agent simulation, thereby contributing to the validation of 
multi-agent models for over time network data.  I empirically derived an analytic 
expression to determine the decision interval used in a cumulative sum statistical process 
control chart that can not only be used in SNCD, but in any automated quality control 
application in industry.  I proposed a statistical model for the degree distribution of nodes 
in a network that unifies the random networks of Erdős and Rénia with the scale-free 
networks of Barabasi.  Finally, I have written software that has implemented these 
methods in a powerful social network analysis tool.  Various analysts and scientists 
throughout DoD and academia are currently using these methods. 

 
The demand for these tools is already here.  Major General Lovelace of the 

Army’s Central Command has requested an officer to begin measuring and monitoring 
the social network of senior leaders in their organization to improve the efficiency of 
their organizational behavior.  The National Security Agency and U.S. Special 
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Operations Command have also requested tools to aid in detecting real time changes in 
social networks that they monitor.  These important tools have become a reality with this 
research and are automated in ORA, a powerful SNA software package. 
 

 
1.4  Organization 

 
This thesis is essentially a collection of original published papers in the area of 

SNCD.  As such each chapter is written such that it can be read independently.  There 
will therefore be some intentional redundancy between chapters.   

 
Chapter 2 introduces several statistical concepts related to networks.  Random 

networks are contrasted with scale-free networks.  Important issues such as defining the 
context of relational data are highlighted.  This chapter provides rationale to make several 
assumptions used in my derivation of change detection approaches that are presented in 
Chapter 4. 

 
Chapter 3 presents a model for stable, non-evolving networks over time.  More 

importantly several network simulation approaches are compared.  Multi-agent 
simulation is found to be a good approach for modeling networks over time.  This is an 
important issue in understanding network change.  With many real-world networks, there 
are many competing factors that may cause a change in the network.  Isolating the “real” 
cause of change can be very difficult.  Simulation offers a controlled environment, where 
change can be introduced a defined, known point in time, allowing change detection 
approaches to be evaluated fairly.  As such, an important aspect of this thesis is the 
validation and verification of multi-agent simulation models used to explore change 
detection in networks.  The performance of competing change detection methods are 
evaluated using simulation in subsequent chapters. 

 
Chapter 4 provides an overview of statistical process control and introduces its 

application to longitudinal networks.  Several different statistical process control 
approaches are derived and compared using simulated network data.  

 
Chapter 5 introduces a method to handle over-time dependence and periodicity in 

network data.  An example of periodicity occurs in email networks.  People are more 
likely to communicate at certain times of the day, days of the week, etc.  These typical 
fluctuations in communication can affect SNCD and increase the probability of false-
positives (incorrectly determining that the network changed).  Fourier analysis is used to 
identify periodicity in the data.  Two approaches to handling the periodicity are proposed. 

 
Chapter 6 demonstrates the proposed SNCD approach on real-world longitudinal 

network data.  Real-world data is used to further demonstrate SNCD in practical 
application, highlighting the insight that change detection provides a social scientist. 

 
Chapter 7 proposes a method for conducting SNCD in situations where network 

measures exhibit high variance or when there are only a few nodes in the network.   
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Chapter 8 presents some investigation into the robustness of SNCD to missing links 
in the network data.  In addition the correlation between various network measures are 
also explored and implications are drawn for SNCD. 

 
Chapter 9 summarizes the contributions of the thesis, identifies several limitations of 

the proposed approach, and provides directions for future research.  The appendices 
provide more details and tutorials on certain experimental aspects of the thesis.   

 
Appendix A is a primer on social network analysis.  Since this thesis draws on 

methods from diverse disciplines, some readers may not be familiar with social network 
analysis.  This appendix will provide an introduction for these readers and should be read 
before proceeding to Chapter 2 if necessary. 

 
I have developed multiple methods to collect longitudinal networks from email.  

These methods are explained and compared in Appendix B.  While longitudinal networks 
can be obtained from many different sources, this appendix will provide an approach to 
quickly and unobtrusively gather longitudinal social network data. 

 
In Appendix C, I have empirically derived an analytic equation for determining the 

decision interval in a cumulative sum statistical process control chart, so that it can be 
implemented in software.  This equation has application both within SNCD, but also with 
any automated statistical process control chart designed to detect small changes in a 
process.  This appendix is helpful for analysts attempting to determine appropriate 
parameter values for the cumulative sum control chart. 

 
Finally, Appendix D provides further details on the simulation used to demonstrate 

SNCD in Chapter 4.  The multi-agent model specification is presented.  It is docked with 
other simulation models used within the DoD.   
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2 Statistical Distribution of Networks 
 
A major challenge in describing change in a network is to first understand the 

statistical distributions that describe the typical behavior of a network in the first place.  
This challenge has been a rich area for research for more than 60 years.  For more 
information on network statistics the reader is referred to Wasserman and Faust (1994), 
Carrington, Scott, and Wasserman (2007), Barabasi, Watts, and Newman (2005).  This 
chapter will focus on a single property of a network, the degree.  The degree, k of a node i 
is the number of other nodes linked to node i.  

 
A popular topological property of networks is the distribution of the degree of nodes 

in the network.  Many have fit power law distributions to this property (Barabasi and 
Albert, 1999; Goh, Kahng, and Kim, 2001; Barabasi, 2002; Barabasi et al, 2002; 
Bollobas and Riordan, 2003; Pastor-Satorras and Vespigani, 2004; Newman, 2005; 
Caldarelli, 2007).  This has given rise to the Scale-Free network inspired by statistical 
mechanics, which is characterized by having a power law degree distribution which tends 
to create hub nodes that are highly connected, while most nodes have relatively few 
connections in the network.  Some have criticized this approach for social networks on 
the grounds that it does not consider the context of the network data and assumes 
universal network behavior (Doyle et al, 2005; Wasserman, Scott and Carrington, 2007; 
Alderson, 2008).    

 
Another popular model for degree distribution is the random graph (Erdos and 

Renyi, 1959, 1960, 1961; Wasserman and Faust, 1994).  Under this model, nodes in the 
network are connected with equal probability.  This has been used in many cases as a null 
hypothesis to test the “randomness” of empirical network data (Wasserman and Faust, 
1994; McCulloh et al, 2007; Alderson, 2008).  Under this model of the distribution of 
node degree, the degree tends to appear normally distributed as the number of nodes 
increases and probability of connection remains the same.  Some argue that this model is 
therefore not representative of empirical data (Watts and Strogatz, 1998; Barabasi, 2002; 
Pastor-Satorras and Vesppignani, 2004; Newman, 2005; Caldarelli, 2007).   
 

Between these extremes, more realistic network models have been proposed by 
introducing more detailed models of the probability of node connection.  Some of these 
models have been based on established social theory and multi-agent simulation (Carley, 
1990, 1995, 1999; Doreian and Stokman, 1997), while others have been based on 
structural properties within the network (Frank, 1991; Snijders, 2007; McCulloh, 
Lospinoso and Carley, 2007; Lospinoso, 2008).  One recent model involved a new node 
randomly attaching to the network and then “burning” through the network making new 
connections with other nodes like a wildfire spreads (Leskovec, Kleinberg, and Faloutsos, 
2005). Unfortunately, these models do not leave us with a tractable analytic distribution 
of degree.   
 

This chapter will highlight three novel points relevant to network science in general 
and this thesis in particular.  First, different statistical distributions are fit to the same 
simulated data, showing that it is extremely difficult to assert with any certainty the 
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actual distribution of network properties.  In other words, there are several candidate 
distributions which may all fit the data equally well.  Second, the context that defines a 
relationship may significantly affect the structure of the network.  For example, a social 
network where a relationship is defined as person i has seen person j before will be much 
more dense than a network where a relationship is defined as person i spends at least 1 
hour in conversation with person j each day.  Third, a power series distribution is 
proposed for the degree measure in a network.  The binomial distribution common in 
random networks is shown to be a special case of the power series distribution.  The 
power series distribution is also a power law distribution, which can fit the distribution of 
degree in other network structures.  The parameters of the power series distribution can 
be viewed as a constraint function on the utility and costs associated with establishing a 
link.  In the previous example, a node incurs greater cost in terms of time to spend one 
hour per day with another node than the cost associated with simply seeing another node 
one time.  Together these three points provide direction for future research and identify 
an area of caution for detecting change which will be articulated later in this thesis. 

 
 

2.1  Random Networks 
 

The simplest model of a network is the random network (Erdos and Renyi, 1959, 
1960, 1961).  This model contains a fixed number of nodes, n.  Between each ordered 
pair of nodes, a link is drawn with some probability, p.   Under this model, all nodes have 
an equal probability of being connected to every other node and therefore they behave 
similarly to one another.  Individual nodes can occupy very different positions in the 
network with the same random probability.  Some nodes will be on the periphery of the 
network, while others will occupy a more central position.  The degree to which this 
occurs depends only upon the random realization of an instance of the network. 

 
If we fit statistical distributions to the nodal measures in a random network, we can 

create a statistical model to evaluate the position nodes occupy in the network.  If a node 
occupies a position that is significantly anomalous to positions expected under random 
network assumptions, we might conclude that the network has an unusual node or that the 
topology of the network is not random.  This insight is the first step towards a better 
statistical understanding and description of network behavior. 

 
The degree, k i, of node i is defined as the number of other nodes directly linked to i.   

The degree of a node will contribute to their influence in the overall group (Freeman, 
1977).  The degree will not determine influence alone, however.  In Figure 4, it is clear 
that nodes 5 and 9 have the highest degree, but node 10 may have greater influence in the 
network due to its’ more central position (Freeman, 1977; Wasserman and Faust, 1994).  
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Figure 2. Example Network. 
 

The distribution of degree in a random network has been well established in the 
literature (Erdos and Renyi, 1960; Donninger, 1986; Bollobas, 1998; Caldarelli, 2007).  
Suppose a network with n nodes follows the Erdos and Renyi model with probability p. 
Then, a node of degree k occurs if and only if there are exactly k link successes of the n – 
1 possible links. The degree k follows a binomial distribution, satisfying the four 
properties of the binomial distribution: 1) There are a fixed number of nodes, n, in the 
network; 2) There is a fixed probability, p, of any two ordered pairs of nodes being 
linked; 3) The trials are identical, which occurs when nodes behave similarly; 4) The 
trials are independent, which means that a node’s choice of connections is not influenced 
by other nodes in the network.  The binomial degree distribution is given by, 
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The average degree is therefore given by p(n – 1) and the variance is given by (n – 1)p(1 
– p).  The maximum likelihood estimate (MLE) of the average degree is given by 
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Therefore, the MLE of nkp /= .  If we assume that the node degrees are independent1

                                                 
1 This assumption is not valid for all networks.  The impact of ergodicity in networks is still an open 
research area. 

, 
then by the Central Limit Theorem, for large n, the average degree is an approximately 
normally distributed random variable.  Since the probability of link occurrence, p, is a 
linear combination of a normal random variable, it too is a normal random variable.  We 
can now proceed to derive a confidence interval about the estimate of p.  This is done 
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more easily by relating the distribution of the number of links in the network to the 
parameter p. 
 

We can derive a similar distribution for the number of links, L, in a random network.  
There are n(n – 1) possible links in a social network if we exclude reflexive links.  If the 
probability of a link occurring is a constant probability, p, then the distribution of links in 
a random network also follows a binomial distribution given by, 
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If the number of links follows a binomial distribution, then the average number of 

links is given by np(n – 1) and the variance of the links is given by np(n – 1) (1 – p).  The 
MLE of p is therefore p = L / n(n – 1).  Recall that we concluded that p is a normally 
distributed random variable when n is large and node degree is independent.  If we take 
the difference of a normally distributed random variable and its’ MLE and divide the 
result by the standard deviation of that random variable, we have a standard normal 
random variable.  Therefore, 
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This algebraically reduces to )1(/)ˆ1(ˆˆ
2/ −−±= nnPPzPP Lα , which defines a 

confidence interval on p at the 1 – α confidence level, where P̂ = L / n(n – 1).   
 

Any value of L / n(n – 1) or of nk /  that exceeds the constructed confidence interval 
is therefore statistically anomalous at the 1 – α confidence level for a random network.  If 
we conclude that a network does appear random, we can conduct a similar procedure for 
the degree to determine statistically anomalous nodes in the network. 
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α
.  Any value of k that exceeds this value is 

statistically anomalous at the 1 – α confidence level for a random network.   
 

2.2  Scale-Free Networks  
 
 Scale-free networks were introduced by Barabasi and Albert (1999).  The term 
scale-free refers to their observation that “the distribution of their local connections is 
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free of scale, following a power law.”  The density function of the power law distribution 
used by Barabasi and Albert is given by, 

, 

where c is a positive finite constant and γ > 0.  The parameter γ can be referred to as the 
shape parameter and c can be referred to as the scale parameter.  The particular range of 
values for γ that makes a network “scale-free” has not been defined (Bollobas and 
Riordan, 2003; Albert, 2008; Alderson, 2008; Barabasi, 2008).   This is an important 
distinction, because a value of γ that approaches 0 approximates a uniform distribution, 
which has very different properties than the networks we typically think of as scale-free.  
At the U.S. Military Academy’s 3rd Network Science Workshop, Barabasi stated, “the 
interesting networks that we look at have a [shape parameter] between 2 and 3.”   For 
these networks the mean and higher order moments of the degree distribution are 
undefined.  When the moments of a distribution are undefined, it becomes difficult to 
characterize the modeled process in a compact form.  This is perhaps one of the 
intriguing challenges presented by modeling network structure. 

 Scale-free networks present a much more fundamental problem in terms of degree 
distribution.  So far the networks most commonly modeled with a scale-free network are 
dichotomous, large networks with hundreds to millions of nodes.  The degree of a node in 
a dichotomous network is always a discrete, countable, integer.  Therefore, the power law 
density function applied in the network science community is merely an approximation of 
what is really a discrete probability mass function.  While this approximation might be 
totally acceptable for networks with many nodes, keeping the distribution discrete allows 
us to explore the relationship between the random and scale-free networks. 

 A discrete version of the power law distribution is a power series distribution and 
is given by, 
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where the coefficient function ak > 0, and γ is the shape parameter of the distribution.  It 
is also possible to use a Zipf distribution (Newman, 2005), which is more analogous to 
the power-law distribution used by Barabasi and Albert.  Both distributions follow a 
power law and have the ability to model data with a similar shape as I will show later in 
the chapter.  I choose to use the power series distribution to show the similarity between 
random and scale-free networks.  Both the Zipf and power series distribution are more 
appropriate distributions for modeling the degree of a node in a dichotomous network 
with a fixed number of nodes.  Using the power series distribution, I show an interesting 
variate relationship that relates scale-free and random networks. 
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2.3  Variate Relationship Between Binomial  and Power Series  
 

The following derivation shows an interesting relationship between random and 
scale-free networks.  As shown earlier, the degree distribution in a random network 
follows a binomial distribution.  The degree distribution in a scale-free network follows a 
power series distribution.  Binomially distributed data may appear as a discrete power 
series distribution when p is small (Evans Hastings and Peacock, 2000).  As I stated 
earlier, the power series distribution is a more appropriate distribution for node degree in 
a dichotomous network, since the degree of a node is a countable integer bounded 
between 0 and n – 1.   

 
The variate relationship between the binomial and the power series occurs where k ~ 

Binomial(n, p), then k ~ PowerSeries(γ), where the Power Series distribution is defined 
as, 
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when γ = p / (1 – p) and ( ) ( ) nnk

k pa −−=+=∑ 11 γγ .  Substituting these values into the 
expression for the power series probability mass function above, the mass function can be 
expressed as, 
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The resulting mass function is the binomial probability mass function.  It is important to 
note that the power series distribution can also be used to represent non-binomial 
distributed data by modifying the coefficient function, ak.  This modification allows the 
power series distribution to model the degree distributions commonly associated with 
scale-free networks.  However, this variate relationship presents a single distribution that 
can be used to model both the degree distribution found in random and scale-free 
networks. 
 

A limitation of the binomial is that the expected degree is always n*p, which can 
become unrealistic in very large networks.  It can also be shown that for a critical value 
of p the network will undergo a phase transition between a network with many 
unconnected components to a single, giant component (Bollobas, 1998).  These two 
behaviors typically distinguish random networks from scale-free networks.  

 
 

2.4  Constrained Node Network 
 

The random network is not always an unreasonable model for the distribution of 
degree in social networks (McCulloh et al, 2008; Ring, McCulloh and Henderson 2008).  
This is especially true of small networks under 100 nodes.  I have conducted an extensive 
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search of the literature and modeled the degree distribution of many social networks 
(Newcomb, 1961; Sampson, 1969; Freeman and Freeman, 1980; Krackhardt, 1987; 
Johnson, Boster and Palinkas, 2003; McCulloh et al, 2007).  When the relationship 
between nodes requires a meaningful investment of time, the social networks are not 
scale free.  A person’s website on Facebook is unconstrained in the sense that it can 
maintain an unlimited number of links pointing to it (in-degree).  It is slightly constrained 
in the number of links that it points to (out-degree) in that it takes some amount of time 
and effort to find friends and establish a link to their web page.  When we stipulate that 
two individuals must spend an hour together and engage in meaningful conversation each 
week for a relationship (link) to exist, we have severely constrained the degree of the 
node.  The scarce resource of time prevents any node from maintaining a large number of 
connections as they might in a scale free network. 

 
The size of the network is also an important consideration in degree distribution.  

A node’s choice of which other nodes to connect with can be limited by the size of the 
network.  For a group of 20 individuals, for example, it is quite possible that all people 
have a connection.  When the size of the group contains thousands of individuals, it 
becomes virtually impossible for all nodes to be connected.  Simply consider the amount 
of time required to hold a meaningful conversation between a given node and all others in 
the network.  This further suggests that there is some kind of limitation on the number of 
connections a node can have.  In addition to the cognitive limitations of a person, nodes 
can be constrained by proximity, the utility of the connection, and in some cases the cost 
of the connection.   

 
The constraints on link formation between nodes in a network will be context 

specific.  The number of social ties that a person can maintain might be limited by their 
time, cognitive capacity, proximity, and other factors.  A web-page, on the other hand, is 
not limited in the number of other web pages that can connect to it.  There are limitations, 
or at least a cost in terms of building the web site, in the number of links to other pages, 
and still other factors.  Relationships in a social network can also be very general, such as 
“been to the same country”, which would connect many individuals that do not know 
each other at all. 

 
The probability of link formation could therefore be modeled as a function of the 

context specific constraints.  The constraints could prevent the occurrence of hub nodes, 
characteristic of scale-free networks in one context, but not in another.  While the 
functional forms could be similar between different contexts, and therefore their network 
structure will be similar; the underlying functions governing constraints in the network 
may be quite different.  Therefore, I propose modeling the constraints in the network as 
some form of the coefficient function ak.  An understanding of how network constraints 
can affect topological properties within the network is dependent upon how relationships 
are defined in network data.  This is critical to understanding the behavior of the network. 
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2.5  Virtual  Experiment  
 

A virtual experiment is conducted to show how power series distributions with 
differing constraint functions can be used to model scale-free networks generated under 
the Barabasi-Albert model.  I remind the reader that real-world data does not follow this 
model for many applications, particularly when the relationships are constrained by time 
or other scarce resources.  However, scale-free networks have been successfully used to 
model the internet, electrical networks, protein networks, and other real-world data (Goh, 
Kahng and Kim, 2001; Pastor-Satorras and Vespignani, 2004; Leskovec, Kleinberg and 
Faloutsos, 2005; Caldarelli, 2007).  Since random networks are already an established 
model in the social network community (Wasserman and Faust, 1994), I compare the 
power series distribution to the scale-free network in an attempt to unify the competing 
models. 

 
In order to demonstrate the flexibility of the power series distribution and 

demonstrate differing constraint functions, 3000 scale-free networks were simulated 
consisting of 1000 nodes each.  Networks were generated with degree distributions 
having γ = 2, 2.5, and 3.  These values of γ were chosen because they were said to be the 
“interesting” networks by Barabasi (2008).  Since he coined the term “scale-free” 
network, these seemed to be the best point of comparison found in the literature.  I 
generated 1000 networks for each value of γ, therefore there were 3000 total scale-free 
networks.   

Four statistical distributions are fit to the degree of the networks using the method 
of least squares.  This method is chosen, because it minimizes the error in the fit of the 
distribution, which can be used to compare the quality of the fit among the four different 
distributions.  The four distributions include the Barabasi and Albert power law 
distribution and three power series distributions, each with a different constraint function.  
The first constraint function is the binomial constraint function given by, 

.  The second power series distribution uses a constant constraint 
function given by, ak = 1.  The third power series distribution uses a more flexible inverse 

constraint function given by, .   
 

The coefficient of determination is calculated for each distribution’s fit to each of 
the 3000 networks.  The coefficient of determination is calculated using the formula, 

, 

where pi is proportion of the empirical data that has a degree less than the degree of node 
i,  is the probability of observing a random value less than the degree of node i under 
proposed distribution, and   is the average of the proportion of the empirical data which 
is equal to 0.5.  As the error in the fit of the distribution increases with respect to the 
variance, the value of R2 decreases.  Using the method least squares will minimize the 
error in the fit of the distribution.  Since we are comparing which distributions are 
appropriate for the data, this method maximizes the value of R2 and gives each 
distribution a best case fit for comparison.  This is particularly important with heavy tail 
data such as the power-law, since observed values in the tail of the distribution can 
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significantly bias the estimation of distribution parameters.  I acknowledge that the 
parameters of those distributions are not minimally variant unbiased estimators for the 
distributions.  In practice, it is desirable to use a Maximum Likelihood Estimate of the 
distribution parameters.  For this application, the method of least squares is clearly more 
appropriate. 
 

 The coefficients of determination were compared between a Barabasi - Albert power 
law distribution fit to the data, and three power series distributions with different 
constraint functions fit to the same data.  This was repeated for all 3000 networks.  A 
two-sample t-test is used to evaluate the null hypothesis that the coefficients of 
determination of the best fit power series distribution are the same as the Barabasi - 
Albert power law distribution.  An important distinction is made.  In this virtual 
experiment, the underlying stochastic process that generates the data is the Barabasi - 
Albert power law distribution (Albert and Barabasi, 1999).  The coefficient of 
determination for this distribution is therefore a measure of the error in the simulated 
data.  When there is insufficient evidence to reject the null hypothesis, this only suggests 
that the power series distribution is a possible alternative distribution.  In real-world data, 
we cannot know the underlying distribution.  Therefore, a lack of evidence to reject the 
null hypothesis in this virtual experiment has important implications for empirical 
studies.  It means that there is no evidence to suggest that the Barabasi - Albert power law 
distribution is a better fit to the empirical data than the best fit power series distribution. 

 
 

2.6  Results  
 

The 1000 scale-free networks for each parameter of γ were successfully created 
for a total of 3000 independently seeded networks.  The node degree for all 1000 nodes in 
each network was recorded. Figure 3 displays the empirical distribution function for a 
representative instance of the degree distribution for the networks where γ = 2, 2.5, and 3 
respectively.   This figure illustrates the importance of the parameter γ in defining a scale-
free network.  As the value of γ approaches 1, a uniform distribution can be fit to the data.  
As the value of γ increases, the curvature in the data increases. 
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Figure 3. Empirical distribution functions for the degree of a scale-free network 

 
The three power series distributions and the Barabasi-Albert power law 

distribution were fit to each of the 3000 generated networks. Figure 4 shows a 
representative instance of  the empirical distribution, each of the three power series 
distributions using the different constraint functions, and the Barabasi-Albert power law 
distribution fit to the most extreme degree distribution where γ = 3.  There is a noticeable 
difference between the fit of the power series distribution using the binomial constraint 
function and the empirical distribution function.  This has been extensively noted in much 
of the network science literature.  There is not a noticeable difference between the power 
series distribution using the inverse constraint function and the empirical distribution 
function.  This suggests that a power series distribution may provide an equally good fit 
to network data as the Barabasi-Albert power law distribution provides.   

 

 
Figure 4. Various distributions fit to scale-free empirical degree distribution. 
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The coefficients of determination provide a quantitative measure of the quality of 

fit of the distribution.  Table 2 shows the average coefficients of determination across the 
1000 simulated networks of each parameter value γ, for the four distributions fit to each 
empirical distribution function. A value of 1.0 indicates that the distribution fits the data 
with no error.  A value of 0.0 indicates that the distribution has no explanatory power in 
describing the data. 

 
Table 2. Coefficients of Determination for Four Distributions. 
 Barabasi-

Albert 
Binomial Constant Inverse 

γ = 2.0 0.9984 0.0929 0.9444 0.9970 
γ = 2.5 0.9989 0.0927 0.9111 0.9971 
γ = 3.0 0.9966 0.0926 0.8531 0.9937 

 
The power series distribution with the binomial constraint function does not fit the 

empirical data well.  It is possible to improve the fit of this distribution if I allowed the 
size parameter, n, to increase.  Since the size of the network was set at 1000 nodes, I 
decided it would be a more appropriate comparison to fix this parameter at n = 1000 to be 
consistent with the other distributions.  The power series distributions with both the 
constant and inverse constraint functions provide a reasonably good fit to the data.  I 
again remind the reader that the values in Table 2 compare the power series distributions 
to an empirical data set that definitely has a Barabasi-Albert power law underlying 
stochastic process.  It has not been established that the Barabasi-Albert power law 
distribution models real-world empirical data as well as the power series with constant 
constraint function.  In fact there have been several papers that have questioned the 
appropriateness of the Barabasi-Albert power law distribution applied to empirical 
findings (Doyle et al, 2005; Wasserman, Scott and Carrington, 2007; Alderson, 2008).   

 
The power series distribution with the inverse constraint function is compared to 

the Barabasi-Albert power law distribution using a two sample t-test.  The t-test is 
repeated for each set of 1000 networks corresponding to γ = 2, 2.5, and 3.  Table 3 shows 
the results of the t-test.   

 
Table 3. Statistical Comparison of Power-Law and Power-Series Distributions. 

 Barabasi-
Albert 

Inverse 
Constraint 

Test 
Statistic, T 

p-Value 

γ = 2.0 0.9984 0.9970 0.933 0.3510 
γ = 2.5 0.9989 0.9971 1.294 0.1960 
γ = 3.0 0.9966 0.9937 1.611 0.1075 

 
There is no p-value < 0.10 that would indicate a statistically significant difference at 

the 90% confidence level.  Therefore, we do not have enough evidence to reject the null 
hypothesis that the distributions are different.  The reality of this virtual experiment is 
that they are different.  This can be seen in the marginal trend, where each of the 
coefficients of determination for the power series with inverse constraint function are less 
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than the true underlying distribution.  However, the fact that there was not a statistically 
significant difference with 1000 simulation replications, suggests that the two 
distributions are suitable to model the same data.  It can also be seen in Table 3 that the p-
value has a decreasing trend as γ increases.  The power series distribution may not be 
appropriate for modeling data generated with a Barabasi-Albert power law distribution 
with γ > 3. 

 
 

2.7  Discussion 
 

I believe that the power series family of distributions may be a more appropriate 
statistical distribution for modeling the degree distribution of nodes in network data.  
Selecting a statistical distribution based purely on empirical fit can be misleading.  
Certain statistical distributions have properties that can have implications for the 
underlying mechanics of the system being modeled.  For example, the exponential 
distribution has a memoryless property.  This implies that future observations are 
independent of past observations.  While this is appropriate for modeling the inter-arrival 
time of customers at a bank, it can be very misleading when modeling the arrival time of 
a bus, which comes at regular intervals.  While the application of waiting for arrival is the 
same, the underlying mechanics are very different.  In one situation the time between 
arrivals is independent of the past.  In the other situation, the time past since the last bus 
arrived holds a great deal of information about when the next bus will arrive.  A similar 
analogy may be true for the degree distribution of a network. 
 

It is therefore necessary to consider the fit of various candidate power-series 
distributions when investigating the distribution of degree in network data.  If a power-
series distribution can be fit reasonably well to the data, the nature of the coefficient 
function may provide some insight into constraints on the nodes within the network.  
Further investigation into the coefficient functions of various network data may provide 
greater insight into the behavior of networks and possibly lead to predictive network 
models.  At the very least, a single family of distributions for degree may lead to 
understanding appropriate statistical distributions for other network measures that will 
allow greater hypothesis testing in network data. 
 

The power series distribution’s coefficient function has been suggested to 
represent constraints on node degree.  Further investigation is warranted.  I have only 
suggested that this is a possible explanation for network degree distributions and shown 
some interesting variate relationships.  Perhaps multi-agent simulations could constrain 
individual node degree and provide insight into the constraint function.  Constraint 
functions could be modeled for various real-world network data and inference could be 
drawn about constraints based on the known or assumed behavior of the application. 
We must be careful about the conclusions we draw from the degree distribution of 
network data.  Just because a particular candidate distribution fits empirical data well, 
does not mean that the underlying distribution generating the data is the same.  Scale-free 
networks that have a power law distribution were not necessarily evolved through 
preferential attachment (Albert and Barabasi, 1999) as some may assume.  Preferential 



21 
 

attachment will produce scale-free networks, but the observation that the network is 
scale-free does not allow us to infer how it was created.   
 

The power series distribution offers an alternative model to the Barabasi-Albert 
power law distribution.  I believe that this is an appropriate statistical model due to the 
explanatory nature of the constraint function in the distribution.  There is currently no 
intuitive explanation for the occurrence of power-law distributions in networks.  In some 
sense the statistical support of the binomial distribution is more accurately defined for 
degree distribution than a continuous power-law distribution, due to the countable, 
integer values that degree can assume.  Hopefully, future researchers will explore the 
topology of network data, looking at a wider range of candidate distributions and the 
implications for science that they may uncover.   
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3 Stochastic Nature of Networks 
Social networks often exhibit stochastic behavior.  For example, an agent in a 

network might communicate with a friend several times during a given day and not at all 
during another day.  In this example, the underlying relationship remains the same; 
however, the observed network ties fluctuate.  This is an intuitive example, however the 
accuracy of observed network data has been well documented in the literature (Killworth, 
et al, 1976, 1979; Bernard, et al, 1977, 1980, 1982; Krackhardt, 1990; Ellis, et al, 1991; 
Kashy and Kenny, 1990; Wasserman and Faust, 1994).  Furthermore, it is possible that 
the underlying relationships in a social network may change (Carley, 1991; Doreian and 
Stokman, 1997; Snijders, 2007).  This relatively common behavior will also cause 
fluctuations in observed network data.  Therefore statistical models of social networks are 
necessary for any kind of meaningful inference on network data. 

 
A necessary prerequisite for statistical inference of social networks is an underlying 

probability structure for the presence of links in the network.  Detecting changes over 
time, comparing multiple networks, or evaluating a wide range of potential hypothesis all 
depend upon a method to estimate the probability of links occurring in an observed 
network.  Several statistical models have been proposed.  The p* model was introduced 
by Frank and Strauss (1986).  This model describes the distribution of a Markov random 
graph.  Many others have contributed to developing this family of models (Strauss and 
Ikeda, 1990; Wasserman and Pattison, 1996; Anderson, et al, 1999; Wasserman and 
Faust, 1994), especially in the area of parameter estimation.  A common approach to 
describe the link probability is the Exponential Random Graph Model (ERGM) 
(Krackhardt, 1998; Handcock, 2002, 2003; Hunter, 2006; Goodreau, 2007; Robins, et al, 
2007; Hunter, et al, 2008).  The ERGM is based on a regression of structural variables in 
the network that may explain the probability of links occurring in the network.  Several 
have used the ERGM to simulate many instances of a given network and then estimate 
statistical properties of various network measures (Handcock, 2007; Butts, 2007; 
Goodreau, 2007).  I introduce an alternative approach with the Link Probability Model 
(LPM) that uses the historical presence of links to estimate the link probability.  I 
demonstrate both simulation approaches on a range of empirical data and show that for a 
limited number of longitudinal data sets, the LPM provides a better fit to the data than the 
ERGM. 
 

The ERGM  is a family of statistical models that describe the probability of a link 
being present between two nodes and is a common statistical model for social network 
analysis.  The models are based on logistic regression, where model terms are usually 
structural variables in the network.  The model is used to explore statistically significant 
properties of networks.  The ERGM notation is also flexible, allowing it to represent a 
wide range of network variables.  Unfortunately, many ERGM models are degenerate, 
meaning that observed data might be highly improbable given the model (Handcock, 
2003, 2002).  The ERGM is not typically used for over-time network analysis, however 
Mark Handcock presented an application of the ERGM for simulating networks at the 
28th Sunbelt Conference (2008).  The Link Probability Model (LPM) is not a statistical 
model, but rather a matrix of probabilities of a link being present between ordered pairs 
of nodes.  The LPM is estimated from longitudinal networks based on the frequency of 
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links being present over time.  The LPM avoids issues of model degeneracy because the 
model is not dependent upon highly correlated terms and there are more data points than 
parameter estimates.  The LPM is particularly useful for my application, because I am 
only interested in modeling over-time data. 

 
First, I briefly review the ERGM.  Then the LPM is described and presented as an 

alternative model to the ERGM.  Then the LPM and ERGM are both used to model four 
data sets: the Sampson (1969) Monastery data, the Newcomb (1961) Fraternity data, and 
then two sets of data from Fort Leavenworth (Graham, 2005; Baller, et al, 2008).  These 
are four interesting data sets because they all have a temporal component and have been 
well documented in the literature.  The fit of each of these models is compared to the 
data.  I find that the ERGM is degenerate for the Fort Leavenworth data and that the LPM 
provides a better fit in the other two data sets under certain conditions. I conclude by 
discussing the strengths and limitations of LPM and its general usefulness to network 
analysts.   
 
 
3.1  Exponential  Random Graph Model  
 

The ERGM is used in social network analysis as a statistical model that enables 
an analyst to conduct inference on dependent relational data (Goodreau, 2007; Robins, et. 
al., 2007).  The ERGM is therefore less restrictive than the Holland and Leinhardt (1981) 
p1 model that assumed dyadic independence.  In many social network applications the 
relationship between two individuals depends on relationships between the individual and 
others in the network; cognitive limits on the number of relationships that can be 
maintained; similarity between individuals; and more.  The ERGM framework for 
relaxing the dyadic independence assumption is thus essential for accurate inference in 
many data sets.   
 

Exponential random graph models (ERGM) have been studied a great deal in the 
literature as a model for the probability of links occurring in a social network.  The 
ERGM was first proposed in 1986 (Frank and Strauss) as a very general model.  The 
ERGM can thus be used to model a wide range of explanatory variables.  The basic 
ERGM is given by, 
 

)()()( 2211 yggygYP kkθθθ +++∝   (1) 
 
where Y is a graph, θ‘s are model coefficients, and g(y) is a covariate or term in the 
model. Covariate terms are general and can represent many features of a graph.  These 
terms are often structural properties of the graph such as the number of links, dyadic 
relations, and transitive properties, among others. 
 

Estimating ERGM terms and parameters can be computationally challenging in 
large networks (Snijders, 2002; Pattison and Robins, 2002).  Markov chain Monte Carlo 
estimation of ERGM has been used to fit these models to data (Goodreau, 2007; Robins, 
et. al., 2007; Handcock, 2003, 2002; Snijders, 2002; Pattison and Robins, 2002).  The 
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Markov dependence in these models leads to problems of degeneracy, which is discussed 
in detail by Handcock (Handcock, 2003, 2002).  Essentially, model degeneracy occurs 
when the observed data is almost impossible under the specified model.  This often 
occurs when explanatory terms are highly correlated and there is insufficient data to 
construct an appropriate model.  Many of the terms used in ERGM are correlated and it is 
difficult to define enough terms to preclude networks that do not represent the data, when 
they spuriously satisfy the ERGM terms.  Several advances in ERGM have been 
proposed to include curved exponential family models (Hunter and Handcock, 2006) and 
neighborhood models (Robins, et. al., 2005).  However, these advances have not 
completely removed issues of model degeneracy. 
 
 
3.2  Link Probabil i ty  Model  Formulation  
 

The LPM framework for viewing the probability space of a social network avoids 
issues of model degeneracy, while preserving flexibility for modeling dyadic 
relationships.  It provides researchers with an improved means to understand the 
probability space of the network, under certain conditions.  The LPM is a square matrix 
where the rows and columns correspond to the nodes in a social network.  The entries are 
the link probabilities of the directed link from the row node to the column node.  This is 
not to be confused with an adjacency matrix, where the entries are either zero or some 
number representing the strength of a relationship between nodes.  The link probability is 
a number between 0 and 1, and determines the likelihood of a link being present in an 
observed adjacency matrix.    
 

The link probabilities can be derived from empirical data in several ways.  Given 
network data collected over multiple time periods on a group of subjects, the link 
probabilities can be estimated by the proportion of link occurrences, lij, for each cell in 
the adjacency matrix, aij.  In the case of communication networks, statistical distributions 
can be fit to the time between messages for each potential link in the network.  For a 
specified period of time, t, the link probability p for each set of entities i and j can be 
found. Let xij be the time between messages in a communication network.  The 
probability density function for any x can then be defined as fij ( x | θij ), where θij  is the 
set of parameters for the density function.  Then, the probability, p, of a link occurring 
within some time period t is the probability that x < t, which can be expressed as,  

 

   (2) 
 

In practice, the function fij ( x | θij ) must be estimated using techniques such as 
maximum likelihood estimation from empirical data collected on the group being studied. 
It may be desirable to construct a network based on a restriction such as, “two emails 
within a time period demonstrate a relationship, but one does not.” In this case, it is 
necessary to compose a function of random variables. If hij (2 | t, θij ) represents the 
probability density function of time between two sets of two emails and fij ( x | θij )  

∫=
t

ijij dxxfp
0

)|( θ



25 
 

represents the probability density function of time between one set of two emails, then 
the following is true under certain assumptions: 

 

  (3) 
 

It is possible to generalize this idea; if hij (x | t, θij ) is the probability that x or more 
communications occur within time t, then the following is true: 
 

  (4) 
 

The LPM is an important improvement over some traditional models.  Individuals 
in a social network are not connected to other individuals with uniform random 
probability.  The probability structure is much more complex.  Intuitively, there are some 
people whom a person will communicate with or be connected more closely than others.  
In a study of email communication conducted at the U.S. Military Academy (McCulloh 
et al, 2007) one subject emailed his wife more than ten times per day on average, while 
other people that he worked with received an email from him once or twice per month.  
For this reason, real-world networks tend to have clusters or cliques of nodes that are 
more closely related than others (Newman, 2003; Topper and Carley, 1999; Carley, 
1996).  This can be simulated by varying the probabilities that certain nodes will 
communicate.  In this way, stochastic behavior in dynamic social networks can 
realistically be simulated. 
 

The LPM is a desirable model due to its ability to accurately model empirical data 
and its ability to avoid degeneracy.  The accuracy of the LPM will be discussed in the 
Results section.  The LPM can avoid issues of model degeneracy because the only 
parameters for the model are the link probabilities.  As long as there are at least two time 
periods for estimating parameters, there are more data points than there are parameters.  
Each link is treated independently of other links in the model; therefore, none of the 
terms are correlated.  The naïve assumption of independence between links is corrected 
by the historic presence of links over time.  Intuitively, links have some dependence.  For 
example, if an individual chooses to communicate with another, the likelihood of that 
person reciprocating the communication increases.  If we assume a dynamic equilibrium 
in the underlying relationships of individuals in the network, these patterns of dependent 
communication will be apparent over time.  If node i has a high link probability with 
node j, it may be likely that node j has a reciprocal high link probability with node i. It is 
not necessary to directly account for this in the model.  If the relationship is true, there 
will be a high expected occurrence of i to j and j to i links in the networks over time.  The 
LPM will model these links with high link probability due to their over time frequency, 
and not directly from their structural dependency.  In this way, the LPM can never be 
over specified, have high variance inflation, or be degenerate.  Thus, the LPM may 
provide an attractive alternative to the ERGM for modeling longitudinal degenerate 
networks. 
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3.3  Data for Comparison 
 

Four data sets are used to demonstrate the efficacy of the LPM.  The first and 
second are longitudinal data sets that are well established in the SNA literature, namely 
the Sampson (1969) Monastery data and the Newcomb (1961) Fraternity data.  The third 
and fourth data sets are larger in size.  For the reader’s convenience, Table 4 summarizes 
the similarity and difference among the data sets. All four are explained in more detail. 

 
Table 4. Data Summary. 

 
Name of data set Monastery Fraternity Leavenworth ‘05 Leavenworth ‘07 
Author Sampson Newcomb Graham Schrieber 
Number of nodes  18  17  156  68 
Number of time 
periods 

 3  15  8  9 

Method of collection Observation Survey Survey& 
Observation 

Survey 

Link weight Dichotomous Weighted Dichotomous Dichotomous 
Link Relationship Interpersonal 

relationship 
Preference 

ranking 
Self Reported 

Communication 
Self Reported 

Communication 
Change in density 0.17974- 

0.18301 
0.50000- 
0.50000 

0.01431- 
0.02906 

0.04473- 
0.04628 

Change in average 
betweenness 

0.05556- 
0.05556 

0.33574-
0.41176 

0.00880-  
0.00994 

0.02009-  
0.01909 

Change in average 
closeness 

0.40158- 
0.02485 

0.66510-
0.39859 

0.03759-  
0.05172 

0.05739-  
0.08186 

Change in average 
eigenvector cent 

0.23428- 
0.23247 

0.79907-
0.74891 

0.23591-  
0.22963 

0.2125- 
0.22243 

 
The first data set was collected in a monastery by Samuel F. Sampson (1969).  

The participants included 18 monks, and data was recorded on their interpersonal 
relationships.  This is a directed network, where relationships are not necessarily 
reciprocal.  Data was collected over three time periods, representing the time in which a 
new cohort joined the monastery.   
 

The second data set was collected by Theodore Newcomb (1961) at the 
University of Michigan.  The participants included 17 incoming transfer students, with no 
prior acquaintance, who were housed together in fraternity housing.  The participants 
were asked to rank their preference of individuals in the house from 1 to 16, where 1 is 
their first choice.  Data was collected each week for 15 weeks, except for week number 
nine.  The relational data recorded between agents were ranks.  Both the ERGM and 
LPM require dichotomous networks to construct a model.  I chose to adopt the 
binarization scheme proposed by David Krackhardt (1998).  He dichotomized the 
network data by assigning a link to preference ratings of 1-8 and having no link for 
ratings of 9-16.  Krackhardt also fit an ERGM to the Newcomb Fraternity data which will 
be used for comparison with the LPM. 
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The third data set was collected from an Army war fighting simulation at Fort 

Leavenworth, Kansas in 2005, by Craig Schreiber and Lieutenant Colonel John Graham.  
The participants were mid-career U.S. Army officers taking part in a brigade level staff 
training exercise.  This data set contains 156 individual agents that were monitored over 
the course of four and a half days.  Data consists of communication ties between 
individuals as measured from self reported communications surveys. Surveys were 
completed at the end of each morning and at the end of the day before the officers went 
home.  Therefore there are nine longitudinal time periods.  
 

The fourth data set was also collected from an Army war fighting simulation at 
Fort Leavenworth, Kansas by Craig Schreiber; this time in April, 2007.  There were 68 
participants in this data set, who served as staff members in the headquarters of the 
brigade conducting a simulated training exercise.  The data contains the communication 
between agents in the network which were collected through self reported 
communications surveys.  Data was collected over a period of four days, twice per day.  
Thus, there were eight time periods. 

  
 

3.4  Method of  Comparison 
 

The ERGM and LPM are investigated for their strengths and weakness in 
modeling longitudinal data.  For the Sampson (1969) Monastery data, I use the ERGM 
that was fit to the data by Hunter et al (2008).  The Akaike Information Criterion (AIC) is 
302.61 and the Bayesian Information Criterion (BIC) is 436.65.  The Hunter (2008) 
ERGM of the Sampson (1969) data was chosen for this study based on its more favorable 
AIC and BIC compared to other models found in the literature.  I feel that this model is 
therefore an appropriate benchmark for comparison with the LPM.  An ERGM is also fit 
to the Newcomb (1961) fraternity data.  Again, I have chosen an ERGM accepted in the 
literature; this time the model proposed by Krackhardt (1998).  An LPM is fit to both the 
Sampson and Newcomb data sets.  Monte Carlo simulation is used to generate instances 
of the Sampson Monastery social network and the Newcomb Fraternity social network 
under the ERGM and LPM.  In addition, an LPM is also fit to the two Fort Leavenworth 
data sets (Graham, 2005; Baller, et. al., 2008).  For the two Fort Leavenworth data sets, 
the ERGM was degenerate.  The ERGM were not degenerate for the Sampson or 
Newcomb data sets.  The LPM is successfully used to model all data sets. 
 

A distance measure is required to compare the similarity between the 
dichotomous networks generated using the ERGM, the LPM, and the empirical data.  
Hamming distance (1950) evaluates a distance between dichotomous networks.  If the 
data were weighted networks and the models generated weighted networks as well, then a 
Euclidean distance would be appropriate.  The quadratic assignment procedure (QAP) 
(Krackhardt, 1987b) could be used to compare the correlation between networks; 
however, I focus on network distance, because I intend to demonstrate that the LPM can 
generate simulated models that are very similar to the original networks in terms of actual 
distance and not simply a structural isomorphism.   
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The ERGM and LPM are evaluated on how well they model empirical data using 

a t-test.  I illustrate the method with the Sampson Monastery data.  Let the three networks 
in the Monastery data be labeled N1, N2, and N3.  An ERGM is used to simulate 
networks and they are labeled E1, E2, E3, … E100,000.  The LPM is also used to 
simulate networks and they are Labeled L1, L2, L3, … L100,000.   The Hamming 
distances are calculated between each empirical data set to every simulated ERGM 
network and I use the following notation, 

 
DistERGM,1,1 = Hamming(N1,E1) 
DistERGM,1,2 = Hamming(N1,E2) 

… 
DistERGM,i,j = Hamming(Ni,Ej) 

… 
DistERGM,3,100000 = Hamming(N3,E100000). 

 
The Hamming distances are also calculated between each empirical data set and every 
simulated LPM network and its notation is given by, 
 

DistLPM,i,j = Hamming(Ni,Lj). 
 
The Hamming distances are calculated between each empirical data set and every other 
empirical data set and its notation is given by, 
 

Distempirical,i,j = Hamming(Ni,Nj), where i ≠ j. 
 

 
 
 

This last set of Hamming distances are a measure of noise or observation error inherent in 
the data. 
 
 The ERGM and LPM are compared using a two-sample T-test between the 
Hamming distances from the empirical network, Ni, and all of the simulated networks 
from the ERGM and the LPM.  The test statistic is given by, 
 

 

 
where, 
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and SP,i is the pooled standard deviation between the ERGM and LPM Hamming 
distances (Montgomery, 1991).  This is repeated for each time period, i. 
 
 
3.5  Results  
 

An ERGM was fit to the Sampson (1969) Monastery data according to the model 
specification laid out by Hunter, et. al. (2008).  Four model terms were used: links, 
sender, receiver, and mutual.  A summary of the model fit is shown in Table 5.   

 
Table 5. Fit Summary for Sampson ERGM. 

 
Model Parameter Coefficient Standard Error MCMC S.E. p-value 
Links -2.5131 0.3361 0.005 0.0000 
sender2 -0.7356 0.6854 0.015 0.2842 
sender3 -0.2146 0.7274 0.017 0.7682 

… output edited for length … 
receiver17 -1.2015 0.8191 0.018 0.1436 
receiver18 -1.0562 0.7193 0.015 0.1432 
Mutual 3.6816 0.6731 0.011 0.0000 
 

The Hamming distance from each of the three empirical data sets to each of the 
ERGM simulated networks was calculated.  The Hamming distance from each of the 
empirical data sets to each of the LPM simulated networks was calculated.  The mean and 
standard deviation of these Hamming distances are displayed in Table 6.  A two-sample 
t-test for each time period illustrates that the networks simulated using the LPM have a 
smaller average hamming distance to the empirical data sets than the networks simulated 
using the ERGM.  This indicates that the LPM models the Sampson data more accurately 
than the ERGM model. 

 
Table 6. Sampson Data Hamming Distances and T-test for ERGM and LPM. 

 
 

 
Time 

Period 

 
μERGM,i 

ERGM 
Hamming 
Distance 
Standard 
Deviation  

 
μLPM,i 

LPM 
Hamming 
Distance 
Standard 
Deviation  

 
 
 

Ti 
t-test 

 
 
 
 
p-value 

1 98.70   5.6970 27.67 3.5922 39.43 0.0006 

2 99.10 6.2263 24.99 3.5935 37.64 0.0007 

3 103.70 6.2902 24.66 3.5945 39.74 0.0006 
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The Newcomb (1961) Fraternity data was also fit with an ERGM.  Three model 
terms were used: mutual, Simmelian ties, and balance.  A summary of the model fit is 
shown in Table 7.  The AIC is 308.93 and the BIC is 319.75, which are more favorable 
than similar variations of the ERGM.   

 
Table 7. Fit Summary for Newcomb ERGM. 

Model Parameter Coefficient Standard Error MCMC S.E. p-value 
Mutual -1.5745 0.2304 0.0070 0.0000 
Simmelian Ties 0.6581 0.0006 0.0001 0.0000 
Balance 0.2333 0.0364 0.0010 0.0000 
 

The Hamming distances from each of the fourteen empirical data sets to each of 
the ERGM simulated networks and each of the LPM simulated networks were calculated.  
The mean and standard deviation of these Hamming distances are displayed in Table 8.  
A two-sample t-test for each empirical data set illustrates that the networks simulated 
using the LPM have a smaller average hamming distance to the empirical data sets than 
the networks simulated using the ERGM.  This indicates that the LPM models the 
Newcomb fraternity data more accurately than the ERGM model. 
 

Table 8. Newcomb Data Hamming Distances and T-test for ERGM and LPM. 

Time 
Period μERGM,i 

ERGM 
Hamming 
Distance 
Standard 
Deviation  μLPM,i 

LPM 
Hamming 
Distance 
Standard 
Deviation  

Ti 
t-test p-value 

1 139.7 8.3938 91.9 5.1913 18.0147 0.0353 

2 138.9 8.1847 75.1 5.2128 24.6573 0.0258 

3 137.3 8.2872 48.3 5.2226 33.9732 0.0187 

4 135.5 9.3363 49.7 5.2340 29.0460 0.0219 

5 134.1 8.9870 50.1 5.2319 29.5558 0.0215 

6 136.3 8.5251 45.5 5.2440 33.6983 0.0189 

7 133.9 9.0609 47.3 5.2397 30.2202 0.0211 

8 134.1 7.2946 51.9 5.2591 35.6377 0.0179 

10 133.7 5.1865 64.2 5.2223 42.3990 0.0000 

11 132.7 6.0562 53.4 5.2074 41.4119 0.0006 

12 136.3 8.4466 51.1 5.2147 31.8930 0.0200 

13 134.9 9.0117 46.6 5.2311 30.9989 0.0205 

14 133.9 5.4457 46.1 5.2230 50.9574 0.0000 

15 133.1 5.7242 47.2 5.2378 47.4518 0.0004 
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The LPM is further investigated using the Fort Leavenworth data.  ERGM’s with 
only a single term were found to be degenerate for several common parameter choices; 
therefore, they are not included in the analysis of this section.  For both of the Fort 
Leavenworth data sets, the Hamming distance between the simulated LPM networks and 
each empirical network, DistLPM,i,j = Hamming(Ni,Lj), was compared to the Hamming 
distance between each empirical network to the other empirical networks within the data 
set, Distempirical,i,j = Hamming(Ni,Nj), where i ≠ j.  Two-sample t-tests were used to 
determine if there was a significant difference in mean Hamming distance between the 
empirical networks and the LPM.  The t-tests were properly adjusted for 
heteroscedasticity and unequal sample sizes.  Table 9 displays the Hamming distances 
and the results of the two-sample t-tests for the 2005 Fort Leavenworth data, and Table 
10 displays this information for the 2007 Fort Leavenworth data.  In all cases the 
Hamming distance is less for the LPM.  The low p-values show a statistically significant 
difference in mean Hamming distance of the empirical to empirical comparison versus 
the LPM to empirical comparison.  Additionally, since 0,, >− iLPMiemperical µµ  it is shown 
that the simulated LPM networks have, on average, less Hamming distance from each of 
the empirical data sets than the empirical data sets have from each other.  This means that 
networks generated using the LPM are closer to the original data than the observed 
empirical networks are to each other.  While the t-tests for 2005 Fort Leavenworth time 
periods 6, 8, and 9 are only marginally significant, they have the same positive trend as 
the other 14 empirical networks in the 2005 and 2007 data sets. 

 

Table 9. 2005 Fort Leavenworth Data Hamming Distances and T-test for LPM. 

Time 
Period μempirical,i 

Empirical 
Hamming 
Distance 
Standard 
Deviation μLPM,i 

LPM 
Hamming 
Distance 
Standard 
Deviation   

 
Ti 

t-test p-value 
1 1445.000 84.774 1284.338 23.747 3.467 0.001 
2 1394.750 67.487 1239.647 23.703 3.765 0.000 
3 1296.125 85.436 1151.946 23.671 3.287 0.001 
4 1315.875 153.533 1169.665 23.718 2.421 0.015 
5 1191.250 112.324 1058.990 23.667 2.732 0.006 
6 1204.875 207.944 1071.116 23.623 1.912 0.056 
7 1167.375 190.431 1037.713 23.695 1.980 0.048 
8 1159.625 204.465 1030.815 23.732 1.888 0.059 
9 1170.125 195.266 1040.142 23.618 1.953 0.051 
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Table 10. 2007 Fort Leavenworth Data Hamming Distances and T-test for LPM. 

Time 
Period μempirical,i 

Empirical 
Hamming 
Distance 
Standard 
Deviation μLPM,i 

LPM 
Hamming 
Distance 
Standard 
Deviation   

 
Ti 

t-test p-value 
1 409.286 38.560 358.094 12.775 3.755 0.00 
2 365.857 18.298 320.097 12.739 7.073 0.00 
3 365.857 29.043 320.164 12.793 4.450 0.00 
4 377.857 38.247 330.674 12.773 3.489 0.00 
5 375.286 36.100 328.377 12.796 3.675 0.00 
6 349.857 38.159 306.078 12.785 3.245 0.00 
7 373.857 48.451 327.073 12.826 2.731 0.01 
8 362.429 55.635 317.151 12.775 2.302 0.02 

 
 
3 .6  Discussion 
 

The LPM has been used to model longitudinal social network data for four 
different data sets.  In those data sets, the LPM generates simulated networks that are 
more like the original data than networks generated using the ERGM.  In addition, it is 
generally the case that the networks generated using the LPM are more similar to the 
original data than any prior time period.   The LPM avoids issues of model degeneracy 
due to its formulation.  The probability of link occurrence is based on the historic 
presence of links and does not use a Markov assumption or over specify a statistical 
model.  For these reasons, the LPM provides an alternative method for modeling and 
conducting longitudinal social network analysis. 
 

Monte Carlo simulations can be generated using the LPM.  Each cell, aij., in the 
LPM can be compared to a uniform (0,1) random variable to determine the presence of a 
link in a simulated adjacency matrix.  As demonstrated earlier, these simulated adjacency 
matrices are very similar to the empirical data as demonstrated by the low Hamming 
distance between simulated networks and empirical networks.  Statistical distributions 
can then be fit to any social network measures calculated on the simulated networks.  
These statistical distributions can then be used for inference using traditional statistical 
methods.   
 

The LPM cannot be used in place of the ERGM in all situations, however.  
Multiple networks are required to estimate the LPM for a given empirical data set.  The 
ERGM on the other hand, can be estimated from a single observed network.  The 
approach to adding and removing nodes is different for the ERGM and LPM.  For the 
LPM, a missing node would be included in the model with a 0 recorded for all column 
and row entries of the missing node.  Finally, the LPM is formulated based on the 
assumption that there are fixed probability structures under-laying social networks that do 
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not change significantly over time.  The observed social networks based on the LPM will 
fluctuate between time periods, but the general patterns of connections remain the same. 
Table 11 illustrates some differences and similarities between LPM and ERGM data 
requirements. 

 
Table 11. Comparison of LPM and ERGM. 

Data characteristics LPM ERGM 
Link weighting Dichotomous Dichotomous 
Number of links No limit Probability of degeneracy 

increases with number of links 
Min. no. time period 2 1 

Practical no. time period 5+ 1 
Assumed cause of 

stochasticity 
Dynamic equilibrium Evolves due to structural 

properties of the network. 
 

The LPM has several advantages over the ERGM for longitudinal social network 
analysis; however the ERGM has advantages over the LPM for other types of analysis.  
Table 12 displays advantages and disadvantages of the LPM and ERGM models. The 
LPM requires multiple observed networks to estimate model parameters, where the 
ERGM can be estimated using a single observed network.  At a minimum, two observed 
networks are required to estimate an LPM, however, in practice; the variance of the 
estimate is proportionate to n/1 , where n is the number of observed networks.  I 
nominate five observed networks as a rule of thumb for fitting the LPM as most of the 
estimate variance is eliminated with this number.  The LPM is more computationally 
efficient than the ERGM.  The number of link probabilities for a network is quadratic 
with the number of nodes.  The LPM estimates are then linear with the number of 
observed networks.  The ERGM parameter estimates can be nn with number of nodes for 
each term.  Heuristics are often used to estimate ERGM model parameters.  In addition, 
the ERGM has problems with model degeneracy as previously discussed.  The LPM has 
been shown to provide a model that can be used to simulate data that is more similar to 
empirical data than data generated with ERGM simulations.   An additional benefit for 
the LPM is the ability to use link probabilities as dependent variables in regression 
models for homophily.  Homophily is an expression to describe the similarity between 
individuals in terms of certain attributes that the individuals have.  In more complex 
models, the parameters of link probability densities can serve as dependent variables in 
homophily regression.  Unfortunately, the LPM does not provide any explanation of 
likely structural causes for the stochastic behavior of networks.  Significant terms in an 
ERGM can be interpreted as the underlying mechanism for network evolution over time.  
It may be possible to develop similar explanations of behavior through future research in 
homophily regression using the LPM.  Further research is needed on both the ERGM and 
the LPM to illuminate strengths and limitations.  In the interim, there is strong evidence 
to suggest the use of the LPM whenever degeneracy is a problem among ERGM’s, or 
when the goal is to estimate the normal behavior of a social group that is in dynamic 
equilibrium. 
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Table 12. Advantages and Disadvantages of LPM and ERGM. 

Considerations LPM ERGM 
Required no. of 

observed networks 
Disadvantage: The LPM 

requires multiple observed 
networks to estimate the 

link probability of a 
network based on historic 
frequency of occurrence. 

Advantage: The ERGM 
requires only a single network 

Computational 
efficiency 

Advantage: The 
computational speed is 

quadratic with the number 
of nodes in the network. 

Disadvantage: The 
computational speed is nn 
which requires heuristic 
approximations of model 

parameters. 
Model quality Advantage: Stable and 

consistent model estimates. 
Disadvantage: Prone to 

degenerate models. 
Accuracy to real data Advantage: Shown to more 

closely resemble empirical 
data as measured by 
Hamming distance. 

Disadvantage:  Has not been 
shown to consistently model 
empirical data accurately as 

measured by Hamming 
distance. 

Explanation of social 
dynamics 

Disadvantage: Does not 
attempt to explain 

underlying social dynamics 
of the group or organization. 

Advantage: Model terms can 
be interpreted as underlying 

mechanisms for social 
dynamics within the modeled 

group or organization. 
 

Another important area for future research is network periodicity.  Intuitively, 
social networks are subject to periodic trends.  An average person’s communication 
patterns may be different during the week, while they are at work, than during the 
weekend, when they are at home with their family.  Future research will hopefully 
expand both the LPM and ERGM to handle periodic trends in longitudinal data.  It will 
be interesting to compare the performance of the LPM and ERGM for modeling time 
dependent longitudinal social network data sets.   
 

This Chapter has introduced the Link Probability Model (LPM) for longitudinal 
social network analysis.  The primary strength of the LPM is its ability to accurately 
model longitudinal network behavior with better goodness of fit than competing models.  
The LPM also avoids issues of model degeneracy due to the method of its construction.  
Finally, the LPM is more computationally efficient than the ERGM for both estimation 
and simulation.  Using the LPM, accurate simulation of longitudinal social network data 
can be performed.  This opens the door for researchers to explore an entirely new 
approach for inference on social networks.   
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Within this thesis, I will explore the performance of social network change detection 
by using the LPM to instantiate a multi-agent simulation model, CONSTRUCT.  The 
multi-agent simulation model improves on the realism of the LPM by introducing 
variables such as homophily, socio-demographics, and proximity to modify the LPM at 
each time step.  The multi-agent simulation thereby increases the relational dependence 
of link occurrence based on established social theories.  For a detailed explanation of the 
CONSTRUCT model, refer to Appendix B.  Using multi-agent simulation to generate 
virtual longitudinal social networks, advances can be made in detecting anomalies in 
network behavior as well as temporal change.   
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4 Detecting Changes in Social Networks 
Social network change detection (SNCD) represents an exciting new area of 

research.  It combines the area of statistical process control and social network analysis.  
The combination of these two disciplines is likely to produce significant insight into 
organizational behavior and social dynamics.  Immediate applications to counter 
terrorism and organizational behavior are obvious.   

 
Much research has been focused in the area of longitudinal social networks 

(Sampson, 1969; Newcomb, 1961; Romney et al, 1989; Sanil, Banks, and Carley, 1995; 
Snijders, 1990, 2007; Frank, 1991; Huisman and Snijders, 2003; Johnson et al, 2003; 
McCulloh et al, 2007a, 2007b).  Wasserman et al. (2007) state that, “The analysis of 
social networks over time has long been recognized as something of a Holy Grail for 
network researchers.”  Doreian and Stokman (1997) produced a seminal text on the 
evolution of social networks.  In their book they identified as a minimum, 47 articles 
published in Social Networks that included some use of time, as of 1994.  They also noted 
several articles that used over time data, but discarded the temporal component, 
presumably because the authors lacked the methods to properly analyze such data.  An 
excellent example of this is the Newcomb (1961) fraternity data, which has been widely 
used throughout the social network literature.  More recently, this data has been analyzed 
with its’ temporal component (Doreian et al., 1997;  Krackhardt, 1998; Baller, et al. 
2008).  Methods for the analysis of over time network data has actually been present in 
the social sciences literature for quite some time (Katz and Proctor, 1959; Holland and 
Leinhardt, 1977; Wasserman, 1977; Wasserman and Iacobuccci 1988; Frank, 1991). 
Continuous time Markov chains for modeling longitudinal networks were proposed as 
early as 1977 by Holland and Leinhardt and by Wasserman.  Their early work has been 
significantly improved upon (Wasserman, 1979; 1980; Leenders, 1995; Snijders and van 
Duijn, 1997; Snijders, 2001; Robins and Pattison, 2001) and Markovian methods of 
longitudinal analysis have even been automated in a popular social network analysis 
software package SIENA.  A related body of research focuses on the evolution of social 
networks (Dorien, 1983; Carley, 1991; Carley, 1995; Carley 1997; Dorien and Stokman, 
1997) to include three special issues in the Journal of Mathematical Sociology (JMS Vol 
21, 1-2; JMS Vol 25, 1; JMS Vol 27, 1).  Others have focused on statistical models of 
network change (Feld, 1997; Sanil, Banks, and Carley, 1995; Snijders, 1990, 1996; Van 
de Bunt et al, 1999;  Snijders and Van Duijn, 1997).  Robins and Pattison (2001, 2007) 
have used dependence graphs to account for dependence in over-time network evolution. 
We can clearly see that the development of longitudinal network analysis methods is a 
well established problem in the field of social networks. 

 
Longitudinal network analysis is not synonymous with network evolution.   

Doreian and Stokman (1997) are careful to draw the distinction between “network 
dynamics” and “evolution of networks”.  They describe “network dynamics” as a more 
general statement of the network over time.  They see the “evolution of networks” as 
having a stricter meaning that assumes we can understand network change “via some 
understood process.”  To further illustrate their point, two forms of change are clearly not 
evolutionary (Nelson, 1995).  Shock occurs when future events are independent from 
previous events.  This implies that no inference can be drawn from the present model 
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about the future.  Nelson (1995) refers to this as random change, however, I have chosen 
to use the term shock to distinguish this exogenous change from random noise that may 
exist in the over-time signal.  Determined change is also independent of the underlying 
process.  An example of determined changed is more common in equilibrium theory, 
where the stable state of a system is independent of its’ initial state as well as the process 
to reach the equilibrium (Martin and Sunley, 2006).  In a social network context, the 
individual goals and motives of an individual, among other factors may drive the network 
to evolve.  It is also possible for a shock to impact the network.  For example, a military 
platoon consisting of 20-30 soldiers can experience evolutionary change as individuals 
interact, share beliefs and experiences.  A shock might occur in the form of an enemy 
attack. During the attack there is something fundamentally different about the 
relationships among the soldiers.  There is nothing about the individual interactions that 
could predict this change caused by an exogenous source.  Shock can occur for many 
reasons.  A shortage of economic resources could lead to job lay-offs which will 
significantly affect the social network, regardless of evolutionary effects.  These are of 
course drastic changes, presented here to illustrate network shock.  It is also possible to 
have a smaller shock, such as when a new person joins a social group, a company finds 
new access to less expensive resources, or a group member finds a better way of 
accomplishing required tasks.   

 
Two other network dynamic behaviors are also possible.  A shock may initiate 

evolutionary behavior.  In our military example, it is possible that the heroic or cowardly 
actions of individuals in the platoon may affect the way other platoon members see them, 
thereby affecting the interaction among agents in the network and initiating network 
evolution.  I refer to this type of change as a Mutation.  The final network dynamic 
behavior that I propose is Stability.  Stability occurs when the underlying relationship 
between agents in a network remains the same.  It is possible that observed networks may 
contain error (Killworth and Bernard, 1976; Bernard and Killworth, 1977).   If the 
network is stable, then changes in the network over time are due to observation error 
alone. 

 
It is important to delineate the difference between stability, shock, determined 

change, evolutionary change, and mutation if we are to understand network dynamics and 
any underlying processes governing network behavior.  A first step toward this problem 
is to statistically determine that an organization has changed over time.  For example, 
Johnson et al. (2003) studied people wintering over at the South Pole.  There were three 
similar groups corresponding to three different years.  A whole-network survey design 
was used to collect social network data once per month for eight months for each of the 
three groups.  Johnson studied evolutionary change on the social networks of the three 
groups.  Theoretically, these similar groups should exhibit similar evolutionary behavior.  
In one of the groups, there was a shock that involved the “disappearance” of an 
expressive leader “due in part to harassment by a marginalized crewmember.”  This 
shock significantly affected the evolutionary behavior of the network.  This behavior was 
only apparent as a result of the similarity between the three groups and the large 
magnitude of the difference in network behavior, which enabled Johnson to determine the 
significant cause of this difference.  In practice, this type of similarity among groups may 
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be rare.  SNCD offers a method to identify statistically significant change in network 
behavior in real-time, and to identify a likely change point of when the change occurred.  
This change point will allow a social scientist to identify potential causes of change, such 
as the disappearance of the crew member, and isolate that random change from 
evolutionary change.   

 
My approach for detecting changes in longitudinal networks proposes a technique 

to rapidly detect the presence of a network change in real-time. I am not predicting a 
future change, but rather rapidly identifying that a change has occurred; and then 
providing a statistically sound indication of when that change was likely to have 
occurred.  Rapid detection and identification of change is important for two key reasons.  
First, it allows a social scientist investigating organizational change to respond quickly to 
organizational change, facilitating the change if it is positive, and mitigating the effects of 
negative change on the organization.  For example, ideas and policies are discussed and 
communicated within a network of people, long before organizational implementation.  
Sometimes, individual politics (network evolution) can prevent the implementation of 
good ideas (Rogers, 2003).  Rapid detection of organizational change may cause a 
manager to investigate the presence of good initiatives and see them through to 
implementation.  On the other hand, terrorist organizations will begin planning their 
attacks, long before they are actually carried out.  Rapid change detection could alert 
military intelligence analysts to the shift in planning activities prior to the attack 
occurring.  

 
The second key reason that rapid change detection is important is that it limits the 

scope of explanation for network change.  A sound statistical estimate of when a network 
change occurred can help a social scientist identify potential shocks and thereby isolate 
evolutionary change for investigation.  Determining the likely time of change in a 
network helps us understand where to look for fundamental conditions that cause groups 
to transform themselves.  If we as social scientists could monitor networks in a daily or 
weekly basis, we could open a new line of research within longitudinal network analysis. 

 
SNCD is essentially a statistical approach for detecting small persistent changes 

in organizational behavior over time.  Organizations are not static, and over time their 
structure, composition, and patterns of communication may change.  These changes may 
occur quickly, such as when a corporation restructures, but they often happen gradually, 
as the organization responds to environmental pressures, or individual roles expand or 
contract.  Often, these gradual changes reflect a fundamental qualitative shift in an 
organization, and may precede other indicators of change.  It is important to note, 
however, that a certain degree of change is expected in the normal course of an 
unchanging organization, reflecting normal day-to-day variability.  The challenge of 
Social Network Change Detection is whether metrics can be developed to detect signals 
of meaningful change in social networks in a background of normal variability.   

 
This chapter will introduce an application of statistical process control to detect 

change in longitudinal network data.  A brief background is provided on statistical 
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process control which is used extensively in manufacturing.  Statistical process control is 
extended to social networks and demonstrated using multi-agent simulation. 

 
 
4.1  Background 

 
Longitudinal social network data is becoming increasingly more common.  Over 

time network data can be readily obtained in a semi-autonomous fashion from the 
internet, blogs, and e-mail.  Longitudinal network analysis is becoming increasingly 
relevant for the analysis of online citation networks, internet movie data, massive multi-
player on-line games (MMPOG), patent data bases, and more.   

 
Current methods of change detection in social networks, however, are limited.  

Hamming distance (Hamming, 1950) is often used in binary networks to measure the 
distance between two networks.  Euclidean distance is similarly used for weighted 
networks (Wasserman and Faust, 1994).  While these methods may be effective at 
quantifying a difference in static networks, they lack an underlying statistical distribution.  
This prevents an analyst from identifying a statistically significant change, as opposed to 
normal and spurious fluctuations in the network.  The quadratic assignment procedure 
(QAP) and its regression counterpart MRQAP (Krackhardt, 1987, 1992) has been used to 
detect structural significance and compare networks in terms of their correlation.  This is 
not the same as detecting a statistically significant change in the network over-time, since 
error would be propagated through multiple network comparisons.  Markovian 
approaches to longitudinal network analysis such as SIENA are excellent methods for 
modeling evolutionary change and determining structural factors that affect network 
change, however, these models are not concerned with rapid detection of significant 
change.  These models also assume an underlying statistical process within the network 
that drives change, and does not account for random changes or shocks to the network.  
These methods have been focused on the direction of change.  None of these methods 
were created for the purpose of detecting a change.  SNCD has the potential to improve a 
social scientist’s ability to detect organizational change in the same way that Wald (1947) 
improved on Neyman and Pearson’s (1933) most powerful test of simple hypotheses with 
the sequential probability ratio test. 
 

SNCD is a process of monitoring networks to determine when significant changes 
to their organizational structure occur and what caused them.  I propose that techniques 
from social network analysis, combined with those from statistical process control can be 
used to detect when significant changes occur in longitudinal network data.  In 
application, it requires the use of statistical process control charts to detect changes in 
observable network measures.  By taking measures of a network over time, a control 
chart can be used to signal when significant changes occur in the network.  For those 
unfamiliar with statistical process control, it should be noted that the word “control” can 
be very misleading.  In fact, nothing is controlled at all.  Statistical process control is a 
collection of algorithms that monitor a stochastic process over time and rapidly detect 
statistically significant departures from typical behavior.  Control charts refer to the 
individual algorithms used to monitor a process.  The word “control” is derived from 
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their application in quality control.  Quality engineers attempt to control production lines 
by monitoring them and investigating any statistical anomalies.  Through investigation, 
they attempt to mitigate negative process behavior and continue any newly discovered 
process improvements.  In our application of SNCD, I use statistical process control to 
monitor longitudinal social networks and detect any statistically significant departures 
from typical behavior that may correspond to a shock in the network.  While the quality 
engineer uses this technique to “control” a manufacturing process, I envision that the 
social scientist will use it to gain insight in network dynamics. 

 
There are many network measures that can be calculated from a given graph.  

Network measures can be calculated from the entire graph or for each individual node.  
The SNCD technique is applicable to any measure of the network.  In this paper for 
exposition purposes I focus on graph level measures rather than node level measures.  For 
example I use the average of the betweenness (Freeman, 1977) over all nodes in the 
graph each time period rather than the betweenness of a single node.  I also illustrate 
SNCD using density (Coleman and Moré, 1983) and average closeness (Freeman, 1979).  
These are chosen because they are commonly used in the literature and represent a range 
of the types of measures available for change detection.  Additional measures such as the 
maximum, minimum, and the standard deviation of the above node level measures are 
considered in a virtual experiment to explore limitations of the proposed method.  A 
complete exploration of all social network measures and all possible types of changes to a 
network is certainly beyond the scope of this initial paper on the subject, however, I hope 
to have sufficiently illustrated the promise of this approach.  Another concern with these 
measures is their normalization.  In order to compare measures across different time 
periods, they must be normalized.  For a steady sized group this should not be an issue, 
but in the case of an expanding or contracting group, issues arise as to whether results can 
be used across the different scales of group size.  In other words, the network measures 
may change in different ways with respect to the current group size and thus provide 
inconsistent information about the group even absent of any shock within the group.  For 
more detailed information on the standardization of network measures, see Bonacich, 
Oliver, and Snijders (1998). For this research, the Organizational Risk Analyzer (ORA) 
developed by Kathleen Carley at the Center for Computational Analysis of Social and 
Organizational Systems at Carnegie Mellon University is used to compute the average 
network measures from all group information (Carley, 2007). 
 
 
4.2  Statist ical  Process  Control  
 

SPC is a technique used by quality engineers to monitor industrial processes.  
They use control charts to detect changes in an industrial process by taking periodic 
samples from the process, calculating a statistic based on some process metric, and 
comparing the statistic against a decision interval.  If the statistic exceeds the decision 
interval, the “control chart” is said to “signal” that a change may have occurred in the 
process.  Once a potential change has been “signaled”, quality engineers investigate the 
process to determine if an actual change occurred, what the most likely time the change 
occurred was, and whether the process needs to be reset or improved to avoid financial 



41 
 

loss for the company.  Control charts are usually optimized for their processes to increase 
their sensitivity for detecting changes, while minimizing the number of “false positives” 
– signals when no change has actually occurred in the process. 

 
Three control chart schemes are investigated in this paper; the cumulative sum 

(CUSUM) (Page, 1961); the Exponentially Weighted Moving Average (Roberts, 1959); 
and the Scan Statistic (Fisher and MacKenzie, 1922; Naus, 1965; Priebe et al, 2005).  The 
CUSUM will be the primary method considered and recommended for longitudinal 
network analysis.  The other methods are presented here and applied to simulated 
networks in a virtual experiment to explore limitations of SNCD. 

 

Cumulat ive Sum Control  Chart  
Page (1961) proposed the cumulative sum (CUSUM) control chart as an 

alternative to the X chart (Shewhart, 1927).  The CUSUM control chart is derived from 
the sequential probability ratio test (SPRT) which was introduced as an improvement 
over the Neyman and Pearson most powerful test for a simple hypothesis.   

   
Neyman and Pearson (1933) introduced the most powerful (minimum Type II 

error) test for a simple hypothesis-testing problem.  Neyman and Pearson’s test statistic is  
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Neyman and Pearson showed that the most powerful test of Ho against H1 is obtained by 
rejecting Ho if tΛ ≥ K and concluding in favor of Ho if tΛ < K, where K is determined by 
the level of significance, α.  The level of significance is also known as the Type I error 
and is the probability that Ho is rejected when it is true.   
 

Wald (1945, 1947) demonstrated that the Neyman and Pearson hypothesis testing 
method could be applied sequentially and could significantly reduce the number of 
samples required to reach a conclusion.  Wald’s sequential probability ratio test (SPRT) 
compares tΛ  to two constants A and B where 0 < B < A < ∞.  Observations are collected 
and examined one-at-a-time.  After the tth observation there are three possible outcomes.  
If tΛ  < B, then the test concludes in favor of Ho.  If tΛ > A, then Ho is rejected in favor 
of H1.  If B ≤ tΛ ≤ A then sampling will continue with observation t + 1. 
 
 The SPRT can be used to test  against 11 : µµ =H for normal means.  
Without loss of generality we will assume that μ1 > μo.  Having observed t observations, 
the SPR is  

ooH µµ =:
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This can be reduced algebraically to 
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 The sequential probability ratio, tΛ , is compared to appropriate constants A and B as each 
new observation t is formed.  Following observation t, the test concludes in favor of Ho if 

tΛ  < B.  If tΛ  > A, then the test concludes in favor of H1.  If B ≤ tΛ  ≤ A, then sample t + 
1 is obtained and a revised 1+Λ t  is computed.  This procedure continues until either tΛ  < B 
or tΛ  > A.  It is important to note that while I demonstrate this derivation using a normal 
distribution, any distribution can be used with SPRT. 
 

In an SNCD application of the SPRT, μo is some property such as the average 
density, average transitivity, average balance, etc. of a typical network process and μ1 is 
the value of the property when the network process has experienced a change.  Since one 
would never conclude in favor of Ho that the network process is unchanged and stop all 
sampling, the procedure continues until it signals that the network process may have 
changed.  This implementation of the SPRT procedure leads to the CUSUM control 
chart. 

 
In an SNCD application of the SPRT, one would continue to monitor the process 

until  tΛ  > A when the procedure signals that the network process may have changed.  
Using our illustration with a normally distributed property, the SPRT leads to the 
following expression for detecting an increase network property.  The procedure would 
signal when 
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This expression can be simplified by taking the natural logarithm of both sides of the 
inequality,  
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This decision rule can be algebraically reduced to ∑
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where δ is the standardized difference in the network property under Ho and H1.  This 
decision rule can then be further simplified by using the cumulative statistic 

( )∑ =
−=

t

i it kZC
1

, where ( ) xii xZ σµ /0−= , and k = δ / 2.  The common choice of k is 
0.5, which corresponds to a standardized magnitude of change in the network property of 
δ = 1.  Thus, observations are examined sequentially until tC  > .  
 

The CUSUM control chart sequentially compares the statistic tC against a decision 
interval until tC  > . Since one is not interested in concluding that the network 
process is unchanged, the cumulative statistic is  

 
,0max{=+

tC }1
+
−+− tt CkZ . 

 
If this rule was not implemented the control chart would require more observations of the 
network to signal if tC < 0 at the time of network change.  The statistic +

tC  is compared to 
a constant, h+.  If ++ > hCt , then the control chart signals that a change in the network 
might have occurred. 
 
 For δ < 0, the SPRT similarly leads to the CUSUM procedure for detecting a 
decrease in the network property.  In this case, ,0max{=−

tC }1
+
−+−− tt CkZ  is compared 

to a constant, −h .  If −− > hCt , then the control chart also signals that network might have 
changed. 
 

To monitor for both directions of network change, two one-sided control charts 
are employed.  One chart is used for monitoring for increases in the monitored network 
property and the other is used for detecting decreases in the property.  If the process 
remains in-control, ±

tC  will fluctuate around zero.  If there is an increase in the network 
property, +

tC  will tend to increase.  Conversely, if there is a decrease in the network 
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property, then −
tC  will tend to increase.  When +

tC  > h+ or −
tC  > h-, the two one-sided 

CUSUM control chart scheme signals that the network may have changed. 
 
The CUSUM control chart was selected for two reasons.  First, this chart is well 

suited to detecting small changes in a process over time.  In terms of a social network, 
this is a desired quality because one would not expect a social network to change 
dramatically between short time periods.  By casual observation, one could conclude that 
a person’s friends generally stay the same from week to week and not expect drastic 
changes in that social network.  In addition, drastic changes in the network are normally 
quite obvious, but since the CUSUM is good at detecting slight changes it may be able to 
provide rapid detection of drastic changes, or reveal when more subtle changes have 
occurred.  A second benefit of the CUSUM control chart is its built-in change point 
detection.  In all cases, a change in the network precedes the detection of that change.  
The number of networks that must be observed before the change is detected varies based 
on the magnitude of change among other factors.  After the control chart signals, the most 
likely change point is found by tracing the C statistic back to the last time it was zero.  
This allows the time of the change in the network to be calculated quickly and easily.  
This allows the social scientist to limit the scope of investigation for causes of network 
change.  This feature is particularly useful for longitudinal network analysis and for 
studying the evolution of networks. 
 

Exponent ial ly Weighted Moving Average Control  Chart  
The exponentially weighted moving average (EWMA) control chart was 

introduced by Roberts (1959) for monitoring changes in the mean of a process.  The 
EWMA associated with subgroup t is 1)1( −−+= ttt wxw λλ , where 10 ≤< λ  is the weight 
assigned to the current subgroup average and 00 µ=w .  Common values of λ are 

3.01.0 ≤≤ λ .  Having observed a total of T subgroups, the statistic Tw  is plotted against 

the decision interval ( )[ ] , 2/12
0 11

2






 −−

−
± T

xL λ
λ

λσµ where L is a constant that scales 

the width of the decision interval.   
 

 Lucas and Saccucci (1987, 1990) investigated the impact of different 
combinations of L and λ on the average number of observations before the EWMA 
signals a change.  The combinations that were investigated were chosen such that the 
false positive rate for each chart was the same.  They found that EWMA charts with 
small values of λ perform well at detecting small changes in a process mean.  Conversely, 
EWMA charts with large values of λ perform well at detecting large changes in a process 
mean.  Hunter (1986) and Montgomery (1996) investigated the performance of the 
EWMA chart and concluded that it is similar to the performance of the CUSUM chart.  In 
addition, the EWMA is a time series approach for SPC.  Therefore, the EWMA seems a 
good candidate for comparison to the CUSUM. 
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Scan Stat is t ic  
Scan statistics (Fisher and Mackenzie, 1922; Naus, 1965; Priebe, et. al., 2005), also 

known as moving window analysis, investigates a random field for the presence of a local 
signal.  A small window of observations is used to calculate a local statistic.  In this paper 
a window size of 7 observations proceeding the current time period is used, and the 
window mean is used for the local statistic.  If the statistic exceeds a decision interval, 
then inference can be made that a change in the network may have occurred.   
 
 
4.3  Data 
 

Simulated data is used in order to inject an organizational change at a defined 
point in time.  The CUSUM can then be evaluated on its’ ability to identify that change.  
In real-world data, there are often many changes facing an organization and identifying 
one specific cause of change can be subjective or questionable.  With simulated data, 
SNCD can be explored in a more controlled series of virtual experiments.  For this initial 
investigation, I use a multi-agent simulation of a 100 node network, using the Construct 
simulation model (Schreiber and Carley, 2004) set in the context of a U.S. Infantry 
military organization.  Military units have a formal hierarchical chain of command as 
well as informal leaders and social relationships that extend beyond formally designated 
units.  Both the formal and informal networks are used to share situational awareness, 
experience, skill development, and resources.  Isolation of certain individuals or 
subordinate elements within a unit, due to radio failure, enemy attack, or poor 
coordination, can cause serious impacts to the unit’s performance.   The basic military 
structure that was simulated was an infantry training model.  This is the most basic US 
military unit and is used for training soldiers and officers across the US Army Training 
and Doctrine Command (HQ, Dept of the Army, 1992).  Within this model, soldiers are 
organized into four man teams.  Two teams and a squad leader form a 9 man squad.  
Three squads and a three person headquarters form a 30 man platoon.  Three platoons and 
a 10 person command post form a company.  Each soldier is trained in various skills that 
are distributed throughout the organization.  Each team for example will have an 
automatic gunner, a grenadier and two riflemen.  One member on a team will also be 
trained as a medic, another in demolitions, and two will be able to search enemy 
prisoners of war.  Each soldier possesses individual skill in stealth, situational awareness, 
physical fitness, intelligence, military rank, and motivation.  Homophily in these 
individual skills create stronger bonds between members of a unit which will increase 
their probability of communication.  Organizational proximity will also affect 
communication, with individuals in the same sub-unit being more likely to communicate.   
The objective of the simulation will be to model communication within the military unit. 

The simulation was run with all agents present for the first 30 time periods.  At 
time 30, some type of change was imposed on the network, isolating some of the agents, 
thereby simulating radio failure or enemy attack.  Figures 5 and 6 show example 
snapshots of the simulated network before and after the change. 
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   Figure 5. Simulation Before Change.        Figure 6. Simulation After Change. 
 

The simulation was replicated 1000 times to obtain estimates of the average time to 
detect change as well as the variance. 

 
4.4  Method 
 

Social network change detection algorithms are implemented in much the same 
way a control chart is implemented in a manufacturing process.  Three different graph 
measures are used for change detection for the sake of illustrating the proposed method.  
SNCD can be applied to any node or graph measure over time.  The graph measures for 
density, average closeness, and average betweenness centrality are calculated for several 
consecutive time-periods of the social network.  The mean and variance for the measures 
of the network are calculated by taking a sample average and sample variance from 
networks that are assumed to be “typical”.  At least two networks are required to estimate 
these values, however, more networks will allow a more accurate estimate of the mean 
and variance of the “typical” network measure.  The subsequent, successive social 
network measures are then used to calculate the CUSUM’s C+ and C- statistics.  These 
are then compared to a decision interval to determine when or if the control chart signals 
a change in the mean of the monitored network measure.  Upon receiving a signal, the 
change point is calculated by tracing the signaling C+ or C- statistic back to the last time 
period it was zero.  In order to continue running the control chart after a signal, the mean 
and variance are recalculated after the network measures have stabilized following the 
change.   
 

The suspected time periods when the network appears to be significantly 
changing can be estimated using the CUSUM statistic.  The network can then be studied 
in depth across these time periods using a wide variety of network measures to determine 
the extent of changes to the network structure.  Further study can also be directed towards 
determining changes in the environment in which the network operates during those time-
periods. 
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This methodology is demonstrated on three real-world data sets and explored in 
more detail through simulation.  The real-world data sets are used to illustrate practical 
application of the approach.  In addition, the real-world data sets show relevance of this 
new analysis technique.  The virtual experiments are performed on simulated data to 
explore some of the limitations of SNCD. 

 

Vir tual  Experiment  
A virtual experiment is conducted using the Construct Infantry Model to provide a 

realistic data set for evaluating SNCD methods.  Three different size infantry units 
(squad, platoon, and company) are simulated for 500 time periods.  In these units, four 
changes are introduced.  This creates 9 independent data sets that can be used to evaluate 
SNCD performance.  Three of the changes are not feasible for the squad size element.  
The four network changes correspond to common military communication problems that 
might affect an infantry unit.   

The first type of network change is the isolation of the Headquarters section.  For a 
squad, this is simply the squad leader.  For a platoon, this consists of the Platoon Leader, 
Platoon Sergeant, and the Radio Telephone Operator (RTO).  For a Company, this 
includes the 10 person command post, also known as the headquarters element.  A 
military headquarters is most often isolated from the rest of the unit as a result of radio 
failure or a deliberate attack from enemy forces.  This is perhaps one of the most 
significant changes that commonly happen in a military situation, as it requires a rapid 
and efficient transfer of command and control, as the formal hierarchy is significantly 
adjusted.  In the simulation, this is modeled by isolating the Headquarters section 
beginning at time period 30.  These individuals remain isolated for the remainder of the 
simulation.  Network measures are calculated on the organization for all time periods. 

Another significant change in a military organization is the loss of a subordinate 
element.  A subordinate element might be lost as a result of a task organization change, 
radio failure, or enemy attack.  This change is not modeled for the infantry squad, since 
this would mean losing half of the organization.  For the Platoon, this change is modeled 
by isolating a squad at time period 30 for the remainder of the simulation.  For the 
Company, this is also modeled by isolating a squad at time period 30 for the remainder of 
the simulation.  While it is conceivable to isolate any number of individuals in the 
simulation, these changes are used to demonstrate the performance of the SNCD 
methods.  Perhaps SNCD methods that have similar performance could be evaluated 
under greater conditions of change in a future paper.  For now, it is beyond the scope of 
this paper to exhaustively address all conceivable types of network change. 

A similar change is the addition of a new subordinate element.  This is usually a 
result of a task organization change.  This is modeled by adding a squad in both the 
Company and Platoon level models.  It is not modeled for a squad, because squad 
organizations are not usually capable of managing an additional subordinate element.  
Again, this simple change is used to evaluate SNCD and not meant to be an exhaustive 
comparison of different types of organizational change. 
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The final type of change simulated, is sporadic communication.  Sporadic 
communication can be either deliberate, or unplanned.  An example of deliberate 
sporadic communication is a reconnaissance operation, where radio power must be 
conserved and noise discipline is important.  An example of unplanned sporadic 
communication is radio failure.  This is modeled in the simulation by introducing a squad 
from time period 30 to time period 40.  Network measures will be recorded throughout 
the simulation.  This change is only modeled for the Platoon and Company level 
simulations.   

The social network measures listed in Table 13 are measured for every simulated 
network. Table 14 illustrates the combinations of the virtual experiment.  The outputs of 
the simulation are the graph level measures recorded for each simulated time step.  
Different SNCD methods are then used to identify possible changes in the network over 
time.  

Table 13. Social Network Measures. 
Average Betweenness Standard Deviation of Closeness 
Maximum Betweenness Average Eigenvector Centrality 
Standard Deviation of 
Betweenness    

Maximum Eigenvector 
Centrality 

Average Closeness Minimum Eigenvector 
Centrality 

Maximum Closeness Standard Deviation of 
Eigenvector 

 
Table 14. Virtual Experiment. 

 
Variable Number Values 

    Network Size 3 9, 30, 100 
 

Type of Change in Network 
Isolation of leadership 2 Isolated headquarters after 30 time periods 

 
Sporadic 
communication 
(Reconnaissance) 

2 Initially absent, present for 10 time periods, then 
absent for remainder of simulation (omitted for 
squad) 

Loss of subordinate unit  2  Removal of the immediate subordinate unit after 
30 time periods (omitted for squad) 

Gain an attached unit 2 Addition of a squad after 30 time periods. (omitted 
for squad) 

  

Cells 18 3 Network sizes x 4 Changes x 2 Levels – Squad 
omissions 

Replications 25  
Independent Runs 450  
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4.5  Results  
 

Using the social simulation program, Construct (Carley, 1990; Carley 1995; 
Schrieber and Carley, 2004), the performance of SNCD was explored through simulation.  
A variety of changes are introduced to the network at a known point.  The Cumulative 
Sum (CUSUM), Exponentially Weighted Moving Average (EWMA), and Scan Statistic, 
statistical process control charts are applied to several social network graph level 
measures taken on the network at each time step.  The number of time steps between the 
actual change and the time that an SNCD method “signals” a change will be recorded as 
the Detection Length.  The Average Detection Length (ADL) over multiple 
independently seeded runs is then a measure of the SNCD method’s performance.  The 
ADL will be compared for different changes and different SNCD parameters. 

Isolat ion of  Headquarters  
Investigating the isolation of the headquarters element in three different 

organizations will provide insight into how the network size affects the performance of 
change detection measures.  In each organization, 30 man platoon, 100 man company, 
and 9 man squad; 10% of the network was removed.  In a sense, the magnitude of change 
is the same, however, the network size is different. 
 

The isolation of the platoon headquarters is modeled by removing the three 
headquarters members at time period 30 for the duration of the simulation.  Social 
network measures are recorded for all time periods.  Table 15 displays the ADL 
performance of the SNCD methods.  It can be seen that the average of the betweenness is 
a better measure to use for SNCD than either the maximum or the standard deviation of 
betweenness.  This is generally true for all magnitudes of change and sizes of 
organization investigated.  For the closeness measure, both the maximum closeness and 
average closeness generally outperform the standard deviation of closeness.  However, 
for an EWMA with r = 0.3, the maximum closeness measure has relatively poor 
performance.  This might suggest that the average closeness measure is a more robust 
measure of change detection.  In a single variant, non-network application of the EWMA, 
the parameter, r, makes the control chart more or less sensitive to a particular magnitude 
of change (Lucas and Saccucci, 1990; McCulloh, 2004).  It is reasonable to consider that 
for the isolation of a platoon headquarters, the maximum closeness EWMA with r ≤ 0.2 
is sensitive to detecting the change, yet the maximum closeness EWMA with r ≥ 0.3 is 
less sensitive.  This will be explored with other magnitudes and types of changes 
throughout the paper.  For eigenvector centrality, the maximum eigenvector centrality 
and the standard deviation of eigenvector centrality appear to be more sensitive measures 
of change detection than the average or minimum of the eigenvector centrality.  It also 
appears that the eigenvector centrality measures dominate all other measures for 
performance in this case. 
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Table 15. ADL Performance of SNCD on Isolation of Platoon Headquarters. 
 CUSUM 

k = 0.5 
EWMA 
r = 0.1 

EWMA 
r = 0.2 

EWMA 
r = 0.3 

Scan 
Statistic 

Average Betweenness 9.32 8.24 10.16 11.52 6.76 
Maximum Betweenness 14.36 14.72 15.72 17.08 13.24 
Std Dev. Betweenness 16.44 16.24 16.92 18.52 15.24 
Average Closeness 10.68 9.08 13.60 17.52 10.48 
Maximum Closeness 8.76 6.00 10.60 37.96 8.64 
Std Deviation Closeness 34.48 34.72 34.52 35.68 27.08 
Average Eigenvector  31.28 31.28 31.28 31.28 24.00 
Minimum Eigenvector  14.36 14.36 14.28 15.56 14.88 
Maximum Eigenvector  5.24 5.40 5.80 7.52 4.00 
Std. Dev Eigenvector  5.92 4.88 6.40 6.96 3.64 
 

 
Statistical process control is a powerful statistical method for detecting the change.  

Figures 7 and 8 show the average betweenness score for a baseline simulation run (no 
change) and one of the simulation runs with the headquarters isolated.  The difference 
between the figures is subtle.  The difference is only apparent, because there are many 
observations of the network following the change.  If there were only a few observed 
networks following the change, it would be more difficult to detect the network change.  
Figures 9 and 10 show the CUSUM statistic value for the baseline simulation run and the 
simulation run with the headquarters isolated.  The dramatic difference in the plots can 
clearly be seen, paying attention to the values on the y-axis of the plots. 
 

 
Figure 7. Baseline Betweenness Score. 
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Figure 8. Isolation of HQ Betweenness Score. 

 

 
Figure 9. Baseline CUSUM Statistic Value. 

 
 

 
Figure 10. Isolation of HQ CUSUM Statistic Value. 

 
The plot in Figure 10 clearly shows a sharp and sudden increase beginning at time 

period 30, which is when the isolation of the HQ element occurs.  There is a similar 
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performance for other types of change imposed on the network, and other SNCD schemes 
that are used.  The CUSUM is simply used to illustrate the power of the general change 
detection approach.  Other magnitudes and types of change will be compared by simply 
reporting the ADL from when a change occurs until the SNCD scheme signals. 
 

The isolation of the Company Headquarters was modeled by removing the 10 soldier 
headquarters section at time 30 for the remainder of the simulation.  This is very similar 
to the platoon example, in that 10% of the organization is removed.  Social network 
measures are again recorded for all time periods.  Table 16 displays the ADL 
performance of each of the SNCD methods applied to the 100 node network.  Again, it 
can be seen that the average of the betweenness is a more effective measure of change 
detection than the maximum or the standard deviation of betweenness.  The performance 
of the closeness measures behave as they did in the case of platoon headquarters 
isolation.  In this case, the maximum eigenvector centrality does not appear to be as 
effective of a measure for detecting change as does other measures.  However, the 
standard deviation of eigenvector centrality still dominates all other measures for change 
detection performance. 
 

Table 16. ADL Performance of SNCD on Isolation of Company Headquarters. 
 CUSUM 

k = 0.5 
EWMA 
r = 0.1 

EWMA 
r = 0.2 

EWMA 
r = 0.3 

Scan 
Statistic 

Average Betweenness 11.16 11.08 10.20 13.48 6.96 
Maximum Betweenness 17.32 17.76 18.20 20.12 13.72 
Std Dev.Betweenness 18.08 19.40 20.88 22.52 17.36 
Average Closeness 11.16 9.44 12.52 15.64 9.40 
Maximum Closeness 10.44 9.72 12.64 51.76 9.60 
Std Deviation Closeness 41.88 39.48 42.20 43.44 40.76 
Average Eigenvecto 35.84 36.72 34.84 34.84 29.24 
Minimum Eigenvector  16.00 17.96 17.88 16.76 13.60 
Maximum Eigenvector  26.40 30.76 29.64 29.24 25.44 
Std. Dev Eigenvector  10.40 10.72 9.36 9.48 6.44 
 

The isolation of squad leadership was modeled by removing the squad leader at 
time 30 for the remainder of the simulation.  This is also similar in that 11% of the 
organization is isolated.  Table 17 shows the SNCD performance at the squad level, 9 
node network.  It is not clear that certain measures perform better than others for change 
detection in the 9 node network.  It appears that the measures of average betweenness, 
average closeness, and the standard deviation of eigenvector centrality become better 
measures of network change as the size of the network increases.  However, they do not 
necessarily perform worse on a small network.  While an extensive study of the 
sensitivity of each measure to the network size is beyond the scope of this paper, it holds 
the promise of fruitful future research. 
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Table 17. ADL Performance of SNCD on Isolation of Squad Leader. 
 CUSUM 

k = 0.5 
EWMA 
r = 0.1 

EWMA 
r = 0.2 

EWMA 
r = 0.3 

Scan 
Statistic 

Average Betweenness 16.12 15.76 16.32 17.92 12.32 
Maximum Betweenness 16.64 17.40 19.52 18.56 11.56 
Std Dev.Betweenness 17.68 17.76 18.20 18.72 12.08 
Average Closeness 15.16 15.84 16.48 15.60 11.72 
Maximum Closeness 18.72 19.60 18.68 23.80 14.32 
Std Deviation Closeness 16.20 16.08 15.52 16.24 12.88 
Average Eigenvector  24.12 24.12 24.12 24.12 15.12 
Minimum Eigenvector  17.84 18.48 17.04 18.08 12.36 
Maximum Eigenvector  19.36 21.56 20.56 20.56 13.84 
Std. Dev Eigenvector  17.08 18.72 18.36 17.44 12.36 
 

Loss  of  Subordinate  Element  
 

The loss of a subordinate element provides insight into how the magnitude of change 
affects change detection performance.  For the 30 man platoon and the 100 man 
company, a nine man squad is isolated.  This represents 30% of the platoon and 9% of the 
company.  This change is obviously not feasible for the nine man squad, since it would 
involve removal of the entire organization. 
 

The infantry platoon had one squad removed from the simulation at time period 30, 
for the remainder of the simulation.  Social network measures were recorded for each 
time period.  The ADL for each measure is reported in Table 18.  Again, it can be seen 
that the average of the betweenness outperforms other betweenness measures.  The 
closeness measures perform as in previously investigated cases.  The minimum 
eigenvector centrality outperforms the maximum eigenvector centrality for most of the 
SNCD schemes for this particular type and magnitude of change.  The standard deviation 
of eigenvector centrality still outperforms other eigenvector centrality measures, 
however, it is no longer dominates all other measures. 

 
Table 18. ADL Performance for Loss of Subordinate Element in a Platoon. 

 CUSUM 
k = 0.5 

EWMA 
r = 0.1 

EWMA 
r = 0.2 

EWMA 
r = 0.3 

Scan 
Statistic 

Average Betweenness 6.96 6.00 8.68 12.16 8.12 
Maximum Betweenness 9.52 7.44 11.12 13.24 7.80 
Std Dev.Betweenness 9.16 7.40 9.48 12.72 6.84 
Average Closeness 9.64 8.36 12.72 19.28 11.40 
Maximum Closeness 9.32 9.16 12.36 31.56 9.52 
Std Deviation Closeness 18.96 16.44 19.40 26.24 17.04 
Average Eigenvector  29.36 29.36 29.36 29.36 20.60 
Minimum Eigenvector  10.08 9.64 12.24 12.60 10.28 
Maximum Eigenvector  11.72 12.04 11.88 20.60 10.84 
Std. Dev Eigenvector  8.48 6.28 9.80 10.44 6.88 
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The Infantry Company also had one squad removed at time 30 for the remainder of 

the simulation.  The results for the Company network are shown in Table 19.  It generally 
takes longer to detect the changes in the Company network.  This was also observed in 
the isolation of the headquarters.  This implies that the size of the network could impact 
the speed of change detection.  The average betweenness, average closeness, and 
standard deviation of eigenvector centrality appear to outperform other measures for 
change detection performance.  The maximum closeness measure dominates other 
measures in all cases except for the EWMA with r = 0.3.   

 

Table 19. ADL Performance for Loss of Subordinate Element in a Company. 
 CUSUM 

k = 0.5 
EWMA 
r = 0.1 

EWMA 
r = 0.2 

EWMA 
r = 0.3 

Scan 
Statistic 

Average Betweenness 13.64 11.72 13.80 20.60 12.68 
Maximum Betweenness 23.80 19.64 23.80 30.72 25.44 
Std Dev.Betweenness 24.84 18.12 24.96 25.52 22.04 
Average Closeness 9.72 7.4 13.44 14.96 9.80 
Maximum Closeness 6.92 4.92 7.48 53.16 6.32 
Std Deviation Closeness 45.44 47.92 47.96 50.88 43.68 
Average Eigenvector  34.72 36.60 34.72 34.72 30.64 
Minimum Eigenvector  18.68 19.96 19.64 23.88 18.32 
Maximum Eigenvector  18.28 25.80 25.00 27.20 25.88 
Std. Dev Eigenvector  9.52 9.92 11.88 15.32 8.72 
 

Addi t ion of  New Subordinate Element  
 

Another type of change is the addition of a new subordinate element.  A squad is 
added to both the 30 man platoon and the 100 man company. 
 

The infantry platoon had one squad that was not present initially, and added at time 
period 30.  Social network measures were calculated for each time period.  SNCD 
methods were applied to the data.  Results are shown in Table 20.  Although the speed of 
change detection is much faster for this type of change, the same performance trends are 
seen as before.  For betweenness measures, the average outperforms the maximum or the 
standard deviation.  The average closeness and maximum closeness measure perform 
well, however, the maximum closeness does not perform well with an EWMA r =0.3 
scheme.  The standard deviation of eigenvector centrality almost completely dominates 
other measures. 
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Table 20. ADL Performance for Addition of Subordinate Element in a Platoon. 
 CUSUM 

k = 0.5 
EWMA 
r = 0.1 

EWMA 
r = 0.2 

EWMA 
r = 0.3 

Scan 
Statistic 

Average Betweenness 1.60 1.52 1.68 1.72 1.00 
Maximum Betweenness 2.32 2.16 2.20 2.00 1.00 
Std Dev.Betweenness 2.36 2.36 2.40 2.24 1.00 
Average Closeness 1.48 1.52 1.56 1.52 1.00 
Maximum Closeness 1.24 1.28 1.20 5.00 1.00 
Std Deviation Closeness 3.44 4.60 4.20 3.48 2.64 
Average Eigenvector  31.76 31.76 31.76 31.76 25.56 
Minimum Eigenvector  6.24 5.6 6.16 6.80 4.20 
Maximum Eigenvector  4.52 4.88 4.80 4.80 3.56 
Std. Dev Eigenvector  1.16 1.60 1.24 1.24 1.00 
 

 
The company model had a squad added at time period 30 for the remainder of the 

simulation.  Again the platoon level performance is better than the company level 
performance, shown in Table 21.  The average betweenness, average closeness, and 
maximum closeness all perform well at detecting the change.  Surprisingly, the standard 
deviation of eigenvector centrality is not an effective measure for this type and magnitude 
of change. 
 

Table 21. ADL Performance for Addition of Subordinate Element in a Company. 
 CUSUM 

k = 0.5 
EWMA 
r = 0.1 

EWMA 
r = 0.2 

EWMA 
r = 0.3 

Scan 
Statistic 

Average Betweenness 9.64 9.52 9.84 10.28 5.04 
Maximum Betweenness 14.52 16.96 15.80 17.44 12.16 
Std Dev.Betweenness 12.88 13.16 13.32 14.56 8.92 
Average Closeness 5.32 5.8 5.36 5.24 1.44 
Maximum Closeness 4.24 5.12 4.48 6.04 1.04 
Std Deviation Closeness 10.40 18.52 12.96 12.32 10.00 
Average Eigenvector  35.56 37.04 38.64 37.60 30.24 
Minimum Eigenvector  38.16 39.32 38.04 40.84 36.40 
Maximum Eigenvector  30.20 33.48 34.44 29.52 30.92 
Std. Dev Eigenvector  33.88 33.72 37.80 44.48 33.96 
 
 
Sporadic Communicat ion 
 

Sporadic communication was modeled with a squad communicating from time 
period 30 to time period 40 only.  It can be seen in Table 22 that the performance of 
different measures is much more similar than in previous types of change.  It is also 
interesting that all of the ADL values are greater than 10, which means that the change 
was detected after the organization returned to its original state.  This might be a result of 
the SNCD statistic being moved closer to the decision interval from time period 30 to 
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time period 40.  When the organization returned to its original state, the statistic is much 
closer to the decision interval than it was before the change occurred.  Therefore, the 
statistic is much more likely to signal a false positive after the sporadic change than it is 
to detect an actual change.  This increased sensitivity can therefore provide an alert that a 
sporadic change may have occurred.   

 
 

Table 22. ADL Performance for Sporadic Communication. 
 CUSUM 

k = 0.5 
EWMA 
r = 0.1 

EWMA 
r = 0.2 

EWMA 
r = 0.3 

Scan 
Statistic 

Average Betweenness 15.08 14.20 16.12 17.56 17.76 
Maximum Betweenness 15.24 16.52 16.88 18.24 17.84 
Std Dev.Betweenness 14.28 14.80 16.04 17.40 17.48 
Average Closeness 13.72 13.68 16.84 16.80 17.52 
Maximum Closeness 12.44 12.16 15.32 18.32 17.20 
Std Deviation Closeness 23.16 19.96 21.76 21.36 17.24 
Average Eigenvector  24.32 24.32 24.32 24.32 18.84 
Minimum Eigenvector  12.76 14.32 11.92 12.80 14.56 
Maximum Eigenvector  12.96 12.68 14.36 14.36 18.84 
Std. Dev Eigenvector  12.88 14.20 16.80 16.48 21.28 
 

 
All methods of SNCD were ineffective for detecting sporadic changes in the 

Company network.  The sporadic change did not persist long enough to signal a possible 
change in most of the runs.  The squad level network was not investigated for this type of 
change, due to a lack of context. 

 
 

4.6  Discussion 
 

Statistical process control is a critical quality-engineering tool that assists 
manufacturing firms in maintaining profitability (Montgomery, 1991; Ryan, 2000).  The 
virtual experiments presented in this chapter demonstrate that SNCD could enable 
analysts to detect important changes in longitudinal network data.  Furthermore, the most 
likely time that the change occurred can also be determined.  This allows one to allocate 
minimal resources to tracking the general patterns of a network and then shift to full 
resources when changes are determined2

This chapter describes three algorithms for change detection, and then 
demonstrates its ability to detect changes in simulated networks.  No doubt other change 

.  SNCD is therefore, an important analysis 
method for studying network dynamics. 

 

                                                 
2 Two social network change detection algorithms (Shewhart X-Bar and the Cumulative Sum) are available 
in the “Statistical Network Monitoring Report” in the software tool, Organizational Risk Analyzer (ORA) 
available through the Center for Computational Analysis of Social and Organizational Systems (CASOS), 
http://www.casos.cmu.edu. 
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detection methods will emerge.  Our point is that it is critical to be able to detect change 
in networks over time and to determine when those changes are not simply the random 
fluctuations of chance.  The strengths of the proposed method are its statistical approach, 
a wide range of social network metrics suitable for application, its ability to identify 
change points in organizational behavior, and its flexibility for various magnitudes of 
change.  The proposed method requires the assumption of a period of dynamic 
equilibrium that is necessary to estimate the mean and standard deviation of social 
network measures for “typical” network observations.   

 
Ideal social network measures to use appear to be standardized node level 

measures that are averaged over all nodes in the network.  Examples, investigated in this 
paper are the average, maximum, minimum, and standard deviation of the closeness, 
betweenness, and eigenvector centrality.  Future research will provide much greater 
insight into the strengths and limitations of this approach to the problem.  These 
preliminary results indicate that the average of betweenness and closeness perform well, 
as does the standard deviation of eigenvector centrality.  It is not important to determine 
which of the network measures is best, because each measures a different relation on the 
network.  If a social scientist was interested in detecting changes in group cohesion, the 
average closeness measure would be best.  However, if one were interested in the 
changes in informal leadership, the average betweenness would be more appropriate.  
The specific measures used for change detection should be based on some important set 
of group behaviors that may change over time. The remainder of this section will identify 
specific areas of caution when interpreting findings and identify areas for future research. 
 

A limitation of this approach is that the derivation of the CUSUM assumes that 
network measures are normally distributed.  Similar derivations for other distributions 
can be determined following the same algebraic steps outlined in this paper.  Research on 
the distributions of network measures is needed however.  Chapter 2 provides an initial 
look at some of the challenges in network statistics.  Most important is that the context 
defining links in a network can have significant implications in the distributional 
properties of a network.  Preliminary work on these distributions suggests that the 
assumption of normality appears to hold for human social networks of 20 or more nodes.  
The presence of power law distributions in networks is more common in networks that do 
not require a meaningful investment of time and resources to form a link (Alderson, 
2008; McCulloh and Carley, 2009).  It should also be pointed out that statistical process 
control is effectively used in manufacturing when the monitored process is non-normally 
distributed and when the observations are dependent (Montgomery, 1991; Ryan, 2000).  
While the CUSUM may be effective in detecting change in non-normally distributed 
measures in a practical sense, the false positive estimates, which are equivalent to the 
ADL will be biased.  This limitation can be mitigated by checking the chosen measure to 
monitor using a normal probability plot in a similar fashion to residual analysis in 
regression3

                                                 
3 A statistical distribution fitting feature is available in the Organizational Risk Analyzer (ORA) available 
through the Center for Computational Analysis of Social and Organizational Systems (CASOS), 
http://www.casos.cmu.edu. 

.  In any case, the normality assumption can be easily verified.  Future 
research will likely provide insight into the performance implications of such bias.  It is 
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important to point out that even with bias; SNCD still provides valuable insight into 
network dynamics as illustrated with the first three examples in this paper.  Future work 
should consider these factors to determine the range of networks for which this approach 
will work.  Clearly, if the network measures are normally distributed, the CUSUM 
control chart can be used to monitor network change.  If they are not, a different control 
chart may be more appropriate, or a new approach might look to minimize the bias in 
false positives.  Future work should address this issue. 

 
Another limitation of this approach is that dependence assumptions are ignored.  

This is common in statistical process control.  English (2001) points out that “the 
independence assumption is dramatically violated in processes subjected to process 
control.”  Many manufacturing processes include feedback control systems which create 
autocorrelation among factors affecting the process.  This is similar to problems of dyadic 
dependence and ergodicity issues with networks. In practice however, statistical process 
control still provides a great deal of insight, identifying when a process changes.  This is 
no different in a network application.  Networks may even have less dependence issues 
than manufacturing processes.  Most manufacturing processes are engineered with 
feedback and control in an attempt to optimize the process.  This is not necessarily true 
with social networks.  Robins and Pattison (2007) lay out several statistical tests 
involving dependence graphs that can be used to determine if dependence is a statistically 
significant problem in a network.  Just like the issues of normality, the dyadic 
dependence in the network can be verified similar to residual analysis in regression.  If 
dependence is an issue in the network, SNCD can still be used to determine that a change 
occurred, however, there may be bias and an increase in the probability of a false 
positive.  Future research should investigate both the impact of dependence on ADL 
performance as well as methods to better handle the problem statistically. 

 
Social networks may also exhibit periodicity over time.  Intuitively, peoples’ 

communication patterns may change in cycles over time.  People tend to communicate 
with different people during the week, while at work, than on the weekends.  People may 
communicate more frequently at certain times of the day.  Even seasonal trends may 
affect observed social networks.  The application of wavelet theory and Fourier analysis 
in particular may provide insight into the periodic behavior of network dynamics.  These 
methods will be investigated in Chapter 5.  This will allow SNCD to be more accurate in 
determining the time a change actually occurred and may reduce the ADL for certain 
changes. 
 

Future research should also look at the sensitivity of the optimality constant, k and 
control limit values of the CUSUM Control Chart for network measure change detection.  
As stated earlier, these values are generally arbitrarily chosen and then optimized for the 
process.  By using further Monte Carlo simulations, a researcher should determine which 
parameter value would be best in detecting certain types of changes such as sudden large 
changes or slow creeping shifts.  Usage of control charts on comparing models and 
observations should also be studied to see what specific conclusions could be obtained. 
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Future work could also investigate hybrid approaches for change detection.  For 
the changes investigated in the virtual experiments presented in this chapter, the scan 
statistic offered the best ADL.  Unfortunately, only the CUSUM offers an estimate of 
when the change actually occurred.  Perhaps, it would be wise to use the scan statistic to 
detect the presence of a change and then use the CUSUM to estimate when the change 
actually took place.  It is also possible that different parameterizations of the CUSUM 
and scan statistic might offer different performance under different magnitudes and types 
of change.  This opens many new directions for further research. 
 

Multi-agent simulations provide valuable insight into the performance of control 
charts for social network change detection applications.  Simulations allow an 
investigator to introduce various changes into a simulated organization and evaluate the 
time to detect for different algorithms.  Simulations provide an efficient means of 
evaluating change detection on social networks.  More importantly, however, is the 
ability to create more controlled experiments, by fixing certain variables, exploring 
others, and using many replications to estimate error.  Simulation studies will continue to 
be extremely useful in exploring extensions of this methodology. 

 
A more complex issue that multi-agent simulation can address is the issue of 

change detection on evolving networks.  Perhaps some of the change detection 
approaches presented here will identify changes in evolutionary behavior.  Alternately, 
the procedures may be modified such that instead of tracking a measure over time, the 
difference in the measure between regular time intervals is monitored.  This would 
effectively be a rate of change in a network measure and may describe a rate of evolution.  
Chapter 7 offers a method for use with high variance measures or few node networks that 
could be modified to model evolutionary behavior.  Changes in the residual could then be 
monitored for change. 

 
Another extension to this work is an approach for detecting multiple changes in 

the same data set.  A basic approach that is applied to the IkeNet data sets in Chapter 6, is 
to reset the detection procedure following a change.  If a social network begins with a 
state of relationships among agents, I calculate the mean and variance of a network 
measure of interest to establish typical behavior in the network.  I then monitor the 
network over subsequent time periods.  When a change is detected an analyst or social 
scientist can investigate the group to confirm that there has been a change in the state of 
relationships between agents.  At this point the mean and variance of subsequent 
measures of the network can be calculated to determine the new typical behavior.  At this 
point, an additional change in the network, to include returning to the original network 
state may be observed in the change detection procedure. 

 
Social network change detection is important for identifying significant shifts in 

organizational behavior.  This provides insight into policy decisions that drive the 
underlying change.  It also shows the promise of enabling predictive analysis for social 
networks and providing early warning of potential problems.  In the same way that 
manufacturing firms save millions of dollars each year by quickly responding to changes 
in their manufacturing process, social network change detection can allow senior leaders 
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and military analysts to quickly respond to changes in the organizational behavior of the 
socially connected groups they observe. The combination of statistical process control 
and social network analysis is likely to produce significant insight into organizational 
behavior and social dynamics.  Immediate applications to counter terrorism and 
organizational behavior are obvious.  As a scientific community we can hope to see more 
research in this area as network statistics continue to improve. 
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5 Spectral Analysis of Social Networks to Identify Periodicity 
 

Longitudinal social networks are an important area of study in social network 
analysis.  Stan Wasserman describes “the analysis of social networks over time has long 
been recognized as something of a Holy Grail for network researchers” (Carrington, Scott 
and Wasserman, 2007).  Pat Doreian (1997) has described the concept of “Network 
Dynamics” which assumes that there is some underlying stochastic process that drives 
network behavior over time.  McCulloh and Carley (2008) extend this concept to describe 
four network dynamic behaviors that a network can exhibit over time.  A network can 
remain stable, which means that the underlying relationships between agents in a network 
remain the same, although there may exist some fluctuation in observed links within the 
network due to measurement error or weak relationship.  This type of network can be 
analyzed as a static network (McCulloh, Lospinoso and Carly, 2007; Wasserman and 
Faust, 1994).   A network can evolve, which occurs when relationships between agents 
change as a result of agent interaction, exchange of beliefs and ideas, or as agents gain a 
greater knowledge of the traits and resources other agents have in the network. Network 
evolution has been explored through multi-agent simulation (Banks and Carley, 1996; 
Sanil, Banks and Carley, 1994; Carley, 1996; Carley, 1999; Doreian and Stokman, 1997).  
Network evolution has also been explored through Markov chains (Leenders, 1995; 
Snijders, 1995, 1996, 2001, 2007; Wasserman and Pattison, 1996).  A network can 
exhibit a shock, which occurs when some exogenous impact to the network causes 
relationships to change (McCulloh and Carley, 2008).  Finally, a network can experience 
a mutation if a shock initiates evolutionary change (Doreian, 2008).  Distinguishing 
between these four different types of network behavior over time is important for 
understanding the social mechanisms that drive over-time behavior in social groups. 

 
 Social network change detection (McCulloh and Carley, 2008) applies statistical 
process control to graph level measures within a social network to detect statistically 
significant changes in a network over time.  This has been found to be effective in several 
different data sets ranging from terrorist networks (McCulloh, Webb and Carley 2007) to 
email networks (McCulloh et al, 2007).  Social network change detection estimates the 
mean and variance of a graph level measure within a longitudinal set of social networks.  
Sequential observations of the graph level measure are standardized using the estimated 
mean and variance and used to calculate some statistic on the network.  The test statistic 
is compared to some decision interval.  If the statistic exceeds the decision interval, then 
the procedure indicates that there may have been a change in the network.  The network 
analysts can use certain change statistics to estimate the point in time when the change 
most likely occurred.  This change may have been evolutionary in nature, or it may have 
been caused by some exogenous source; a shock.  Identifying that the change occurred 
and when the change occurred are the first two steps in understanding the network 
dynamics affecting empirical data. 
 

One major obstacle to the study of network dynamics is periodicity or over-time 
dependence in longitudinal network data.  For example, if I define a social network link 
as an agent sending an email to another, I have continuous time stamped data.  
Intuitively, we can imagine that individuals are more likely to email each other at certain 
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times of the day, days of the week, etc.  If the individuals in the network are students, 
then their email traffic might follow the school’s academic calendar.  Seasonal trends in 
data are common in a variety of other applications as well.  When these periodic changes 
occur in the relationships that define social network links, social network change 
detection methods are more likely to signal a false positive.  A false positive occurs when 
the social network change detection method indicates that a change in the network may 
have occurred, when in fact there has been no change.  To illustrate, assume that we are 
monitoring the density of the network for change in hourly intervals.  The density of the 
network measured for the interval between 3 A.M. and 4 A.M. might be significantly less 
than the network measured from 3 P.M. to 4 P.M. because most of the people in the 
network are asleep and not communicating between 3 A.M. and 4 A.M.  This behavior is 
to be expected, however, and it is not desirable for the change detection algorithm to 
signal a potential change at this point.  Rather, it would be ideal to control for this 
phenomenon by accounting for the time periodicity in the density measure.  Only then 
can real change be identified quickly in a background of noise. 

 
Periodicity can occur in many kinds of longitudinal data.  Organizations may 

experience periodicity as a result of scheduled events, such as a weekly meeting or 
monthly social event.  Social networks collected on college students are likely to have 
periodicity driven by both the semester schedule and academic year.  Even the weather 
may introduce periodicity in social network data, as people are more or less likely to 
email, or interact face-to-face.  At the U.S. Military Academy, people tend to run outside 
in warm weather in small groups of two or three.  During the winter, people go to the 
gym, where they are likely to see many people.  This causes an increase in face-to-face 
interaction as people stay inside.  In a similar fashion, during the Spring and Fall, many 
people participate in inter-unit sporting events such as soccer, or Frisbee football.  This 
can also affect people’ face-to-face interaction and thus the social network data collected 
on them. 

 
Spectral analysis provides a framework to understand periodicity.  Spectral 

analysis is mathematical tool used to analyze functions or signals in the frequency 
domain as opposed to the time domain.  If we look at some measure of a social group 
over time, we are conducting analysis in the time domain.  The frequency domain allows 
us to investigate how much of the given measure lies within each frequency band over a 
range of frequencies.  For example, Figure 11 shows a notional measure on some made-
up group in the time domain.  It can be seen that the measure is larger at points B and D 
corresponding to the middle of the week.  The measure is smaller at points A, C, and E.   
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Figure 11 Notional Measure in Time Domain 

 
 
If the signal in Figure 11 is converted to the frequency domain as shown in Figure 

12, we can see how much of the measure lies within certain frequency bands.  The 
negative spike in Figure 12 corresponds to 7 days, which is the weekly periodicity in the 
notional signal.  The actual frequency signal only runs to a value of 8 on the x-axis in 
Figure 12.  The frequency domain signal after a value of 8 is a mirror image, or harmonic 
of the actual frequency signal. 

 

 
Figure 12. Notional Measure in Frequency Domain 

 
The frequency domain representation of a signal also includes the phase shift that 

must be applied to a summation of sine functions to reconstruct the original over-time 
signal.  In other words, we can combine daily, weekly, monthly, semester, and annual 
periodicity to recover the expected signal over-time due to periodicity.  For example, 
Figures 13-15 represent monthly, weekly, and sub-weekly periodicities.  If these signals 
are added together, meaning that the observed social network exhibits all three of these 
periodic behaviors, the resulting signal is shown in Figure 16.   
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   Figure 13. Monthly Period      Figure 14. Weekly Period    Figure 15. Sub-weekly Period 

 
 

 
Figure 16. Sum of the Signal in Figures 13-15 

 
 If the periodicity in the signal shown in Figure 16 is not accounted for, it appears 
that there may be a change in behavior around time period 20, where the signal is 
negatively spiked.  In reality, this behavior is caused by periodicity.  If we transform the 
signal to the frequency domain as shown in Figure 17, we can see the weekly periodicity 
at point B and the sub-weekly periodicity at point A. 
 
 

 
Figure 17.  Transformation of Figure 16 to the Frequency Domain 

 
 I propose that spectral analysis applied to social network measures over time will 
identify periodicity in the network.  I will transform an over time network measure from 
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the time domain to the frequency domain using a Fourier transform.  I will then identify 
significant periodicity in the over-time network and present two methods for handling the 
periodicity.  This newly proposed method will be demonstrated on real-world data sets as 
well as simulated data sets. 
 
 Handling periodicity is a very important problem.  For social scientists to gain 
insight into the evolution of social networks, they must be able to distinguish between 
shock, evolutionary change, and typical periodic behavior.  This chapter will lay out a 
method for identifying and removing the periodic behavior of a signal so that change 
detection can be performed more accurately. 
 
 
5.1  Background 
 

Networks can be described by a number of different measures.  Measures can be 
defined for individual nodes or for the network as a whole.  In this thesis, I will restrict 
our attention to network level measures; although I point out that there is no reason that 
the methodology presented could not be applied to node level measures.  Common 
network level measures include density, the number of nodes in the network, and the 
average path length.  In addition, node level measures such as betweenness, closeness, 
and eigenvector centrality can be averaged over all nodes in a network to create network 
level measures. 

 
These measures may fluctuate in a periodic fashion over time.  As agents in a 

network change their relationships to other agents based on seasonal trends, these 
fluctuations may be noticed in the network measures of those relationships.  For example, 
during the workweek, one might expect more email communication within an office than 
during the weekend.  This could be observed by a greater network density (percentage of 
possible relationships) during the week than during the weekend.  The social network 
measures therefore provide a measure of the group as a whole. 

 
Spectral analysis can be used to detect periodicity within social network measures 

over time.  Periodicity in the social network measure provides some insight into the 
periodicity in the underlying social organization.  Spectral analysis can therefore be used 
to either filter out periodicity in over-time measures or provide insight into how data 
should be aggregated to best represent a social group. 

 
Spectral analysis is a mathematical process of converting some function or series 

of numbers which I call a signal, from the time domain into the frequency domain.  A 
function or signal can be converted from the time domain to the frequency domains with 
a transformation.  A common transformation is the Fourier transform, which decomposes 
a signal into a sum of sine waves having different phase shifts and amplitudes.  The 
Fourier transform is given by, 
 

. 
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A convenient property of the Fourier transform is that the inverse of the Fourier 
transform is also a Fourier transform.  This property makes it convenient to convert back 
and forth between the time and frequency domains.  I will use this property to convert a 
signal from the time domain to the frequency domain; identify significant frequencies; 
and convert those frequencies back into the time domain to provide an understanding of 
the periodicity inherent in longitudinal social network measures. 
 
 
5.2  Data 
 
 The approaches for handling periodicity in network data are demonstrated on a 
longitudinal data set of email traffic collected at the U.S. Military Academy at West 
Point, NY.  This data set was collected as part of this thesis to demonstrate longitudinal 
network analysis.  The participants consist of 25 undergraduate cadets at the U.S. 
Military Academy serving in military leadership positions in one of four cadet 
Regiments.  All participants volunteered to allow me to monitor the header information 
of their email traffic for the Fall semester of 2008.  This study was approved for ethics by 
the West Point institutional review board.  The email header information was used to 
create social networks by assigning a directed link from node i to node j if node i send 
node j an email sometime during the designated time period.  This unique data set 
allowed me to investigate the periodicity of the data for many hourly networks, or a few 
monthly networks.  In addition, I was able to interview the participants to investigate 
potential causes of periodicity in the email communication networks. 
 
 While the West Point Cadet data is sufficient to demonstrate spectral analysis of 
networks, I use a simulated periodic signal to demonstrate the importance of spectral 
analysis for change detection.  The simulated data consists of a simulated sine wave 
representing some measure of interest, where a change in the mean of the wave is 
introduced at a known point in time.  Random uniform error between 0 and the amplitude 
of the sine wave is added to the signal.  The accuracy of the CUSUM change point 
identification against a background of noise is then compared between whether spectral 
analysis is applied or not. 
 
 
5.3  Method 
 

The spectral analysis approach proposed in this thesis consists of five steps to 
determine the significant periodicity and then suggests two methods of handling the 
periodicity in the data.  I list these steps here and demonstrate them on the West Point 
Cadet data in the next section.   

 
Step 1: Plot the measure of interest.  This first step is to determine network 

measures of interest.  These can be network level measures or node level measures.  In 
this thesis I have restricted my attention to network level measures.  For the purpose of 
demonstration, I will use the average betweenness of nodes in the network as a network 
level measure.  Another issue in this step is number and length of time periods.  In this 



67 
 

example, I investigate daily networks, with the hope of determining weekly or monthly 
periodicity.  I could measure hourly networks, or even networks corresponding to each 
second of the day.  Intuitively, smaller time periods will result in sparser networks.  Some 
amount of judgment will be required by the analyst to select an aggregation level where 
most of the nodes in the network are connected, but every node is not necessarily 
connected to every other node. 

 
Step 2: Fast Fourier Transform.  The second step is to transform the network 

measure of interest from the time domain to the frequency domain.  Since the network 
measures correspond to discrete time periods and the measure is not continuous, the 
Fourier transformation cannot be applied directly.  A discrete version of the Fourier 
transform is used.  The discrete version is known as the Fast Fourier Transform.  This 
operation is standard in many mathematical software packages such as MATLAB and 
Mathematica.  It is also available in the Organizational Risk Analyzer (ORA).   

 
Step 3: Determine normal frequencies.  The third step is to determine the normal 

range of frequencies for the signal.  The Fourier transform makes use of the normal 
distribution function for its transformation.  Therefore, we may assume that the 
frequencies of the transformed signal approximate a normal distribution.  In fitting a 
normal distribution to the frequencies, we will be able to determine statistically 
anomalous or significant frequencies. 

 
Step 4: Identify significant frequencies.  This step requires that the analyst 

determine a confidence level for detecting periodicity.  The 95% confidence level is 
approximately equal to ±2 standard deviations from the mean frequency.  Therefore, all 
frequencies within 2 standard deviations from the mean are set to equal 0.  This creates a 
new discrete signal in the frequency domain of only statistically significant signals. 

 
Step 5: Identify significant periods.  Recall that the Fourier transform is also its 

inverse.  Therefore, the Fast Fourier Transform is applied to the discrete signal in Step 4 
to determine the significant periodicity. 

 
At this point the analyst has two options for handling the periodicity in the data.  

The simplest method is to aggregate over the period.  For example, the analyst may find 
weekly periodicity.  People may have different email behavior on the weekend than they 
do during the weekday.  The analyst could then aggregate over the daily networks to 
create weekly networks.  Then the weekly periodicity would be controlled within each 
weekly network.  If the network becomes too dense by establishing a link between nodes 
for a single weekly email, the analyst is free to require more than one email message to 
define a link.  This is an important decision that was discussed in greater detail in Chapter 
2. 

 
The analyst can also choose to keep using the weekly networks, but control for 

the periodicity.  The discrete signal in Step 5 is really the expected value of the chosen 
social network measure from Step 1 for each point in time.  The analyst can create a 
filtered network measure by taking the difference between the original signal from Step 1 
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and the signal from Step 5.  This new signal is then a filtered signal that can improve the 
performance of social network change detection. 

 
This second approach for handling periodicity is investigated through simulation.  

A periodic signal is simulated in Mathematica, a mathematical software environment.  
The signal is shifted at a particular point in time.  Uniform random noise is added to the 
signal where the range of error is equal to the amplitude of the signal.  The CUSUM 
change detection algorithm is applied to the periodic signal as well as a signal filtered in 
the manner described above.  The change point identification of the CUSUM applied to 
each signal is compared.  

 
 
5.4  Results  
 

The West Point Cadet data average betweenness is displayed in Figure 18 for a 
one month period during the Fall 2008 semester.  If an analyst were just looking at this 
data, it may appear that the average betweenness is unusually high around day 15.  There 
also appears to be moderately high values around day 8 and day 22.   
 

 
Figure 18.  West Point Cadet Data Average Betweenness 

 
 The Fast Fourier Transform is applied to the average betweenness scores, 
transforming these values from the time domain to the frequency domain.  A plot of the 
transformed values is shown in Figure 19.  It appears that there may exist significant 
periodicity in the over-time measure. 
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Figure 19. Fast Fourier Transform of West Point Cadet Data Avg. Btwn. 

 
 A normal distribution is fit to the discrete frequency signal and values within two 
standard deviations of the mean are set equal to 0.  Figure 20 shows the significant 
frequencies. 
 
 

 
Figure 20. Significant Frequencies in West Point Cadet Data 

 
 The significant frequencies are transformed back into the time domain using the 
Fast Fourier Transform.  This is known as taking an inverse transform of the signal.  The 
resulting plot in the time domain can be interpreted as the significant periodicity in the 
measure, since only the signficant frequencies were transformed back into the time 
domain.  The significant frequencies are plotted in the frequency domain.  The significant 
periodicity, on the other hand, is plotted in the time domain.  Figure 21 displays a plot of 
the significant periodicity in the average betweenness signal. 
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Figure 21. Significant Periodicity in the West Point Cadet Data 

 
 It can be seen in Figure 21 that there is a spike in significant periodicity 
corresponding to days 7, 14, 21, and 28.  This is perfect weekly periodicity.  An interview 
with the regimental commander of the participants in the study revealed that the 
participants have a weekly meeting every Sunday.  During this meeting, important 
information is given to the group regarding events and activities for the week.  In 
addition, subordinate leaders are required to account for the whereabouts of all of the 
cadets within their subordinate units and report the information up the chain of command.  
This process of sending information up and down the chain of command will 
significantly affect the average betweenness of the network on Sundays.  Failing to 
account for this behavior may in turn affect an analyst’s ability to detect real 
organizational change within this group. 
 
 At this point, an analyst can choose to monitor weekly networks, or continue to 
monitor daily networks and filter out some of the periodicity.  Figure 22 shows a filtered 
signal in the time domain.  This signal was obtained by taking the original signal found in 
Figure 18 and subtracting the periodicity found in Figure 21 for each time period.  In 
effect, the new figure shown in Figure 22, displays the deviation from what is expected in 
the signal due to the time of week. 
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Figure 22. Filtered Plot of Average Betweenness in the West Point Cadet Data 

 
 Figure 23 shows the original and filtered signals together.  It can be seen that the 
extreme values of average betweenness detected in our first observation of the network 
do not appear as extreme in the filtered signal.  Therefore, the filtered signal is less likely 
to cause a false alarm in change detection. 
 

 
Figure 23. Original and Filtered Plots of Average Betweenness 

 
 To further illustrate the importance of accounting for periodicity, we turn our 
attention to an extreme case.  Figure 24 displays a sine wave, where a change in the mean 
of the signal occurs at time period 40.  In addition to the periodicity, noise is added to the 
signal in the form of uniform random error with a range equal to the amplitude of the sine 
wave. A random instance of this signal is displayed in Figure 25.  It can be seen that 
identifying the change at time period 40 may be difficult with the combination of 
periodicity and noise. 
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Figure 24. Sine Wave with Change at Time 40 

 

 
Figure 25.  Sine Wave with Random Error and Change at Time 40 

 
 The CUSUM change detection algorithm is applied to the noisy signal in Figure 
25.  Figure 26 shows a plot of the CUSUM statistic.  It can be seen that the CUSUM 
statistic can be powerful in illuminating subtle change in a background of noise.  It also 
appears that the algorithm may have signalled false alarms around time pionts 10 and 30.  
It is not clear that there is a good solid indication of change until after time point 50. 
 
 The filtering approach can be extremely useful in improving the performance of 
the change detection approach.  Figure 27 shows a plot of the CUSUM statistic on the 
same signal as Figures 25 and 26, where the signal was first filtered for periodicity using 
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the steps outlined above.  It can be seen in Figure 27 that the signal may more acurately 
identify the correct change point in the signal and is less prone to false signal. 
 

 
Figure 26. CUSUM Statistic Applied to Noisy Sine Wave 

 
 

 
Figure 27. CUSUM Statistic Applied to Filtered Signal 

 
The simulation was repeated with four different levels of uniform random noise.  

The level of random noise was set as a percentage of the amplitude of the sine wave at 
30%, 50%, 67%, and 100%.  The change occurred at time 40 and the size of the change 
was the amplitude.  The average time to detect the change was compared across the four 
levels of noise.  For each simulation run, the CUSUM was applied to both the original 
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signal and the filtered signal.  A pairwise t-test for the time to detect change was 
conducted between the original and filtered signals for 100 independently seeded 
instances of the noisy sine wave.  The null hypothesis was that there was no difference 
between detection performance between the original and filtered signals.  The p-values 
for this null hypothesis are 0.05, 0.04, 0.72, and 0.88 respectively for noise levels of 30%, 
50%, 67%, and 100% of amplitude.  The p-values for the error that was less than or equal 
to 50% of amplitude are significant, indicating that the filtering improves the time to 
detect a change.  The p-values for the error that was greater than 50% of the amplitude 
are not significant, meaning we have no reason to reject the null hypothesis that filtering 
does not improve change detection. 

 
This behavior in performance appears reasonable.  If the periodicity in the over-

time measure is greater than the level of observation error, then filtering the signal is 
likely to improve change detection performance.  If on the other hand, the level of error 
in the observed over-time measure is greater than the periodicity, then spikes in error may 
appear as a significant frequency, which may adversely bias the change detection 
algorithm.  It is possible that if the error is much greater than periodicity, the spectral 
analysis may even mask true change.  Future work should investigate the impacts of 
spectral analysis on change detection performance. 

 
 
5.5  Conclusion 
 

Periodicity is an important issue in the longitudinal analysis of social networks.  
Intuitively, peoples’ observable relationships may change with the time of day, week, 
month, year, etc. Accurate modeling of social network relations therefore requires a way 
to account for and control for this periodicity.  This issue is especially important for any 
longitudinal analysis. 
 

Fourier analysis can detect periodicity and provide insight to control for its effect.  
The success of this approach has been demonstrated on both real-world and simulated 
data sets.  More research is needed to investigate how observation error and 
organizational dynamics might affect the periodicity.  It is expected that if the random 
error in the signal is much higher than the amplitude, the filtering techniques proposed 
here may not be effective.  Likewise, if there is very little error, filtering may be 
unnecessary.  For most longitudinal analysis, however, I propose that applying the 
approach laid out in this Chapter may detect significant periodicity and therefore improve 
the performance of change detection. 

 
The spectral analysis has only been investigated for filtering and detecting 

trigonometric cycles in an over-time signal.  It is conceivable that some forms of 
periodicity may not follow a trigonometric cycle.  For example, major holidays in the 
U.S. are likely to affect communication patterns between individuals; however, they do 
not occur on the calendar with regular trigonometric frequency.  In addition, changes in 
relations may taper off suddenly as in the case of an organization that has a prescribed 
start and stop time to the work day.  In this situation a sine wave may not appropriately 
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capture the periodic behavior of the group.  More research into Wavelets that consider 
different periodic signals is warranted.  While the same general approach laid out here 
may apply, the choice of transformation may differ. 

 
The success of spectral analysis will be related to the number of available time 

periods with network data.  This approach requires continuous data with many time 
periods.  This type of data may be difficult to obtain.  In some cases the number of 
longitudinal networks may be already aggregated over some period of time.  I 
recommend that a prospective analyst apply this approach when looking at longitudinal 
data, but be aware of the potential problems when investigating fewer than 10 
longitudinal networks.   

 
 Spectral analysis of longitudinal network measures appears to be a powerful 
technique for understanding periodicity in over-time data.  While an entire thesis could be 
devoted to this topic alone, I have shown how it can be effective on one real-world data 
set.  I have further demonstrated how spectral analysis can improve the performance of 
the CUSUM algorithm using a simulated noisy sine wave.  In addition to the change 
detection performance implications, this approach also leads to interesting insights into 
organizational behavior.  The spectral analysis of the West Point cadet data for example, 
revealed the organization’s weekly meeting time.  Whether used for change detection or 
simply organizational insight, spectral analysis represents a major contribution to the 
study of longitudinal network data. 
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6 Real World Examples 
Social network change detection (SNCD) is demonstrated on eight different real 

world data sets in this chapter.  These examples will serve to demonstrate the 
applicability and promise of this novel approach to longitudinal network analysis.  In 
addition, the examples will hopefully make the change detection process more clear with 
tangible examples. 

 
The CUSUM procedure is used to demonstrate SNCD on the eight data sets.  Recall 

that there are two important things to detect in longitudinal analysis.  It is important to 
detect that a change occurred and when a change occurred.  As explained in Chapter 4, 
the CUSUM, EWMA, and Scan statistic all detect that a change occurred, but only the 
CUSUM provides an estimate of when a change occurred. 

 
For exposition purposes the CUSUM procedure used the same parameterization for 

all example data sets.  The optimality constant was set to k = 0.5, which corresponds to a 
one standard deviation shift in the monitored measure.  The decision interval was set to h 
= 3.5, which corresponds to a false positive rate of 1%.   The sensitivity of the parameters 
is investigated in the last section by using a decision interval of h = 2.5, 3.0, and 4.2, 
which corresponds to false positive rates of 5%, 2%, and 0.5% respectively.  For each of 
these parameters the time that a change occurred and the estimate of when the change 
occurred are presented in separate tables and compared to the h = 3.5 situation.   

 
The data sets were chosen to represent a range of potential social network data.  

They vary in size from 17 nodes to 260.  They include various data collection schemes 
from surveys to monitored email communication.  Some of the data sets have been well 
established in the social network literature.  Many of the data sets have a known point in 
time when a change occurred in the network.  Finally, all the networks have at least eight 
time periods, allowing typical network behavior to be assessed so that change detection 
can be run.  As a rule of thumb, I use the first 20% of the data to assess typical behavior 
of the network in these examples.   Table 23 provides a comparison of the data sets used 
in this chapter for exposition purposes. 
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Table 23. Comparison of Real World Data. 

 No Nodes Time 
Periods 

Method of 
Collection 

Type of 
Relation 

Design Known 
Change 

Fraternity 17 15 Survey Ranking Fixed Yes 
Leav 07 68 8 Survey Rating Free Yes 
Leav 05 158 9 Survey Rating Free None 
Al-Qaeda 62-260 17 Text Rating Free Yes 
Winter C 22 9 Observation 

& Survey 
Rating Fixed Yes 

Winter A 28 9 Observation 
& Survey 

Rating Fixed Yes 

IkeNet 2 22 46 Email Count Msg Free Yes 
IkeNet 3 68 121 Email Count Msg Free Yes 

 
 
6 .1  Newcomb Fraternity Data  
 

The first data set was collected by Theodore Newcomb (1961) at the University of 
Michigan.  The participants included 17 incoming transfer students, with no prior 
acquaintance, who were housed together in fraternity housing.  The participants were 
asked to rank their preference of individuals in the house from 1 to 16, where 1 is their 
first choice.  Data was collected each week for 15 weeks, except for week number 9.  
David Krackhardt (1998) dichotomized the network data by assigning a link to preference 
ratings of 1-8 and having no link for ratings of 9-16.  A visualization of the Newcomb 
Fraternity network for time period 8 is shown in Figure 28.  The mean and standard 
deviation of the density, average betweenness, and average closeness was estimated from 
the first five networks to determine typical behavior.  The CUSUM statistic was then 
calculated for all time periods. 
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Figure 28. Dichotomized Newcomb Fraternity Network for Time Period 8. 

 
The approach proposed in this paper was found to be successful at detecting 

significant events in the Fraternity data.  Figure 29 displays a plot of the C statistics for 
average betweenness over time for the Newcomb Fraternity data.  Recall that the 
CUSUM will detect either increases or decreases in a measure, but not both.  Therefore, 
two control charts must be run for each social network measure monitored.  In the figure, 
the two lines correspond to the chart for detecting increases in the measure and the chart 
for detecting decreases in the measure over time. The trends in the data for the 
betweenness measure are similar to the closeness measure.  The density measure is not 
effective for change detection since the network is fixed-choice and the density remains 
0.5 for every network. 
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Figure 29. Plot of the CUSUM C Statistic Over Time for the Newcomb Fraternity Data.. 

According to Figure 29, the control chart for average betweenness signals at time 
period 13 that a change may have occurred in the social network of the fraternity 
members.  The most likely time that the change actually occurred is the last time period 
that the C statistic was equal to 0.  This change point corresponds to time period 8 in the 
Newcomb Fraternity data, which was the week before a mid-semester Break.  It is not 
unreasonable that social relationships may have changed over a Break as participants 
possibly vacationed together.  Unfortunately, the exact activities and dynamics of the 
group are not completely known.  However, this data does provide evidence of the 
importance of the proposed method in analyzing network dynamics. 
 
 
6.2  Leavenworth 2007 Data  
 

The second data set was collected from an Army war fighting simulation at Fort 
Leavenworth, Kansas in April 2007, by Craig Schreiber.  The participants were mid-
career U.S. Army officers taking part in a brigade level staff training exercise.  There 
were 68 participants in this data set, who served as staff members in the headquarters of 
the brigade conducting a simulated training exercise.  The data contains the 
communication between agents in the network which were collected through self 
reported communications surveys.  Data was collected over a period of four days, twice 
per day.  Thus, there were 8 time periods.  Half way through the second day (after time 
period 3), the Brigade Commander was displeased at the lack of coordination between the 
officers in the exercise.  He brought all 68 participants together and chastised them for 
their performance and told them that they were expected to perform better.  Therefore, 
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SNCD might be able to indicate a significant change in the network corresponding to the 
Brigade Commander’s interaction with the participants.  This data set is unique in that it 
contains a known change point in time that can be used to validate the proposed method.  
Figure 30 shows the social network for time period 4 from the Leavenworth data set.  The 
mean and standard deviation of the density, average betweenness, and average closeness 
was estimated from the first three networks to determine typical behavior.  The CUSUM 
statistic was then calculated for all time periods.  Three time periods were used because 
that represents about 30% of the time periods and is comparable to the number used with 
the Newcomb Fraternity data.  Ideally, more networks will allow a more accurate 
estimate of typical behavior.  The reader is reminded that these examples are used to 
illustrate the proposed methodology, while the performance of the method is evaluated 
using a simulated data set. 

 
Figure 30. Leavenworth Network for Time Period 4. 

 
 The Leavenworth data perhaps provides more compelling support for SNCD.  
Figure 31 illustrates the C statistics for average betweenness over time.  The chart in 
Figure 31 signals at time period 5 that a change in the network may have occurred.  The 
likely time the change actually took place is time period 3 which coincides with the 
Brigade Commander chastising the members of the group.   
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Figure 31. Plot of the CUSUM C Statistic Over Time for the Leavenworth Data. 

 
 
6.3  Leavenworth 2005 Data  
 

The third data set is very similar to the Leavenworth 2007 Data and was also 
collected from a war fighting simulation in FT Leavenworth, KS, this time in 2005.  The 
data was collected by Craig Schreiber and Lieutenant Colonel John Graham.  This data 
set contains 156 mid-career Army officers that were monitored over the course of nine 
iterations of a military command and control exercise conducted over the course of 5 
days.  This data set displays the communication of all agents in the network based on self 
reported communications surveys.  Figure 32 shows the network for time period 4 for the 
Leavenworth 2005 Data. 
 



82 
 

 
Figure 32. Time Period 4, Leavenworth 2005 Data 

 
Unlike the Leavenworth 2007 Data there is no known shock to the network.  

Furthermore, the officers in the network have been working together for several months 
and as a result, network evolution is unlikely to play a role in network dynamics over the 
course of a single week.  It is therefore expected that there will be no identifiable change 
point in this data set. 
 

The CUSUM control chart was run on the Leavenworth 2005 Data.  The risk of 
false positive was set to 0.01, which would correspond to a decision interval of 
approximately h = 3.5.  The optimality constant was set to detect a one standard 
deviation shift in the mean of a measure.  Figure 33 shows the CUSUM procedure for the 
average betweenness value of nodes in the network.  The maximum value of the change 
statistic is 0.91 at time period 1, which does not exceed the decision interval.  Therefore, 
there is no statistical evidence that any changes are likely to have occurred. 
 



83 
 

 
Figure 33. CUSUM of Average Betweenness for Leavenworth 2005 Data. 

 
 This data is especially interesting in comparison with the Leavenworth 2007 Data.  
Both data sets are collected on an equivalent demographic of individuals performing the 
identical tasks over a similar length of time.  In one situation, there was a known change 
introduced to the group, which I classify as a shock.  In the other situation, the 2005 case, 
there was no identified shock to the network.  The change is detected in the 2007 data set, 
where a change was known to exist, whereas no change was detected in the 2005 data set.  
This evidence suggests that the CUSUM procedure appears effective at detecting real 
change (Leavenworth 2007) as opposed to typical random variations between time 
periods (Leavenworth 2005). 
 
 
6.4  Al-Qaeda 
 

The Center for Computational Analysis of Social and Organizational Systems 
(CASOS) at Carnegie Mellon University created snapshots of the annual communication 
between members of the al Qaeda organization from its founding in 1988 until 2004 from 
open source data (Carley, 2006).  The data is limited in that I do not know the type, 
frequency, or substance of the communication and all links are non-directional, meaning I 
do not know who initiated communication with whom.  Finally, the completeness of the 
data is uncertain since it only contains information available from open sources.  The 
number of nodes in the network range from 62 in 2004 to as many as 260 in 2001.  The 
data is unique in that it provides a network picture of a robust network over standard 
time-periods of one year.   
 

Using the network snapshots for each year time-period, the average social 
network measures were calculated and plotted for betweenness, closeness, and density.  
Each of these measures increased from 1988 until 1994, and then leveled off.  There are 
many possible reasons for this burn-in period, such as the quality of our intelligence 
gathering on al Qaeda and the rapid development and reorganization of a fast growing 
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organization.  In al Qaeda’s early years, access to the infant organization may have been 
limited, as well as the resources devoted to tracking a small, new, and relatively 
unaccomplished terrorist network.   The organization itself may have also been changing 
drastically during its first years by actively recruiting new members, and shifting its 
structure to accommodate new resources and infrastructure.  For this reason, the averages 
for each measure and standard deviation were calculated over the five years that follow 
the burn-in period that ended in 1994.  The CUSUM control chart was then used to 
monitor the network from 1994 to 2004.  Figure 34 is a snapshot of the Al-Qaeda social 
network.   
 

 
Figure 34. Monitored al Qaeda Communication Network for Year 2001. 

 
The Al-Qaeda data set offered data with more nodes that were aggregated over a 

much larger time period.  At the same time, I was able to identify at least one major event 
in Al-Qaeda’s history.  The question was asked, “can we identify September 11 from the 
social network?” Perhaps more importantly, “can we identify the point in time when the 
organization changed and began to plan the attacks?”  Figure 35 shows the CUSUM 
statistic for the average betweenness of the Al-Qaeda network.   
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Figure 35. Plot of Betweenness CUSUM Statistic of al Qaeda. 

 
The reference value, k, and the control limit, h, were set at 0.5 and 3.5 

respectively for all of the social network control charts.  The value of k = 0.5 is set to 
optimize the chart to be the most statistically powerful in detecting a one standard 
deviation shift in the mean value of the measure of interest.  The value of h = 3.5 
corresponds to a false positive rate of 1% (see Appendix C).  This would be equivalent to 
a false positive once per century on average.   
 

The most likely time that the change occurred is 1997.  To understand the cause 
of the change in the Al-Qaeda network, an analyst should look at the events occurring in 
Al-Qaeda’s internal organization and external operating environment in 1997. 
 

Several very interesting events related to Al-Qaeda and Islamic extremism 
occurred in 1997.  Six Islamic militants massacred 58 foreign tourists and at least four 
Egyptians in Luxor, Egypt (Jehl, 1997).  United States and coalition forces deployed to 
Egypt in 1997 for a bi-annual training exercise were repeatedly attacked by Islamic 
militants.  The coalition suffered numerous casualties and shortened their deployment.  In 
early 1998, Zawahiri and Bin Laden were publicly reunited, although based on press 
release timing, they must have been working throughout 1997 planning future terrorist 
operations.  In February of 1998, an Arab newspaper introduced the “International 
Islamic Front for Combating Crusaders and Jews.”  This organization established in 
1997, was founded by Bin Laden, Zawahiri, leaders of the Egyptian Islamic Group, the 
Jamiat-ul-Ulema-e-Pakistan, and the Jihad Movement in Bangladesh, among others.  The 
Front condemned the sins of American foreign policy and called on every Muslim to 
comply with God’s order to kill the Americans and plunder their money.  Six months 
later the US embassies in Tanzania and Kenya were bombed by Al-Qaeda.  Thus, 1997 
was possibly the most critical year in uniting Islamic militants and organizing Al-Qaeda 
for offensive terrorist attacks against the United States. 
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These findings should be interpreted with caution.  The data was largely collected 
retrospectively and is most likely incomplete.  The type of findings demonstrated in this 
example, however, show how SNCD can enable an analyst to look inside of the decision 
cycle of an organization.  If intelligence analysts were able to collect social network data 
on an organization, the detection of changes in the organizational behavior of the group 
might provide early warning of some action carried out by the group. 

 
 
6 .5  Johnson Year C Wintering Over Data  
 

The fifth longitudinal network data set was collected at the Amundsen-Scott 
South Pole Station (Johnson, Boster, and Palinkas, 2003).  This is an American polar 
station run by the National Science Foundation (NSF), located at 90o south latitude in the 
Ant-arctic.  The station is used to conduct scientific research in several fields.  Data were 
collected on the social interaction between crew members over each of three wintering 
over periods.  During the wintering over months the station is completely isolated.  This 
creates a well-bounded group where the interactions are largely free from outside 
influence.   

There are 22 individuals in the wintering over group.  These individuals include 
contractors that support the facilities and NSF scientists.  There were four females and 18 
males.  They began training as a group in August in the U.S. and actually arrived at the 
station the following October.  They remain at the station until November of the 
following year.  They are not permitted to remain at the station for two consecutive 
winters.  The data was collected in the 1990s.  The actual year of the data is not reported 
in order to protect the identities of the respondents.  During the winter temperatures can 
reach as low as -119oF, making flights to the station next to impossible.  For eight and a 
half months between mid-February and the end of October, the station is completely 
isolated.  The nearest American base is McMurdo Station, 800 miles away.  On the 15th 
day of each month beginning in March, the station physician collected social network 
data by questionnaire.  Respondents were asked to self rate their social interactions with 
each of the 21 other group members on a scale of 0 to 10, with 0 representing no 
interaction. 

 
During the wintering over period a change was introduced into the network.  

Johnson reports that “events transpired in Year C to undermine the ability of the formal 
leader to maintain his/her informal leadership role.”  He also reports that the only 
expressive leader disappeared sometime in the middle of the winter “due in part to 
harassment by a marginalized crewmember.”  Figure 36 shows the first recorded network 
in the data set, which was collected on 15 March.  Figure 37 shows the last recorded 
network, which was collected on 15 October.  The nodes are sized by betweenness in 
both of the figures.  Betweenness is a network measure of power (Krackhardt, 2008).  
The change is a shift in power and influence among the agents as Agent 8 gives up 
power, and influence in the organization to nodes A18, A19, A11, and A14, who were on 
the periphery of the network in March. 
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Figure 36. March (Time 1), Year C Winter-over Data. 

 

 
Figure 37. October (Time 8), Year C Winter-over Data. 

 
SNCD should be able to detect the change in organizational behavior in this 

network.  In March, there is only one node with a moderately high betweenness score, 
A8.  By October, Nodes 9, 18, and 19 have higher betweenness within the network than 
Node 8.  When did this change occur?  The CUSUM algorithm with k = 0.5 and h = 3.5 is 
used.  Figure 38 shows a plot of the CUSUM statistic over the eight time periods.  The 
change is not noticed until October in this data. 
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Figure 38. CUSUM Statistic for Winter-over Year C Data. 

 
The most likely time the change occurred was the last time the statistic was 0, so 

sometime between time 3 and 4 above, which corresponds to May-June.  If we look at the 
networks in May and in June we can see the change.  Figures 39 and 40 display the May 
and June networks respectively. 

 

 
Figure 39. May (Time 3), Year C Winter-over Data 
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Figure 40. June (Time 4), Year C Winter-over Data 

 
It can be seen that it is between these two networks that other nodes (A10, A22) 

take significantly more leadership within the network.  A8 still maintains the most power 
within the network.  We can see that the other nodes that hold power within the network 
shift from month to month, however A8 no longer maintains a monopoly on betweenness 
following the change point.  Figure 41 shows the network of the 5th time point. 

 
Figure 41. July (Time 5), Year C Winter-over Data. 
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It is not until September that A18 surpasses A8 in betweenness.  This corresponds 

to the time just before the change is detected.  It should be noted however, that the cause 
of this change in the organization is more likely to have occurred between May and June, 
however, the real effects of the change are not realized for some time.   
 

The important concept illustrated in this example is that SNCD can be used by 
social scientists to study network change and evolution.  The social network change 
detection provided the statistically based insight of where to look for change.  This makes 
isolating the cause of real change more objective and scientific.  In this case the change 
was likely due to the harassment and subsequent isolation of an expressive leader in the 
group.  This incident is likely to have occurred between 15 May and 15 June.  A social 
scientist recording the data may not be aware of such an event if the respondents do not 
report the harassment.  Using SNCD, the social scientist would be aware of the change 
and be able to ask the respondents more questions about what occurred during the 
estimated change point, in this case 15 May to 15 June.  Therefore, SNCD is not only 
useful for identify that a change occurred.  It is equally useful to detect when a change 
occurred. 
 
 
6 .6  Johnson Year A Wintering Over Data  
 

The sixth longitudinal network data set was also collected at the Amundsen-Scott 
South Pole Station in the 1990s (Johnson, Boster, and Palinkas, 2003), in a different year 
than the fifth data set.  Data were again collected on the social interaction between crew 
members over a wintering over period.   

 
There are 28 individuals in the Year A wintering over group.  There were nine 

females and 19 males.  They also began training as a group in August and arrived at the 
station the following October.  They remain at the station until November of the 
following year.  On the 15th day of each month beginning in March, the station physician 
collected social network data by questionnaire.  Respondents were asked to self rate their 
social interactions with each of the 27 other group members on a scale of 0 to 10, with 0 
representing no interaction.  The first (March) and last (October) networks are shown in 
Figures 42 and 43 respectively.  The nodes are again sized based on the betweenness 
value of the node. 

 



91 
 

 
Figure 42. March (Time 1), Year A Winter-over Data 

 
Figure 43. October (Time 8), Year A Winter-over Data 

 
 
In the Year A data, a statistically significant change occurs between 15 May and 

15 June.  The change is a shift in power and influence among the agents as Agent 24 
assumes more leadership, power, and influence in the organization.  In March, there are 
several nodes (6-8) with a moderately high betweenness score.  By October, Node 24 
completely dominates the betweenness within the network.  Node 24 was not one of the 
top three nodes highest in betweenness in March, but clearly is an influential member of 
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the organization by October. For this data set, the goal of SNCD is to detect when this 
shift in power occurs.  

 
The CUSUM procedure is applied to the average betweenness value of the Year 

A data using parameters k = 0.5 and h = 3.5, corresponding to a risk of false positive of 
1%.  Figure 44 is a plot of the CUSUM statistic over time. The most likely time the 
change occurred was the last time the statistic was 0, so sometime between time 3 and 4, 
which corresponds to May-June.  If we look at the networks in May and in June, Figures 
45 and 46 respectively, the change can be seen.  In the networks between March and 
May, several nodes compete for influence in the network.  Beginning with the June 
network, Agent 24 dominates the betweenness centrality measure, which is a measure of 
power in the network.  Agent 24 continues to dominate the network for the remainder of 
the wintering over period. 

 
 

 
Figure 44. CUSUM Statistic for Winter-over Year A Data. 
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Figure 45. May (Time 3), Year A Winter-over Data 

 
Figure 46. June (Time 4), Year A Winter-over Data 

 
Johnson et al. (2003) identified this change as one leading to a greater consensus 

among individuals in the group on who played an instrumental leadership role.  They 
speculate that positive deviant roles, such as comedians contribute to this change as the 
comedians play pranks on group members.  Unfortunately, Johnson et al. lacked a 
statistical approach for estimating the time change occurred.  Although they discuss the 
change in the group between the first and last time periods, they do not offer any insight 
into when the change occurred or what specific events may have contributed more 
significantly to the emergent group dynamics.  Perhaps if they applied this approach and 
looked for a potential cause of change, they might find that practical jokes played 
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between 15 May and 15 June led to a change in the group dynamics.  This example, again 
illustrates the importance of estimating when a change occurs in addition to determining 
that a change occurs in longitudinal social network analysis. 
 
 
6.7  Johnson Year B Wintering Over Data  
 

The seventh longitudinal network data set was also collected at the Amundsen-
Scott South Pole Station in the 1990s (Johnson, Boster, and Palinkas, 2003), in a different 
year than the fifth and sixth data sets.  Data were again collected on the social interaction 
between crew members over a wintering over period.   

 
There are 27 individuals in the Year B wintering over group.  There were seven 

females and 20 males.  They also began training as a group in August and arrived at the 
station the following October.  They remain at the station until November of the 
following year.  On the 15th day of each month beginning in March, the station physician 
collected social network data by questionnaire.  Respondents were asked to self rate their 
social interactions with each of the 26 other group members on a scale of 0 to 10, with 0 
representing no interaction.  The first (March) and last (October) networks are shown in 
Figures 47 and 48 respectively.  The nodes are again sized based on the betweenness 
value of the node. 

 
Figure 47. March (Time 1), Year B Winter-over Data 

 



95 
 

 
Figure 48. October (Time 8), Year B Winter-over Data 

 
A statistically significant change occurs in the year B data between 15 May and 

15 June.  The change is where the respondents form the three separate subgroups 
identified by Johnson et al (2003).    

 
The CUSUM procedure is applied to the average betweenness value of the Year B 

data, again using parameters k = 0.5 and h = 3.5, corresponding to a risk of false positive 
of 1%.  Figure 49 is a plot of the CUSUM statistic over time. The most likely time the 
change occurred was the last time the statistic was 0, so sometime between time B05 and 
B06, which corresponds to May-June.   

 

 
Figure 49. CUSUM Statistic for Winter-over Year B Data. 
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6 .8  IkeNet 2  
 

IkeNet is a five year research project funded by the U.S. Army Institute for the 
Behavioral and Social Sciences to collect longitudinal network data on email activity.  
The participants are mid-career Army officers in a one-year graduate program at 
Columbia University.  The participants all live on the West Point military installation and 
attend most of their courses at West Point.  Following graduation, most of these officers 
assume duties as tactical officers, responsible for military training and discipline at the 
U.S. Military Academy (USMA). 

 
The participants were all given a BlackBerry.  They consented to allow me to 

monitor the header information of their sent email traffic.  The header information 
includes the TO, FROM, CC, BCC, Subject, and Date-Time.  The data was collected by 
installing a client side visual basic patch in their Microsoft Outlook, that would compile a 
spreadsheet from their sent mail folder and email to me daily.  Another custom software 
plug-in to my Outlook allowed me to compile and parse the data efficiently.  The email 
activity was divided into calendar weeks from Sunday through Saturday.  Networks were 
constructed where the nodes were the officers in the ELDP program and the links 
connected a source node to a target node, weighted by the number of sent emails.  A total 
of 46 networks were collected beginning 20 May 2007 and ending 4 April 2008.  
Unfortunately, the first 13 networks contained missing data due to technical difficulties in 
implementing the Outlook patch.  Therefore, we begin our analysis with week 14 data. 

 
There were 22 participants who volunteered to participate in the research.  There 

were 3 females and 19 males.  This experiment was approved by the West Point 
Institutional Review Board for Human Subject Experimentation.  Figure 50 shows the 
IkeNet2 network for week 14. 

 
Figure 50. IkeNet 2, Week 14 
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The CUSUM procedure is applied to the average betweenness of the networks 

over time.  The value of k = 0.5 and h = 3.5, which corresponds to a false positive rate of 
1%.  Figure 51 shows the CUSUM statistic plotted for the IkeNet 2 data.  It can be seen 
in the figure that the CUSUM chart indicates that there may be a change at Week 26, and 
that the likely time the change occurred was Week 25.   

 

 
Figure 51. IkeNet 2, CUSUM applied to Average Betweenness. 

 
 Week 25 was Army-Air Force week at USMA.  This is perhaps the busiest week 
at USMA next to graduation.  The U.S. Air Force Academy played football in Michie 
Stadium at West Point on the Friday of Week 25.  The ELDP officers were involved in 
planning a large tailgate event this week.  In addition, there were an unusually large 
number of academic requirements due earlier in the week.  It is reasonable that this is a 
significant change point in the ELDP network.  Figure 52 is the network diagram for 
Week 25.  It can be seen that the Week 25 network is more distributed than the Week 14 
network, which had a couple key influential people with others having a peripheral role. 
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Figure 52. IkeNet 2, Week 25. 

 
 The CUSUM procedure is reset using the same parameters and run on subsequent 
data.  Figure 53 shows a plot of the CUSUM applied to the average betweenness, 
beginning in Week 26.  The CUSUM detects another change that likely occurred 
beginning Week 28, which corresponds to Thanksgiving week.  This was also the last 
week that the ELDP students had any graded assignments due for the term.   
 

 
Figure 53.  IkeNet 2, CUSUM Week 26 Week 35 

  
The ELDP students began Christmas break during Week 32.  Figure 54 is a 

network image for the first full week of Christmas break.  The network is very sparse.  
This is expected while the participants are on vacation.  We therefore, wait until they are 
back in school to continue change detection. 
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Figure 54. IkeNet 2, Week 33. 

 
 The CUSUM is again applied to the IkeNet 2 data, beginning with week 36, 
which is the first week back after Christmas break.  Figure 55 shows a plot of the 
CUSUM statistic over time.  Although the chart does not signal a potential change, it 
appears that it is heading toward a signal if there were another week or two of data.  The 
likely change point if this chart were to signal would be the last full week before they 
took their comprehensive exam for their graduate program. 
 

 
Figure 55. IkeNet 2, CUSUM for Week 36-Week 46. 

 
 IkeNet 2 is another successful example of SNCD.  The events during Army-Air 
Force week were detected, as well as the change in network behavior for Christmas 
break.  The final change detected was for their completion of the comprehensive exam 
for their graduate program. 
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6.9   IkeNet 3  
 

The IkeNet 3 data are data collected on the email interaction between three 
distinct groups at the U.S. Military Academy (USMA) at West Point.  This is the third in 
a five year research project funded by the U.S. Army Institute for the Behavioral and 
Social Sciences to collect longitudinal network data on email activity.  The first sub-
group consists of undergraduate cadets in a regimental chain of command.  The chain of 
command is comprised of 5 females and 19 males between the ages of 21 to 25.  The 
chain of command is also comprised of many ethnicities to include African Americans, 
Hispanics, Pacific Islanders, and Asian Americans. 

 
The second group is composed of 14 mid-career Army officers in a one year 

graduate program run jointly by Columbia University and the USMA.  This program is 
called the Eisenhower Leadership Development Program (ELDP). Following their 
graduation in May, they begin duties as tactical officers at the US Military Academy, 
responsible for the military training and discipline at the Academy.  None of these 
officers are acquainted prior to entering the program.  They have no formal chain of 
command assigned to them. There are 2 females and 12 males.  There are varying 
ethnicities, representative of the demographics at the USMA. Some of these officers may 
interact with cadets in the regimental chain of command, serving as mentors to them or 
serving as a faculty representative to one of the many extra-curricular clubs at USMA 

 
  The third group consists of faculty and staff at the USMA that conduct research 

in network science. Several faculty and staff have begun conducting active research in the 
area of network science.  30 of the staff and faculty involved with network science were 
given a BlackBerry.  There were 7 females, 23 males all of varying ethnicities.  These 
faculty had limited contact with ELDP members.  Several of the cadets from the 
regimental chain of command were working on network science related senior research 
theses and had regular communication with the faculty.   
 

E-mail traffic was collected to create networks that describe communication 
between members of the three different groups.  All individuals consented to participate 
in this experiment, which involved monitoring their email, cell phone, and text messaging 
data.  This experiment was approved by the West Point Institutional Review Board for 
Human Subject Experimentation.  Only the header information (header information 
includes the to, from, cc, bcc, subject, date, and message id) of emails and phone traffic 
sent and received by the participants were monitored and collected.  The message body 
and attachments of emails and text messages were not collected due to privacy concerns.  
With the help of the Directorate of Information Management (DOIM) at West Point the 
Microsoft Email Exchange server was synced with the BlackBerries so that a participant 
could receive and send emails from their BlackBerry.  Email data was collected directly 
from the server instead of from each clients’ computers and BlackBerries due to the 
greater quality of data found at the server (McCulloh et al, 2008; Appendix D). Data was 
parsed from the email log file using the Organizational Risk Analyzer (ORA)  (Frantz 
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and Carley, 2008).  All identifying participant data was anonymized to protect the 
privacy of the participants.   

 
Daily networks were created for the time period 1 September -31 December 2008.  

The nodes in the network are the individuals in each of the three groups.  A weighted link 
connects nodes, where the weight corresponds to the number of emails exchanged from a 
source node to a target node.  Figure 56 shows the network for 3 September, which is the 
Wednesday after Labor Day.  The tightly clustered group in the right side of the figure is 
the ELDP group of officers.   

 
The cadets in the regimental chain of command were not actually given 

BlackBerries until 18 September after they were in their duty position for one full month.  
The intent was to see if the introduction of the BlackBerry could be detected with SNCD 
methods.  To make this experiment even more challenging, the faculty and ELDP groups 
are left in the network.  Therefore, the change imposed on the network is the introduction 
of enhanced communication for approximately one third of the network. 

 

 
Figure 56.  IkeNet 3, 3 September 2008. 

 
 The average of the betweenness of nodes in the network is plotted in Figure 57.  I 
show this measure for the IkeNet data, so that the issue of periodicity might be observed.  
The volatility in the measure is partially due to the weekly patterns of email activity 
within the group.  This periodicity introduces additional noise into the data, making it 
more difficult to detect change.  
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Figure 57.  IkeNet3 Average Betweenness 1 Sep - 31 Dec 2008. 

 
The longitudinal network data is monitored in real time.  The first 10 networks 

corresponding to 1-10 September 2008 are used to establish the typical behavior of the 
network.  Any change detected over time is really detecting networks that are a 
statistically significant departure from the first 10 networks in the data set.  I expect 
periodicity in the network data, so I apply the Fourier Transform.  The frequency plot of 
the data is shown in Figure 58.  Dominant frequencies that are greater than two standard 
deviations from the mean frequency are shown in Figure 59. 

 

 
Figure 58. IkeNet 3, Fast Fourier Transform of Average Betweenness. 
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Figure 59. IkeNet 3, Dominant Frequencies of Average Betweenness. 

 
The periodicity is determined by applying an inverse Fourier transform to the 

dominant frequencies.  The resulting period plot is shown in Figure 60.  The weekly 
periodicity can be identified by noticing the peaks and valleys that occur every seven 
days. 

 

 
Figure 60.  IkeNet 3, Period Plot of Average Betweenness. 

 
The data is filtered by subtracting the periodicity from the average betweenness 

measure for each time period.  The CUSUM procedure is then applied using a k = 0.5 and 
an h = 3.5, which corresponds to a false positive rate of 1%.  A plot of the CUSUM is 
shown in Figure 61. 
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Figure 61. IkeNet 3, CUSUM Statistic on Filtered Average Betweenness. 

 
A change is detected on 19 September.  The estimated change point is 14 

September.  I therefore look for a potential cause for the change in email behavior in the 
IkeNet group sometime around 14 September.  Part of the IkeNet experiment involved 
studying the effect that Blackberries had on the cadet chain of command.  The cadet 
chain of command assumed their duties on 18 August 2008, therefore, I scheduled them 
to receive Blackberries on 18 September 2008.  This was announced to the chain of 
command by their regimental commander at their weekly meeting on 14 September.  I 
believe that this is the change.  Initially the change occurred as they planned to receive 
the blackberries, and then continued after they had the device. 

 
I must now look for a new equilibrium, beginning Sunday 21 September.  The 

CUSUM control chart is restarted.  The new typical network behavior is estimated from 
the first 10 days, beginning on 21 September.   

 
I again detect weekly periodicity.  Figure 62 shows the frequency plot of the data 

from the Fast Fourier transform.  Figure 63 shows the resulting period plot.  Again the 
weekly periodicity can be observed from the regular seven day peaks and valleys in the 
period plot. 
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Figure 62. IkeNet 3, Fast Fourier Transform of Average Betweenness after BlackBerry Issue. 

 

 
Figure 63. IkeNet 3, Period Plot of Average Betweenness after BlackBerry Issue. 

 
 

The  CUSUM procedure is applied to the filtered data.  The CUSUM again uses  
k = 0.5 and h = 3.5.  This time the procedure detects a decrease in the measure.  Figure 64 
shows the CUSUM statistic plotted over time. 
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Figure 64. IkeNet 3, CUSUM Statistic of Average Betweenness after BlackBerry Issue. 

 
The CUSUM procedure signals a change in the network on the Friday after 

Thanksgiving, 2008.  The likely time the change actually occurred is 21 September, the 
Friday before Thanksgiving 2008.  This is a reasonable change point in the network as 
both the ELDP and cadets finish major academic requirements and take a pause from 
their academics.   

 
I set a new equilibrium for the first 10 days of December and re-run the CUSUM 

with k = 0.5 and h = 3.5.  We detect a significant change in the network on 24 December.  
The likely time the change actually occurred was 18 December, which is the day before 
the last Final exam of the semester.  By the afternoon of 19 December, all cadets and 
faculty were on Christmas leave.  Figure 65 shows a plot of the CUSUM statistic over 
time. 

 
 

20 40 60 80

1

2

3

4

5

6

7

time 

C
U

SU
M

 S
ta

tis
tic

 



107 
 

 
Figure 65.  IkeNet 3, CUSUM Statistic of Average Betweenness after Thanksgiving. 

 
 This example shows the ability of SNCD to detect several changes in network 
communication over the course of an academic semester.  The issuing of BlackBerries, 
Thanksgiving, and the conclusion of final exams represent the major significant events of 
the semester.  SNCD was effective in identifying all three changes.  In addition, the 
weekly periodicity inherent in the data was successfully filtered out, making the 
procedure perform more effectively. 
 
 Future IkeNet 3 data for the Spring 2009 semester will also include collecting 
friendship and trust networks.  It will be interesting to apply SNCD to all of the networks 
collected on the group and compare the presence of any changes across the different 
networks.  The data collected in the Spring will also hopefully allow investigators to look 
for evolutionary changes in friendship over time. 
 
 
6.10   Cautionary Note on Findings 
 

The empirical results described in this paper, such as the detection of change in 
the Al-Qaeda network should be viewed with caution.  I present them here purely to 
illustrate the methodology. Limitations on the data make it difficult to determine the 
validity of the results; thus, we should simply view these results as showing the promise 
of this methodology.  The Leavenworth data spans only four days and used self-reported 
survey data, therefore it is not likely that it captured all communication and interaction 
among officers.  The fact that even in this data set we were able to systematically detect a 
key change suggests the value of the proposed approach.  The Al-Qaeda data, was based 
on open source information.  As such it is an incomplete representation of interaction in 
that terror network.  We cannot be sure that we have the entire communication network, 
or even a true picture of the observed communication network.  However, the fact that 
our technique detects a change corresponding with the 9/11 attacks is intriguing.  This 
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work suggests that our approach may provide some ability to detect change even when 
there is incomplete information. 

 
 That being said, it is important that future work examine the errors associated 

with this technique, both the false positives and false negatives.  Future work should also 
consider the sensitivity of this approach to missing information, and to the reason why 
the information is missing.  For example, data sets collected post-hoc that focus on 
activity around an event, such as the Al-Qaeda data are prone to errors of missing nodes 
and as a result links prior to the event.  Whereas, data sets collected based on opportunity, 
such as the Leavenworth data, are prone to missing links among the nodes. 

 
 

6 .11   Sensit ivi ty to Risk of  False Posit ive  
 

Sensitivity to the risk of false positives is an important consideration in detecting 
change in longitudinal network data.  False positives occur when a change detection 
procedure indicates that a change may have occurred, when in fact there is no change.  
There exists a trade-off between false positives and rapid detection.  A statistical process 
control algorithm that is tuned to detect changes faster will also have an increased 
probability of false positive.   

 
The balance between rapid detection and false positive is determined by the 

decision interval of the change detection procedure.  In the example in Figure 66, a 
CUSUM statistic is plotted for notional data.  The data is the same for both charts in the 
figure.  A change is introduced in the data at time point 22.  The decision interval of the 
left chart is set so that the change is actually detected at time point 25.  If the decision 
interval was lowered so that the change might be detected earlier, at time point 24, then 
the chart would also signal a false positive at time point 7.  Therefore, it is important to 
determine a desired risk for false positive, and then monitor longitudinal networks for 
change. 

 

  
Figure 66. Trade-off Between False Positive and Rapid Detection. 

 
 I have used a risk of false alarm of 1% in the examples presented in this thesis to 
demonstrate the approach.  A detailed discussion of risk in statistical process control is 
included in Appendix C.  This is especially tricky for the CUSUM.  The value of the 
CUSUM at any point in time depends on the value of the CUSUM at the previous point 

0 5 10 15 20 25 0 5 10 15 20 25 t 

C
U

SU
M

 S
ta

tis
tic

 

t 

C
U

SU
M

 S
ta

tis
tic

 



109 
 

in time. Therefore, estimating the values of the CUSUM involves nested conditional 
probability, which makes calculating the decision interval for a desired risk intractable.  
Through extensive Monte Carlo simulation I determine an analytic formula for the 
decision interval of the CUSUM which is over 99% accurate.  The formula is given by, 
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where α is the risk of false positive, and k is the optimality constant of the CUSUM.  
Using this formula, the decision interval can be calculated for various values of α and k.  
Table 24 provides the decision interval for various values of α keeping k = 0.5. 
 

Table 24. Decision Intervals for the CUSUM. 

α 0.05 0.02 0.01 0.005 0.001 
h (α, 0.5) 1.99 2.85 3.50 4.15 5.65 

 
 Throughout this chapter, I have used a decision interval of 3.50, which 
corresponds to a false positive rate of 1%.  Table 25 presents all of the example data sets 
that have a known change from this chapter.  The known change point is included in the 
second column.  The five remaining columns identify the time point that the first change 
is detected by the CUSUM procedure for that data set, with the given risk of false 
positive. 
 

Table 25. Affect of Risk in Detecting Change in Real World Examples. 

Data Change α  = 0.05 α  = 0.02 α  = 0.01 α  = 0.005 α  = 0.001 
Fraternity 8 10 10 10 13 Never 
Leav 07 3 5 5 5 Never Never 
Al-Qaeda 1997 1999 1999 2000 2000 Never 
Winter C May Sept Sept Oct Oct Never 
Winter A May Aug Sept Sept Sept Oct 
Winter B May Sept Sept Sept Oct Never 
IkeNet 2 25 26 26 27 27 27 
IkeNet 3 14 15 18 19 19 20 
 
 It can be seen in Table 25 that when the risk of false positive is set very low, such 
as α  = 0.001, the change detection procedure can often miss real change.  When the risk 
of false positive is lowered, the procedure is able to detect changes more rapidly.  It is not 
apparent in the examples presented here that lowering the risk also introduces an 
increased probability of false positive.  When α  = 0.05, there will be 20 observations on 
average between false positives.  When α  = 0.01, there will be 100 observations on 
average between false positives.   
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 The level of false positive that an analyst will be comfortable with depends on the 
application.  If the analyst is creating daily networks, then he can expect a false positive 
more than once per month with α  = 0.05, or less than once per quarter with α  = 0.01.  If 
the cost of missing a network change is high, then the analyst may accept greater risk in 
false positives in order to detect a network change more rapidly.  In a terrorism 
application, a delay in detecting change may prevent the analyst from detecting a change 
until after the terrorists have carried out their attack.  Accepting greater risk may improve 
the ability for the analyst to get inside the terrorists’ decision cycle.  In an organizational 
behavior application, there may be financial costs incurred as the analyst interviews 
members of the organization and searches for a potential cause of change in the network.  
In this situation, false positives may lead to increased unnecessary costs.  Of course, 
missing a change in the organizational behavior example, or having a false positive in the 
terrorism example also have detrimental consequences.  The analyst should carefully 
consider the trade-off between false positives and rapid detection when using SNCD. 
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7 Procedure for Small and High Variance Networks 
 

Some networks may contain few nodes and high variance in network level 
measures.  The high variance creates a random noise condition that can obscure the 
detection of change.  This chapter outlines a procedure for handling network data with 
few nodes or high variance.  The method is demonstrated on a unique data set collected at 
the U.S. Military Academy at West Point, NY. 

 
The variance in network measures over time can be high as a result of several 

potential causes.  The simplest explanation is that there are very few nodes included in 
the network.  If a node is removed, it has the potential to impact n – 1 other links in the 
network out of a possible n(n – 1).  As the number of nodes increases, the ratio of impact 
(n – 1)/n(n – 1) gets smaller, because the denominator of the expression grows faster than 
the numerator.  With a small number of nodes, missing data or the erratic behavior of a 
single node can significantly bias the network. 

 
The variance of a network can also be high as a result of typical changes in the 

day to day activities of the nodes in the network.  For example, a holiday or an important 
deadline may affect the social network of the agents in an expected fashion.  If these 
causes occur with regular frequency, the analyst can use the spectral analysis approach 
presented in Chapter 5 of this thesis.  Otherwise, a different approach must be made. 

 
If there are certain events which are likely to impact an organization and they can 

be known in advance, multiple linear regression can be used to model the behavior of key 
network measures.  If the regression model can explain a sufficient amount of the 
variance in a given measure, then statistical process control can be applied to the residual 
error of this model.  If the error becomes significantly high, the control chart implies that 
the regression model is no longer explaining the behavior of the key network measure 
being modeled.  This in turn indicates that there may have been a change in the network. 

 
7.1  IkeNet 1  

 
The Eisenhower Leadership Development Program (ELDP)4

                                                 
4 The Eisenhower Leadership Development Program (ELDP) was originally called the Tactical Officer 
Education Program (ELDP).  This data is referred to as the ELDP data in the original IkeNet Technical 
Report from the U.S. Army Research Institute for the Behavioral and Social Sciences (ARI).  The 
electronic data is available upon request from ARI. 

 is a one-year 
graduate program run as a joint effort by the United States Military Academy (USMA) 
and Columbia University.  Each year, twenty-four Army officers (referred to in this study 
as Army 1 through 24) enter the program to earn a Master’s degree in Social-
Organizational Psychology with a concentration in Leadership and to prepare for service 
as mentors for West Point’s cadet companies during the following two years.  Social 
network data on email communication was collected for 24 weeks. Details regarding the 
data collection and network properties are described in McCulloh, et. al. (2007).  The 
social network data collected through e-mail on this group has been referred to as the 
IkeNet data.  The complete data includes 24 time periods collected on nine officers.  Each 
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time period is one week.  The raw data consists of continuous e-mail data.  To complete 
this clean data set, the following steps were taken:  The first step of processing the raw 
data was to remove all emails sent by officers in ELDP to non-ELDP members.  The 
primary concern of the study was to examine how email communication changed within 
the exclusive group of ELDP officers.  This required that records of emails sent to non-
ELDP members and email addresses of non-ELDP members in messages that were sent 
to mixed parties were deleted.  Thus, all subsequent network pictures would only involve 
the email communication among the 24 officers.  The network information can only be 
viewed as “near” complete as emails sent using Webmail were not collected because of 
limitations of the data collection software (McCulloh, et. al. 2007).   

 
The continuous data were then separated it into 24 one week time periods.  

Weekly time periods were found to be the best resolution feasible for change detection.  
This data was collected before the spectral analysis method from Chapter 5 was 
developed.  The aggregation level was therefore based on known email behavior 
exhibited by the group.  If daily time segments were used, we would only detect Friday as 
a change point for most people.  An average person intuitively maintains different 
communication patterns during the week when they are at work than they do on the 
weekend with friends and family.  Monthly time segments can be very different as well.  
For an academic setting such as ELDP, the month of December includes Christmas Break 
and the month of March includes Spring Break.  This significantly changes the 
communication behavior for the month.  Weekly communication on the other hand 
aggregates normal daily fluctuations in e-mail activity, while providing a larger number 
of time periods to detect significant change. 

 
Some of the officers stopped sending email at some point in the study and did not 

send email again.  The principal investigator interviewed these officers and found that 
they had experienced technical problems during the study and had reformatted their hard 
drive, thereby erasing the collection patch.  Other officers began to rely on webmail, 
which bypassed the collection patch.  Therefore, the communication data collected was 
incomplete and not identically distributed.  Officers, whose data collection was 
incomplete, were eliminated from further study.  This reduced the number of officers in 
the data set from 24 to nine.  Average network measures calculated on the reduced data 
set followed a normal distribution.  A communication network for the reduced data set is 
shown in Figure 67 for the week of 29 October 2007. 
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Figure 67. Email Network of ELDP Officers During Week of 29 October 2007. 

 
Using this much smaller, but complete network, the average degree, betweenness, 

and closeness all appeared to be normally distributed.  Determining baseline values, 
however, was still not possible because the network contained too much variance.  There 
was no stable network measure behavior. In order to account for the variance caused by 
differing schedules week to week, I examined a copy of the ELDP planning calendar for 
the entire year.  The calendar combined with interviews with officers allowed 
investigators to determine the number of significant events from a variety of categories 
that occurred each week.  The significant events based on qualitative assessments by the 
officers were Academic Requirements, the Next Week’s Academic Requirements, 
Administrative Events (such as a class trip or cancelled class), Group Projects, Social 
Gatherings, and Days Off. 

 
Using MINITAB Statistical Software, analysis of variance (ANOVA) tests were 

run on predictors to determine if they were statistically significant factors in determining 
network measures for the first semester (12 weeks).    Days Off was the most significant 
factor, due to Christmas break in the middle of the 24 week study, however once these 
weeks were removed from the study, Days Off was no longer a significant factor in any 
model.  The best linear regression model obtained from first semester (12 weeks) data 
was for closeness based on the number of group projects, the number of social gatherings, 
and the number of emails sent each week. The ANOVA table from the regression is 
displayed in Table 26 and the regression equation is given by, 
 

 
 
 
 
 

 

)EmailsofNumber(0074.0)GatheringsSocial(11.0)ProjectsGroup(11.018.0Closeness ++−=
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Table 26. ANOVA Table for Closeness Predictors. 
Predictor Coefficient SE Coefficient T P VIF 
Constant 0.18 0.034 5.4 0   
Group Projects -0.11 0.05 -2.1 0.05 1.3 
Social 0.11 0.04 2.89 0.01 1.3 
Number of Emails 0.0074 0.00084 8.77 0 1 

 
This model has an adjusted R2 value of 79.8%, accounting for a large majority of 

the variance in the network measure and a predictive R2 value of 70.9%.  Slightly 
surprising from this model is the effect of group projects on closeness.  An increase in 
group project work was correlated with a decrease in communication.  This might be due 
to the fact that as a group project comes due, the ELDP officers may communicate more 
with their immediate team of group members, and communicate more face-to-face, but 
overall they decrease communication outside of their working groups and through email 
in order to focus on the project.  The positive effects of Social Gatherings and more 
emails sent over the week had the foreseen effect of improving group closeness. 

 
The model created from the first semester was used to predict the average 

closeness value for the second semester.  The CUSUM control chart was applied to the 
residual error between the prediction and the actual second semester data.  This allowed 
me to conduct real-time monitoring of a social group for change. 
 

Being able to predict the closeness of the ELDP communication network was 
essential in explaining much of the variance in the network.  The control chart could then 
be used to determine when the network changed away from the model.  In effect, when is 
the model no longer providing a good prediction?  Using the closeness model developed 
from data obtained during the first semester of the ELDP graduate program, predicted 
values were calculated for each week of the second semester using the number of social 
gatherings and group projects from the ELDP calendar and the number of emails sent by 
observation.  These were compared with the observed network measures. The residuals 
were verified as normally distributed to meet the prerequisites of the CUSUM Control 
Chart.  The C+ and C- statistics were calculated for each week using a k value of 0.5 and a 
control limit of 3.5, which corresponds to a false positive risk of 1% (see Appendix C).  
A graph of the CUSUM statistic for the ELDP data is in Figure 68. 
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Figure 68. Plot of closeness CUSUM statistic for nine ELDP officers. 

 
Figure 68 indicates that the control chart signals on Week 23 (see Table 26).  

Week 23 was the week that the ELDP officers took the comprehensive exam for their 
graduate program.  It was the most significant academic event of the year.  Tracing the C- 
statistic back to the last time it was zero, the most likely change point was during Week 
21.  Upon first examination, Week 21 looks like it should be a typical academic week, 
with no unusual events or graded projects.  However, based on interviews conducted with 
ELDP officers after the signal was detected, it was discovered that Week 21 was a critical 
preparation week prior to the comprehensive exam when the study questions for the exam 
were sent to the students.  Thus, the CUSUM control chart signals on Week 23 as it 
represents a significant departure from the value predicted by the model. 

 
Table 27. CUSUM Statistic Values for Closeness Network Measure. 

Week Closeness Model Z C+ C- 
15 0.3332 0.4712 -1.9714 0.0000 1.4714 
16 0.5134 0.3798 1.9086 1.4086 0.0000 
17 0.2760 0.3798 -1.4829 0.0000 0.9829 
18 0.3332 0.3562 -0.3286 0.0000 0.8114 
19 0.5406 0.5243 0.2329 0.0000 0.0786 
20 0.6536 0.5745 1.1300 0.6300 0.0000 
21 0.4977 0.3916 1.5157 1.6457 0.0000 
22 0.1258 0.2913 -2.3643 0.0000 1.8643 
23 0.2646 0.4215 -2.2414 0.0000 3.6057 
24 0.5226 0.4152 1.5343 1.0343 1.5714 

 
 The CUSUM control chart implemented on the residuals of a communication 
model proved to be effective at detecting organizational change in the ELDP program.  It 
is also interesting to note, that a decrease in communication can indicate that a major 
event is about to occur, as the officers rely less on email and more on face-to-face 
communication and study groups. 
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7.2  Discussion 
 

This approach was demonstrated to be effective at modeling a social network 
measure of interest in a small social network data set, based on scheduled events.  
Change was then able to be detected as a departure from the typical behavior of the 
network.  This was apparent after applying statistical process control to the residual error 
from a regression model, where the response variable was the network measure of 
interest and the predictor variables were scheduled events for the group. 

 
For the example presented here, the average closeness measure was best explained 

by the scheduled events.  This may not be true for all data sets.  I recommend that several 
network measures be investigated for correlations between scheduled events or other 
known information on the group in question.  Change detection should then be applied to 
the model that does the best job at explaining the response variable over time.  In the 
example, that happened to be the average closeness.  In other applications, it might be the 
average betweenness, diameter, or even density.   

 
If the network is larger and free from high variance, change detection can be directly 

applied to the network measures.  This is a much simpler approach for implementing 
change detection than the method presented in this chapter.  If on the other hand, there 
are fewer than 20 nodes, there is high variance in the network measures, and factors 
contributing to network structure can be measured, this approach may be effective in 
detecting network change over time.   
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8 Robustness of Change Detection 
 

A major concern in social network analysis is how random error can impact results 
and thus the conclusions reached by the analyst. By random error, I mean the random 
addition of links or the random removal of links.  This is equivalent in practice to 
observation error, or possibly the deliberate attempt to mislead the analyst by the 
organization being monitored, such as in terrorist applications.  This chapter will 
demonstrate that the proposed social network change detection methodology is relatively 
robust to error. 

 
There are not many publications on network robustness in the literature.  Borgotti, 

Carley, and Krackhardt (2005) investigated the impact of adding and removing edges 
from Erdos-Renyi random networks on the estimation of centrality measures.  Frantz, 
McCulloh, and Carley (n.d.) investigated robustness for different network topologies.  
Costenbader and Valente (2003) looked at the robustness of centrality measures for 
inaccurate or incomplete network data.  These are the only publications revealed in an 
extensive literature review.  Even the recent papers identified here point to a lack of 
research in this area.  The limited work on robustness, however, suggests that network 
analysis is relatively robust to error. 

 
The real-world data from Chapter 6 is further investigated for its robustness to error.  

The links in all of the data sets were removed with probability p, which varied from 0.01 
to 0.10.  This introduced random error into the real-world data sets from Chapter 6.  The 
social network change detection was again run on the modified data, using the same 
parameter settings as articulated in Chapter 6.  A false-alarm risk level of 0.05 was used 
in all cases.   

 
Four performance measures were investigated to evaluate the robustness of the 

proposed change detection approach.  A false alarm (FA) in the robustness experiment is 
considered to occur when the procedure signals a potential change in the network at a 
time point earlier than the identified change in the Chapter 6 (no error) analysis.  A miss 
in the robustness experiment occurs if the procedure does not detect a change in the 
network when the random error is introduced.  A different change point (DCP) occurs 
when the estimate of when a change actually occurs is different when random error is 
introduced compared to the change point estimated in Chapter 6.  A late signal (LS) 
occurs when the procedure experiences a delay in signaling the change in the network 
when random error is added.  The random removal of links was replicated 100 times for 
each of the data sets investigated.  The robustness performance measures are therefore the 
percentage of FA, miss, DCP, and LS that occurred in the 100 different replications of 
introducing random error into each of the real-world networks.  Table 28 presents the 
results of the virtual robustness experiments. 
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Table 28. Robustness of Change Detection to Missing Links. 

Data Change ε  = 0.00 ε  = 0.01 ε  = 0.05 ε  = 0.10 
Fraternity 8 10  FA=0 

Miss=0 
DCP=0 
LS=0 

FA=0 
Miss=0 
DCP=0 
LS=0 

FA=0 
Miss=0 

DCP=15% 
LS=8% 

Leav 07 3 5 FA=0 
Miss=0 
DCP=0 
LS=0 

FA=0 
Miss=13% 

DCP=0 
LS=0 

FA=0 
Miss=46% 
DCP=6% 

LS=0 
Al-Qaeda 1997 1999 FA=0 

Miss=0 
DCP=0 
LS=0 

FA=0 
Miss=0 
DCP=0 
LS=0 

FA=0 
Miss=0 
DCP=0 
LS=0 

Winter A May Aug FA=0 
Miss=0 
DCP=0 
LS=0 

FA=0 
Miss=0 
DCP=0 
LS=0 

FA=0 
Miss=0 
DCP=0 
LS=0 

Winter B May Sept FA=0 
Miss=0 
DCP=0 
LS=0 

FA=0 
Miss=0 
DCP=0 
LS=0 

FA=0 
Miss=0 
DCP=0 
LS=0 

Winter C May Sept FA=0 
Miss=0 
DCP=0 
LS=0 

FA=0 
Miss=0 
DCP=0 
LS=0 

FA=0 
Miss=0 
DCP=0 
LS=0 

IkeNet 2 25 26 FA=0 
Miss=0 
DCP=0 
LS=0 

FA=0 
Miss=0 
DCP=0 
LS=0 

FA=0 
Miss=0 
DCP=0 
LS=0 

IkeNet 3 14 15 FA=0 
Miss=0 
DCP=0 
LS=0 

FA=0 
Miss=0 
DCP=0 
LS=0 

FA=0 
Miss=0 
DCP=0 
LS=0 
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It can be seen in Table 28 that even when 10% of the links in the network are 
randomly removed, there is no difference in the change detection performance for most 
of the data sets.  The Leavenworth 07 data set is the most severely affected, where a 10% 
random removal of links can cause the procedure to miss the change 46% of the time.  In 
addition, there is a different estimate of the change point for both the Leavenworth 07 and 
Fraternity data when there is an error rate of 10%.  The other six data sets are robust to 
the removal of links up to a rate of 10%. 

 
It is not clear why the Leavenworth 07 and Fraternity data sets are affected by the 

random removal of links, when the others are not.  The Leavenworth 07 data set has eight 
time periods, was collected by survey, and uses rating relations.  The three wintering over 
data sets also consist of eight time periods, were collected by survey, and use rating 
relations, however, change detection does not appear to be affected in these data.  The 
Leavenworth 07 data follows a free choice survey design, but the IkeNet data sets are 
also free choice.  The Fraternity data is about as different from the Leavenworth 07 data 
as any other data set explored.  The Fraternity data consists of almost twice as many time 
periods, uses rankings instead of ratings, and is a fixed choice design.  Therefore, it does 
not appear that the number of time periods, method of collection, type of relations, type 
of survey design, or size of the network affect the robustness of the network to missing 
links. 

 
The robustness of the data sets was further investigated by exploring the correlation 

between the node-level measure of an original network and the same network missing 
10% of the links. Four node-level network measures were investigated; degree, 
betweenness, closeness, and eigenvector centrality. This was done for the eight data sets 
explored in Chapter 6 of this thesis: Fraternity, Leavenworth 07, Al-Qaeda, Wintering 
Over A, B, and C, and IkeNet 2, and 3. For all data sets the first time period was used.  
Since the missing links are removed at random, 100 instances of networks with missing 
links were generated and compared to the original data set.  The results of the mean 
correlation and the standard error are reported in Table 29. Correlations that were 
statistically different than 0 are in bold.   

 
The results of the correlations in Table 29 provide little insight into the robustness 

performance of the data sets.  All correlations appear relatively high, with the lowest 
significant correlation being the closeness measure in the Wintering-Over C data set at 
0.7074. The only correlation that does not appear statistically different than 0 is the 
closeness measure in the Fraternity data set.  The Fraternity data set also has the lowest 
correlation in degree and a lower than average correlation in Eigenvector Centrality.  The 
Leavenworth 07 data also has poor robustness; however, all the measures, degree, 
betweenness, closeness, and eigenvector centrality are more highly correlated than the 
average observed across all eight data sets.  All of the wintering-over data sets exhibit the 
lowest correlation in the betweenness scores, which is used in the change detection 
procedure, however, they were found to be robust to missing links.  Finally, a multiple 
linear and non-linear regression analysis was conducted to test if the number of nodes and 
links in the network affected observed correlations.  There was no statistical significance 
for the number of nodes, links, or any interaction affect between the two factors.  
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Therefore, the robustness does not appear to be affected by the size of the network or the 
correlation between node-level measures in a network and the same network missing 
10% of the links.  The fact that the correlations are high, however, does suggest that 
missing data may not affect the estimates of the top central nodes in a network.  Future 
work in this area should investigate the problem using simulation and response surface 
methods to explore the problem more thoroughly. 

 
Table 29. Correlation of Measures Between Network and Network Missing 10% of Links. 

Data Set Degree Betweenness Closeness Eigenvector 
Fraternity 0.9369 

(0.0249) 
0.8692 

(0.0486) 
0.0912 

(0.1554) 
0.9079 

(0.0488) 
Leavenworth 07 0.9812 

(0.0034) 
0.9476 

(0.0320) 
0.9663 

(0.0448) 
0.9765 

(0.0110) 
Al-Qaeda 0.9945 

(0.0005) 
0.9780 

(0.0183) 
0.9284 

(0.0344) 
0.9899 

(0.0223) 
Winter Over A 0.9648 

(0.0099) 
0.8320 

(0.0600) 
0.8270 

(0.0448) 
0.9820 

(0.0078) 
Winter Over B 0.9650 

(0.0126) 
0.7510 

(0.0554) 
0.8370 

(0.0362) 
0.9764 

(0.0110) 
Winter Over C 0.9689 

(0.0107) 
0.7695 

(0.0626) 
0.7074 

(0.0712) 
0.9874 

(0.0055) 
IkeNet 2 0.9692 

(0.0274) 
0.9317 

(0.0740) 
0.9675 

(0.0245) 
0.9412 

(0.0739) 
IkeNet 3 0.9880 

(0.0036) 
0.9567 

(0.0310) 
0.8968 

(0.0533) 
0.8898 

(0.1712) 
 

 
A potential, non-obvious factor that may contribute to error probability in network 

data is statistical dependence.  The correlation between certain network measures may 
provide some insight into the network structure and the dependence between network 
properties.  In order to explore structural dependence, the degree, betweenness, closeness, 
and eigenvector centralities were calculated for all nodes, across all time periods, for the 
Fraternity, Leavenworth 07, Al-Qaeda, and the three Wintering Over data sets.  The 
correlations between node-level measures were calculated.  The correlations were 
averaged across the time periods and the standard errors of the correlations were also 
recorded.  Tables 30-35 display the average correlations between network measures, with 
the standard error represented in parentheses.  Statistically significant correlations are in 
bold. 
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Table 30. Newcomb Fraternity. 

 Betweenness Degree Closeness Eigenvector 
Betweenness 1.00000 

(0.000000)    

Degree 0.439868 

(0.192845) 

1.00000 

(0.000000)   

Closeness -0.0166 

(0.302627) 

-0.42291 

(0.246748) 

1.00000 

(0.000000)  

Eigenvector 0.377349 

(0.159042) 

0.906408 

(0.022901) 

-0.3562 

(0.286111) 

1.00000 

(0.000000) 
 

Table 31. Leavenworth 07. 

 Betweenness Degree Closeness Eigenvector 
Betweenness 1.00000 

(0.000000)    

Degree 0.80714 

(0.01765) 

1.00000 

(0.000000)   

Closeness 0.37296 

(0.031345) 

0.572952 

(0.067039) 

1.00000 

(0.000000)  

Eigenvector 0.65571 

(0.060462) 

0.820117 

(0.04871) 

0.4535 

(0.05176) 

1.00000 

(0.000000) 
 

Table 32. Al-Qaeda. 

 Betweenness Degree Closeness Eigenvector 
Betweenness 1.00000 

(0.000000)    

Degree 0.657298 

(0.058526) 

1.00000 

(0.000000)   

Closeness 0.225437 

(0.011616) 

0.569288 

(0.027522) 

1.00000 

(0.000000)  

Eigenvector 0.141788 

(0.041205) 

0.519142 

(0.068754) 

0.147727 

(0.050628) 

1.00000 

(0.000000) 
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Table 33. Wintering-Over A. 

 Betweenness Degree Closeness Eigenvector 
Betweenness 1.00000 

(0.000000)    

Degree 0.528867 

(0.18476) 

1.00000 

(0.000000)   

Closeness 0.714927 

(0.080143) 

0.389236 

(0.17361) 

1.00000 

(0.000000)  

Eigenvector 0.396394 

(0.228421) 

0.949425 

(0.00954) 

0.275945 

(0.189964) 

1.00000 

(0.000000) 

 

Table 34. Wintering-Over B . 

 Betweenness Degree Closeness Eigenvector 
Betweenness 1.00000 

(0.000000)    

Degree 0.444704 

(0.143775) 

1.00000 

(0.000000)   

Closeness 0.510902 

(0.214759) 

0.489819 

(0.113464) 

1.00000 

(0.000000)  

Eigenvector 0.412923 

(0.168626) 

0.939555 

(0.020432) 

0.366582 

(0.126274) 

1.00000 

(0.000000) 
 

Table 35. Wintering-Over C. 

 Betweenness Degree Closeness Eigenvector 
Betweenness 1.00000 

(0.000000)    

Degree 0.45036 

(0.234517) 

1.00000 

(0.000000)   

Closeness 0.725564 

(0.087041) 

0.605238 

(0.124091) 

1.00000 

(0.000000)  

Eigenvector 0.401038 

(0.255925) 

0.96263 

(0.011831) 

0.542198 

(0.118581) 

1.00000 

(0.000000) 
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Several interesting insights can be gained from looking at the correlation between 
network measures in the six data sets investigated.  There is a high, significant correlation 
between degree and eigenvector centrality in all data sets.  There is no other pair of 
measures with a correlation that is significant in all data sets, to include the three 
wintering-over data sets which are all very similar.  The correlations between degree and 
eigenvector centrality are lower in data sets with more nodes.  Since the eigenvector 
centrality measures the influence of a node to the extent that its neighbors are central, this 
is not surprising.  With less than 30 nodes, it is less likely to find a node with influential 
alters that is not highly connected itself.  There is no pattern in this correlation that would 
indicate why one data set is more robust to missing links than another. 

 
  There is a generally positive correlation across all measures for all data sets except 

for the Fraternity data.  The Fraternity data was the only data set that involved rankings.  
In addition, the rankings were dichotomized using an approach proposed in the literature 
by Krackhardt (1998).  The dichotomization scheme may affect the network structure.  
Future work could explore the effects of dichotomization schemes on network analysis to 
include the correlation between measures, identification of key entities, identification of 
highly central actors and more. 

 
One possible explanation for the Fraternity and the Leavenworth 07 data sets not 

being robust to missing links lies in the correlation between degree and betweenness. The 
Leavenworth 07 data possesses a very high correlation between degree and betweenness 
that is greater than any of the other data sets.  The only significant correlations in the 
Fraternity data are the degree-betweenness and degree-eigenvector centrality, which is 
typical of all data sets.  Since the robustness experiment was focused on detecting a 
change in the average betweenness of the network over-time, it may be plausible that a 
correlation between degree and the measure being investigated could affect the power of 
detection in the procedure.  More research is required to reach definitive conclusions. 

 
Social network change detection is a powerful, novel approach for detecting 

significant changes in organizational behavior over time.  This approach has been 
demonstrated to be effective in both simulated and real-world data.  In this chapter, I 
have addressed the robustness of the proposed approach to missing data and to statistical 
dependence in network measures.  Social network change detection is found to be robust 
to missing data up to a level of 10% for most data sets investigated.  In the case where the 
approach was not robust, such as the Fraternity and Leavenworth 07 data sets, there was a 
high correlation between the degree and the betweenness measure, which was monitored 
for significant change.  This suggests that the robustness of social network change 
detection may be a function of the statistical dependence between network measures.  
This opens a new area of research into correlations in network measures, the robustness 
of network measures to missing data, and the robustness of change detection methods.  In 
the near term, this chapter demonstrates that analysts can still gain valuable insights into 
dynamic networks using the methods proposed in this thesis. 
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9 Summary 
 
9.1  Lessons Learned 

 
Control charts are a critical quality-engineering tool that assists manufacturing 

firms in maintaining profitability (Montgomery, 1991; Ryan, 2000).  The 10 examples 
presented in this paper demonstrate that social network change detection could enable 
analysts to detect important changes in a variety of different network measures over time.  
Furthermore, the most likely time that the change occurred can also be determined.  This 
allows one to allocate minimal resources to tracking the general patterns of a network and 
then shift to full resources when changes are determined5

9.2  Limitations  

. 
 
This paper describes an algorithm for change detection, and then demonstrates its 

ability to detect changes in networks.  No doubt other change detection methods will 
emerge.  My point, is that it is critical to be able to detect change in networks over time 
and to determine when those changes are not simply the random fluctuations of chance.  
The strengths of the proposed method are its statistical approach, ability to quantify the 
rate of false alarm, a wide range of social network metrics suitable for application, its 
ability to identify change points in organizational behavior, and its flexibility for various 
magnitudes of change.  While the CUSUM may be effective in detecting change in non-
normally distributed network measures, the false positive estimates may be biased.  Good 
social network measures to use are those that scale well with the number of nodes and are 
averaged over all nodes in the network.  Examples, demonstrated in this thesis are the 
average, maximum, and standard deviation of the betweenness, closeness, and 
eigenvector centralities.  Average Degree and Density are not used, because they do not 
scale well with the number of nodes in the network.  Individual nodes that are not present 
in all time periods may therefore bias the CUSUM statistic, causing an increased rate of 
false alarm, or reducing the power of the statistic.    Other limitations of the algorithm 
cannot yet be determined as this is the first application of statistical process control 
methods to the problem of SNCD.  Future research will provide much greater insight into 
the strengths and limitations of this approach to the problem.  The remainder of this 
chapter will identify specific areas of caution when interpreting findings and identify 
areas for future research. 
 
 

 
The empirical results described in this paper, such as the detection of change in 

the Al-Qaeda network should be viewed with caution.  I present them here purely to 
illustrate the methodology. Limitations on the data make it difficult to determine the 
validity of the results; thus, we should simply view these results as showing the promise 

                                                 
5 Three social network change detection algorithms (Shewhart X-Bar, Cumulative Sum, and Exponentially 
Weighted Moving Average) are available in the “Over-Time Viewer” and the “Statistical Change Detection 
Report” in the software tool, Organizational Risk Analyzer (ORA) available through the Center for 
Computational Analysis of Social and Organizational Systems (CASOS), http://www.casos.cmu.edu. 
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of this methodology.  The IkeNet data is a small sample capturing only email traffic and 
not all communication and interaction among officers.  The fact that even in this small 
sample of behavior we were able to systematically detect a key change suggests the value 
of the proposed approach.  The Al-Qaeda data, was based on open source information.  
As such it is an incomplete representation of interaction in that terror network.  We 
cannot be sure that we have the entire communication network, or even a true picture of 
the observed communication network.  However, the fact that our technique detects a 
change corresponding with the 9/11 attacks is intriguing.  This work suggests that our 
approach may provide some ability to detect change even when there is incomplete 
information. 

 
 That being said, it is important that future work examine the errors associated 

with this technique, both the false positives and false negatives.  Future work should also 
consider the sensitivity of this approach to missing information, and to the reason why 
the information is missing.  For example, data sets collected post-hoc that focus on 
activity around an event, such as the Al-Qaeda data are prone to errors of missing nodes 
and as a result links prior to the event.  Whereas, data sets collected based on opportunity, 
such as the IkeNet data, are prone to missing links among the nodes. 

 
In an effort to define a manageable thesis, several limitations were placed on the 

scope of the research.  This thesis did not attempt to completely define the probability 
structure of all network models.  This thesis is focused on a fixed network that does not 
grow in size over time.  Findings are limited to modeling and detecting changes, but not 
the causes of the change.  The extents to which social network measures and data are 
used are only to demonstrate the mathematical soundness of the method.  

 
The simulations and most of the real-world data sets all consisted of a fixed number 

of nodes that did not change over time.  In some data sets the number of nodes can 
change, as in the Al-Qaeda data set.  In one sense, the change in the number of nodes is a 
change itself.  If the organization is growing or shrinking at a steady rate, however, one 
may be interested in monitoring the difference in a measure between time points.  This 
may be equivalent to monitoring the rate of growth in the measure being monitored. In 
some cases, network measures may not be as sensitive to the addition or removal of 
nodes.  Additional work is required to study the impact on change detection of adding or 
removing nodes at a steady rate. 

 
This thesis did not specify any particular distribution for network measures.  The 

estimates of false alarms are determined based on normality assumptions.  As stated in 
Chapter 2, networks where the relationship between nodes requires a meaningful 
investment of time or other resources tend to have many network measures that appear 
normally distributed.  In other networks, such as scale-free networks common for 
modeling the internet and certain biological networks, the false alarm rate may be 
adversely affected.  Figure 67 shows the variance of data collected from a normal and 
right skewed distribution versus the number of observations sampled.  The increased 
variance from the right skewed data will inflate the decision interval calculated on a few 
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initial observations, making it more difficult to detect change, or more susceptible to false 
alarm.   

 
Figure 69.  Bias Induced in Right Skewed Data 

 
Some social scientists do not believe that groups can be adequately captured by 

quantitative analysis and statistical distributions (Morrow and Brown, 1994).  I do not 
attempt to tackle this argument.  Clearly, the work of this thesis contributes to 
quantitative methods in social science.  I also do not claim that a detected change is 
definitive proof that the organization has in fact changed.  This approach will only detect 
a statistically significant change in the observed network measure of an organization.  
This could be a false alarm, an expected event affecting the organization, among other 
causes.  Change detection simply alerts an analyst or social scientist that a change may 
have occurred.  It is incumbent on the analyst or social scientist to investigate the group 
using many different methods in the social sciences to determine if change has in fact 
occurred, the nature of that change, and the cause of change.  The approach laid out in 
this thesis will narrow the scope of this task by quickly identifying potential change and 
estimating when the change occurred. 
 

Network change detection was only demonstrated on 10 data sets.   With a vast 
amount of existing data, change detection could be applied to many data sets with 
interesting and unique findings.  The focus of this thesis is to develop new analytic 
methods that can be applied to any network over time.  The selected data sets were 
chosen to clearly articulate these methods, and to create a concise and thorough thesis. 

 
This thesis does not attempt to speak to the importance of change.  Rather, this thesis 

articulates an approach to characterize network behavior based on a suite of user defined 



127 
 

network measures.  Change detection seeks to identify a statistically significant change in 
the observed network measures over time.  I do not claim that significant changes occur 
suddenly.  They can emerge slowly over time, or rapidly.  Of course, change detection 
will respond better to rapid changes, since slow changes are also slow to detect.  Even in 
such a situation, change detection offers a more powerful detector of change than simple 
over time observation. 
 

It is also important to point out that change detection can be deliberately obscured.  
Recognizing that change detection is only detecting a statistically significant change in a 
network measure, the monitored organization could take actions to hide or add links to 
make the observed measures appear consistent over time.  Considering the complexity of 
networks, this is a more challenging task than it may seem.  The nature of the network 
context significantly affects this problem.  More work is required to investigate methods 
to conceal network change from the methods proposed in this thesis. 

 
 

9.3  Future Directions 
 
In order to rectify the above shortcomings, future research should focus on near-

complete datasets with high resolution.  Higher resolution involves taking many 
snapshots of the network.  This may mean, simply an increase in frequency, e.g. changes 
by month, or it may mean a longer time horizon, e.g., more years.  The right choice will 
depend on the problem where we want to detect network change.  More data points will 
provide more opportunities to detect changes while they are still small, instead of 
allowing them to incubate and grow as was the case for the Al-Qaeda data.  As a 
minimum two observed networks are required to estimate the normal behavior of a social 
group being monitored for change.  In practice, five or more networks are preferred to 
reduce the variance in estimating the CUSUM parameters. Larger datasets will also 
provide near continuous network measures permitting the use of control charts for 
continuous data.  Near complete data means that the data should cover the 
communication network, with little or no missing information for a large contiguous 
period.  Here one might consider simply tracking a group in general, as opposed to 
focusing on tracking relative to a specific event.  Data such as that on the US Congress or 
Supreme Court that is regularly output might provide a good source of data. 

 
Research on the distributions is needed.  Preliminary work on the distributions of 

network measures suggest that the assumption of normality does not hold for small 
networks, extremely sparse networks, and for certain metrics (Kim and Carley, working 
paper).  Future work should consider these factors to determine the range of networks for 
which SNCD will work.  Clearly, if the network measures are normally distributed, the 
CUSUM control chart can be used to monitor network change.  If they are not, the false 
alarm probability will increase as demonstrated in Figure 69.  Other topological 
properties may also affect change detection.  Keeping in mind that change detection is 
focused on a defined set of measures, the distributional assumptions can be verified much 
like residual analysis in regression.  When the measures appear to violate normality 
assumptions, it may be possible to develop transformations or develop more complex 
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change detection methods.  Future work should address this issue.  It is important to keep 
in mind that most real-world social networks satisfy the distributional assumptions for the 
change detection methods proposed in this thesis. 

 
It may also be possible to extend change detection to node level measures.  This 

would be done by simply monitoring the node level measure of an individual agent or 
agents over time using one of the algorithms proposed in Chapter 4.  Again the 
distributional assumptions would need to be verified.  Node level change detection may 
help further isolate change in an organization by monitoring the behavior of key 
individuals, without the noise introduced by less influential agents.  More work in this 
area will prove beneficial. 

 
Future research should also look at the sensitivity of the optimality constant, k and 

control limit values of the CUSUM Control Chart for network measure change detection.  
As stated earlier, these values are generally arbitrarily chosen and then optimized for the 
process.  By using further Monte Carlo simulations, a researcher should determine which 
parameter value would be best in detecting certain types of changes such as sudden large 
changes or slow creeping shifts.  Usage of control charts on comparing models and 
observations should also be studied to see what specific conclusions can be obtained. 
 

Multi agent simulations provide valuable insight into the performance of control 
charts for social network change detection applications.  Simulations allow an 
investigator to introduce various changes into a simulated organization and evaluate the 
average detection length for different algorithms.  Simulations provide an efficient means 
of evaluating change detection on social networks.  More importantly, however, is the 
ability to create more controlled experiments, by fixing certain variables, exploring 
others, and using many replications to estimate error.  Simulation studies will continue to 
be extremely useful in exploring extensions of this methodology.   

 
Social network change detection is important for identifying significant shifts in 

organizational behavior.  This provides insight into policy decisions that drive the 
underlying change.  It also shows the promise of enabling predictive analysis for social 
networks and providing early warning of potential problems.  In the same way that 
manufacturing firms save millions of dollars each year by quickly responding to changes 
in their manufacturing process, social network change detection can allow senior leaders 
and military analysts to quickly respond to changes in the organizational behavior of the 
socially connected groups they observe. The combination of statistical process control 
and social network analysis is likely to produce significant insight into organizational 
behavior and social dynamics.  Immediate applications to counter terrorism and 
organizational behavior are obvious.  As a scientific community we can hope to see more 
research in this area as network statistics continue to improve. 
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APPENDIX A – Social Network Primer 
In the 2005 National Research Council “Network Science” report, recommendation 

#1 stated,  
 
“The federal government should initiate a focused program of research 
and development to close the gap between currently available 
knowledge about networks and the knowledge required to characterize 
and sustain the complex global networks on which the well-being of 
the United States has come to depend.” (p. 4) 
 
Network Science differs from classical scientific methods in that it views the 

subject matter as being made up of many interacting entities that are called nodes. One 
application area of Network Science that has become extremely popular is Social 
Network Analysis (SNA).  SNA looks at groups of people and their interactions.  This 
type of analysis provides a methodology that does a very good job at explaining much of 
the complex behavior of these social groups.  This work focuses specifically on detecting 
statistically significant changes over time in the observed social networks of several 
socially connected groups.  

 
Social network analysis (SNA) examines relationships between social entities (i.e. 

people, groups, tasks, beliefs, knowledge, etc.).  These entities are modeled with nodes 
and their relationships are modeled with links.  Not all nodes are connected and some 
nodes may have multiple connections.  This mathematical model is applicable in many 
content areas such as communications, information flow, and group or organizational 
affiliation (Tichy, et. al., 1979; Wasserman and Faust, 1994).  SNA thus relies heavily on 
graph theory to make predictions about network structure. 

 
To illustrate the importance of understanding social networks, I present an 

example of an informal network in a military organization.  Consider the non-
commissioned officer (NCO) support chain in an Army company of 150 soldiers.  In this 
organization, the first sergeant (1SG) was new to the company.  This was his second 
assignment as a 1SG.  In his previous assignment, he brought some great ideas to his 
company and made significant improvements.  The command sergeant major (CSM) 
thought that the 1SG would be able to make similar improvements in our example 
company.  Unfortunately, the 1SG’s ideas were not working in the same way that it did 
with the previous company.  Good ideas can often fail when they are implemented 
poorly.  Understanding the informal networks will provide insight into some important 
organizational dynamics. 

 
Before we look at the informal network, we must understand the formal chain of 

support network in an Army company.  The chain of support is illustrated in Figure 70.   
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Figure 70. Formal NCO Chain of SupportFigure 1. 

 
The 1SG is the senior NCO in the company.  His pay grade is E-8 and he has usually 
served in leadership positions such as squad leader and platoon sergeant.  There are two 
platoon sergeants (PSG) in the company as well as an operations sergeant.  These NCOs 
are sergeants first class (SFC), or pay grade E7.  The operations sergeant is sometimes 
referred to as the headquarters platoon sergeant.  His soldiers are responsible for 
providing support to the platoons.  The SFCs have usually served previously as a squad 
leader.  Their direct supervisor is typically a lieutenant.  While the chain of command 
consists of commissioned officers, the chain of support is a parallel network of NCOs 
that provide the officers with advice, experience, and logistic support.  Each of the 
platoons has three squad leaders, who are staff sergeants (SSG), pay grade E-6.  The 
company headquarters consists of one SSG who serves as the supply sergeant and three 
sergeants (SGT) of pay grade E-5.  The three SGTs serve as the training sergeant, the 
personnel sergeant, and the communications sergeant.  All the nodes represented in 
Figure 1 are sized according to their rank.  Thus the 1SG is represented by a larger size 
node than the platoon sergeant, which is larger than the squad leader and so on. 
 
 Does the 1SG have the power necessary to make changes in the organization?  
According to the formal chain of support, he does.  However, in our example, the 1SG is 
not effective in making change.  His ideas are no different than they were in a previous 
company where he was effective.  The difference lies in the informal network of the two 
companies.   
 

Informal networks can be extracted in different ways.  In the appendix, I present 
an unobtrusive method of estimating the informal network through collecting e-mail data 
on individuals in an organization.  Command sensing sessions and surveys can also be 
effective in determining the informal networks in an organization. 

 
The NCOs in this company were asked “What individuals in the company help 

you to get your job done.” The NCOs were not limited in the number of people they 
could list.  This information represents the informal network.  Individuals are not told 
who they have to go to for help or advice.  People seek out this type of support from 
others for a variety of reasons.  Sometimes informal relationships are determined by 
perceived competence, approachability, personality, common interests, or even 
racial/ethnic similarity.  Figure 71 shows the informal network for our example company. 
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Figure 71. Informal NCO Network. 

 
The NCOs in first platoon, on the left, tended to follow the NCO support chain for 

job assistance, as did second platoon in the middle.  In second platoon, one of the squad 
leaders also sought assistance from the other two squad leaders in the platoon.  Perhaps 
this squad leader was new and looked to his peers for mentorship.  Members in the 
headquarters platoon had a similar dynamic.  The node that stands out as unusual in the 
informal network is the training sergeant, who is looked to more than any other 
individual for assistance.  Even the 1SG looks to the training sergeant for assistance. 

 
There are several reasons for this informal organizational structure.  The training 

sergeant had been serving in this capacity for almost a year and a half, which is a long 
time to serve in a duty position in the military.  The training sergeant knew almost all of 
the NCOs that served in the battalion (higher) headquarters.  He would often spend off-
duty time with the battalion NCOs as well as with NCOs in his own company.  In 
addition, he belonged to a couple of social groups which also had NCOs from different 
companies as members.  Through this larger social network, the training sergeant was 
able to more effectively coordinate training resources through his friendship ties at the 
battalion level than other NCOs in other companies.  The training sergeant was also able 
to mobilize his social network to find opportunities for squad leaders to send their 
soldiers to weapons ranges conducted by other units, use sections of training area 
reserved by other units, and coordinate similar training resources.  The training sergeant 
enjoyed his position in the company.  He liked the fact that senior NCOs would come to 
him for support.  This position in the informal network gave the training sergeant more 
power. 

 
When the 1SG first arrived at the company, he unknowingly hurt his effectiveness 

in the informal network.  He wanted to assert himself as a leader and decided that he 
needed to make sure that soldiers maintained a high standard of military appearance and 
bearing.  The training sergeant did not make a good impression on the 1SG.  The 1SG felt 
that the training sergeant did not maintain a professional appearance and that he was 
cavalier and borderline disrespectful.  This may not be entirely surprising, considering the 
power that the training sergeant held in the informal network.  The 1SG made several 
corrections to the training sergeant and expressed his concerns about military discipline 
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to the operations sergeant.  The training sergeant felt put-down and embarrassed by this 
first meeting.  He did not openly discuss his feelings.  As a result, the training sergeant 
was not eager to help make the new 1SG successful, or implement any of the 1SG’s 
ideas.  In addition, the training sergeant disagreed with many of the 1SG’s ideas to make 
the company more efficient by requiring NCOs to brief him on training resources they 
were using for their training, and balancing those resources across the company.  This of 
course, took away some of the power that the training sergeant enjoyed.   

 
After a few months, it was time for the training sergeant to conduct a permanent 

change of station (PCS) and a new NCO assumed the duties of training sergeant and the 
1SG’s ideas slowly made the company better.  However, these improvements might have 
been adopted more rapidly and more effectively had the 1SG been aware of the informal 
social network in the company.  Perhaps, if the company leadership was able to monitor 
the social network, they would have prevented a relatively junior NCO from having so 
much power in the organization.  Perhaps, the company leadership could have utilized the 
training sergeant’s informal network through appropriate incentives.  In any case, this 
example illustrates the importance of understanding the informal social network in an 
organization. 

 
Social network analysis offers more than pictures: it provides an entirely new 

dimension of statistical analysis for organizational behavior.  Traditional analysis focuses 
on individual attributes.  Social networks focus on relationships between individuals.  
Traditional analysis assumes statistical independence, where social network analysis 
focuses on dependent observations.  Traditional analysis seeks to identify correlation 
between significant factors and a response variable.  Social network analysis seeks to 
identify organizational structure.  The underlying mathematics behind traditional analysis 
is calculus, the language of change.  The corresponding mathematics behind social 
network analysis is linear algebra and graph theory.  These differences can be significant 
in terms of how someone looks at social dynamics. 

 
Nodes are defined in terms of a set of n verticies, V = v1, v2,…,i,…,j,…, vn. The 

nodes are related to each other with a set of links L, where lij is a relationship between 
node i and j.  A social network is often shown as an adjacency matrix, where the rows 
and columns correspond to the nodes and each cell aij can take on any numerical value 
corresponding to the link lij. In an unweighted network, cells are dichotomous and are 
represented as a 0 or a 1: the presence or absence of a link or relationship between nodes i 
and j. Networks where relationships between nodes are always mutual are called 
undirected networks, and their adjacency matrices will always be symmetric. Directed 
networks, on the other hand, can model both mutual and directional relationships.  A 
value of 1 in cell aij represents a directed relation from node i to node j. In application, 
the diagonal of the adjacency matrix is rarely populated with anything but zeros, since 
interactions from an entity to itself are not generally interesting. 
 

The potential complexity of interactions within even a small network, while 
discrete, grows exponentially with the number of entities. For this reason, algorithmic 
approaches to exploring distributions within constrained networks quickly become 
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computationally challenging. In a directed network, the number of possible relationships 
among nodes can be found by the expression, nn −2 , where n represents the number of 
nodes in the network.  The number of possible configurations of a network with a 
specified number of nodes (n) and links (l) can be thought of as the number of unique 
combinations of l nodes within the network given by, 
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A network of 30 nodes, for example, can be uniquely configured roughly 7.87 x 10261 
different ways.  With such large possible combinations of network structure, 
understanding how networks form and how they change over time is a complex problem. 
 
 In 1959, mathematicians Paul Erdős and Alfréd Rénia made revolutionary 
discoveries in the evolution of “random graphs.”  For our purposes a graph is 
synonymous with network.  Erdős and Rénia use the term graph, referring to the field of 
mathematics called graph theory.  This term was introduced by a chemist, Sylvester in 
1878, as mathematicians were applying their ideas to chemistry.  Social networks were 
independently introduced in the social sciences in 1933 by Moreno.  Figure 72 is the first 
social network published in the New York Times. Erdős and Rénia’s contribution to 
graph theory found great application in the social sciences, building on the work of 
Moreno and others, who use the term network.    
 

 
Figure 72 The First Published Social Network, 1933. 
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  In their eight papers Erdős and Rénia evaluate the properties of random graphs 
with n nodes and l links.  For a random graph, G, containing no links, at each time step a 
randomly chosen link among the possible links is added to G.  All of the possible links 
are equiprobable.  A general model used to generate random graphs is as follows: “For a 
given p, 0 ≤ p ≤ 1, each potential link of G is chosen with probability p, independent of 
other links.  Such a random graph is denoted by Gn,p where each link is determined by 
flipping a coin, which has probability p of coming up heads.”  In this model of random 
graphs each link has an equal probability of occurring or not occurring within the graph.  
This random graph model also assumes that all nodes in the graph are present at the 
beginning and the number of nodes in the network is fixed and remains the same 
throughout the network’s life.  Additionally, all nodes in this model are considered equal 
and are undistinguishable from each other.  
 

Utilizing Erdos’ theory of random graphs as well as the class of uniform 
distributions associated with these graphs, Holland and Leinheart (1981) developed a 
variety of statistical tests for the analysis of social networks.  Using a uniform 
distribution these tests spread the total probability mass equally over all possible 
outcomes, therefore giving an equal probability to the existence of a link between any 
two nodes in the network.  These statistical tests were used to develop a reference frame 
or constant benchmark to which observed data could be compared in order to determine 
how “structured a particular network was, or how far the network deviated from the 
benchmark.” (Wasserman and Faust, 1994)   
 

In 1969, Mark Granovetter proposed the strength of weak ties.  In Granovetter’s 
social world, our close friends are often friends with each other as well, leading to a 
society of small, fully connected circles of friends who are all connected by strong ties.  
These small circles of friends are connected through weak ties of acquaintances.  In turn, 
these acquaintances have strong connections within their own circle of friends.  The weak 
ties connecting circles of friends play an imperative role in numerous social activities 
from finding a job to spreading the latest fad (Granovetter, 1973; Aguirre, et. al., 1988).  
Close friends who have strong connections are often exposed to the same information; 
therefore, weak ties are activated to bridge out of our circle of friends and to the outside 
world.  
 

Building off of Granovetter’s model, Duncan Watts and Steven Strogatz (1998) 
developed the clustering coefficient, dividing the number of links of a node’s first order 
connections by the number of links possible between these first order connections.  This 
clustering coefficient illustrates the interconnectivity of a circle of friends, where a value 
close to 1 demonstrates all first order connections of a node are connected with each 
other.  Conversely, a value close to 0 shows that a node’s first order connections are only 
connected through that node. 
 

Using the clustering coefficient, the Watts-Strogatz model of small world 
networks is the first to reconcile clustering with the characteristics of random graphs 
(Barabasi, 2003; Watts, 2004).  According to the Watts-Strogatz model each node is 
directly connected to each one of its neighbors resulting in a high clustering coefficient.  



143 
 

By clustering alone, this model greatly increases the shortest path for a node to get to 
another node.  However, by adding only a few random links between nodes of different 
clusters the average separation between nodes drastically decreases.  This model while 
containing random links between nodes keeps the clustering coefficient relatively 
unchanged.  While the Watts-Strogatz model originally did not add extra links to the 
graph, but randomly rewired some of the links to distant nodes, the addition of random 
links was proposed by Watts and M. Newman (1999). 
 

According to Reka Albert and Albert-László Barabási (1999), the random graph 
theory of Erdős and Rénia was rarely found in the real world6

  

.  Albert and Barabási have 
found that many real world networks have some nodes that are connected to many nodes 
and others that are connected to few nodes.  Their empirical tests showed that the 
distribution of the number of connections in many networks all followed a power-law 
distribution.  These networks lack the characteristic scale in node connectivity present in 
random graphs, and therefore, are scale-free (Barabasi, 2003).  As a result of the number 
of connections following a power distribution, hubs are created among nodes in the 
network.  A hub is a highly connected node that contains most of the links in the network 
and creates short paths between any two nodes in the network.    
 

Unfortunately, most of these network models do not have a defined probability 
space that proper statistical tests can be formed against.  The statistical tests developed by 
Holland and Leinhardt (1981) apply for Erdős - Rénia random graphs, however, they do 
not apply to other network topologies (Scott, 2000; Albert and Barabasi, 2002; Borgotti, 
Carley, and Krackhardt, 2006; McCulloh et al, 2007).  Without a defined probability 
space, detecting statistically significant change over time is impossible.  Chapter 2 of this 
thesis explores the probability distributions of one network property, degree.  The random 
graph of Erdős and Rénia is compared to the scale free graph of Albert and Barabasi.  
Chapter 3 provides a different frame work for viewing the probability space of a network.  
This alternate frame work is laid out as a basis and validation of multi-agent simulation 
for modeling networks.  Chapters 4-7 then build off of this framework to propose change 
detection in social networks over time. 

                                                 
6 I have found many social networks do not follow a power-law distribution and explore these claims in 
more detail in Chapter 2. 
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APPENDIX B - CONSTRUCT: Multi-Agent Simulation Model 
 

Construct is a multi-agent simulation grounded in contructuralist theory (Carley, 
1990, 1995).  This multi-agent simulation is used to explore the performance and 
limitations of Social Network Change Detection (SNCD).  The Link Probability Model 
(LPM), presented in Chapter 3 of this thesis, provides the stochastic engine for the multi-
agent simulation.  At each time step the link probabilities are determined by the nodes’ 
perceived homophily, socio-demographics, and proximity.  These social factors re-
introduce the additional relational dependence missing in the raw LPM. 

 
Construct is a dynamic-network multi-agent simulation model that can be used to 

examine the evolution of social, knowledge and activity networks in response to external 
interventions and the normal course of human interaction (Carley, 1990, 1991)7

Similarly, affect control theory is a move to incorporate the social, in terms of task 
constraints and social knowledge, into a cognitive and affective model of the individual's 
evaluation of; and hence determination of future action (Heise 1971, 1979, 1987; Smith-

. Network 
evolution and the diffusion of information and beliefs through social networks can be 
examined using Construct (Carley, 1995; Hirshman & Carley, 2007b, Hirshman, Martin 
& Carley, 2008 ). Construct captures group dynamics under diverse cultural and 
technological configurations (Schreiber & Carley, 2004). Consequently it effectively 
models organizational change (Carley & Hill, 2001), socio-cognitive inconsistencies 
(Carley & Krackhardt, 1996), the impact of communication technologies (Carley, 1995; 
Carley 2002). To use Construct the researcher specifies both the agents replete with 
information processing capabilities (Hirshman, Carley & Kowalchuk, 2007a) and the 
networks in which they are embedded (Hirshman, Carley & Kowalchuk, 2007b). 

 
Before, we explore the ability for network simulation to represent reality, we must 

first lay the foundational theory behind constructuralism as it applies to the multi-agent 
simulation Construct.  Advances in both cognitive science and network theory have 
engendered the belief that it should be possible to develop analytical models of the 
relationships between individuals that would enable quantitative predictions of changes in 
interaction and that take into account both the self and the society, the individual and the 
group, the cognitive and the social. These advances have rekindled the dream, originally 
seen in social comparison theory (Festinger, 1954), cognitive dissonance theory 
(Festinger, 1957), and balance theory (Heider, 1958), that it is possible to build a 
mathematics of group change as a function of individual change, yet there is still a gap 
between the more cognitive and individual perspective in which changes in relationships 
between individuals result from independent dyadic encounters and the more social and 
structural perspective which changes in relationships between individuals result from 
gross changes to the group. Currently, a great deal of research is directed at bridging this 
gap. On the individual side the linking of symbolic interactionism and role theory can be 
viewed as a move to incorporate social or group factors into an otherwise predominantly 
cognitive. 

 

                                                 
7 The Construct system itself is freely downloadable from the CASOS website, http://www.casos.cs.cmu.edu/projects/construct 
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Lovin 1987). The focus on the change in the individual or his or her relationships to an 
actual or a generalized other, treats the group or social world as present, but relatively 
fixed. This implicitly assumes that social or group behavior is somehow an aggregate of 
the results of independent encounters between pairs of individual. This last assumption is 
not exclusive to those who propose more cognitively rich models of behavior. 

 
For example, we also see it in the work on status and dominance where hierarchies 

are viewed to result from independent dyadic encounters (Berger, Conner, and Fisek 
1974; Rosa and Mazur 1979; Lamb 1986). On the up side, evidence is being amassed that 
group behavior cannot be  accounted for by aggregating independent dyadic encounters 
(Chase 1974, 1980; Ridgeway and Diekema 1989) but is rather an emergent property of 
the simultaneous actions of all group members (Bales 1950; Homans 1950; Chase 1974, 
1980; Fararo and Skvoretz, 1986). The mechanism by which such group behavior 
emerges remains elusive. As a step toward locating this mechanism, research in the 
structural and network traditions has been moving toward providing explanations, and 
hence predictions, of individual cognitive change in terms of the individual's social 
position. 

 
This can be seen in Burt's model of action (1982) where perceived similarity and 

hence norms, attitudes, likelihood of adopting innovations, and so on is a function of 
social position.  This is further supported by Krackardt's notion (1985, 1986, 1987) that 
the individual's social cognition (which he defines as the individual's perception of who 
interacts with whom) is a function of social position. These works reveal a more 
cognitive actor than that revealed by classic structuralist whose behavior is nonetheless 
socially situated. Yet, like the more cognitive individual models, these social models of 
individual change, still focus on the change in the individual while maintaining a 
relatively fixed social world. Thus, both the individual and the social perspectives treat 
the social world as fundamentally stable. Consequently, neither perspective provides a 
mechanism by which such individual changes can produce social change. Neither 
approach is sufficient to explain, let alone quantitatively predict, changes in the 
interaction patterns for all members of the society at once. Rather, the explanations of 
social change are highly contextual relying on situation specific factors, forces, and 
constraints such as goals, coercion, bureaucratization, change in group size, and 
membership rituals. 

 
Every group has a population consisting of some number of individuals. In every 

group there is a set of information or facts that is potentially learnable by the members of 
the group. This set of information contains each piece of information that is known by at 
least one group member. The number of such facts will be denoted by K. At a particular 
point in time, say time period t. The individual, for any piece of information, such as k, 
either knows that fact or does not. This is denoted by F (t) = 1 if the fact is known by 
individual at time period t and 0 otherwise. 

 
Every society has a culture, which can be thought of as the distribution of 

information across the population. At a particular point in time, say time period t, an 
individual i has a certain probability to interact with another other member of the society, 
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j. This is exactly where the LMP comes into consideration. Every society has a social 
structure, which can be thought of as the distribution of interaction probabilities across 
the population.  The initial make-up of these probabilities and the transition of these 
probabilities at different time points are thus determined by several factors. 

 
The first assumption of the Construct model posits that interaction leads to shared 

knowledge. It is generally demonstrable that individuals acquire information (and hence 
will come to share knowledge) during interactions. In order to represent this process a 
variety of simplifying assumptions are made. All pieces of information are entirely 
unstructured and undifferentiated. Thus, the individual may know conflicting information 
such as the sky is blue and the sky is green. Consequently, the overlap in what two 
individuals' know is just the sum of the pieces of information that they both know. When 
two individuals interact each communicates one fact to the other. Individuals always 
learn the piece of information that is communicated to them. Consequently, if individual i 
knows that the sky is blue and individual j knows that the sky is green and individual j 
communicates to individual i that the sky is green, the overlap in their knowledge 
increases. Hence they have more shared knowledge. All facts known by the individual 
are equally likely to be communicated. 

 
According to constructuralism, both the individual cognitive world and the socio-

cultural world are continuously constructed and reconstructed as individuals concurrently 
go through a cycle of action, adaptation, and motivation. During this process not only 
does the socio-cultural environment change, but social structure and culture co-evolve in 
synchrony. Carley (1991a) defined the following primary assumptions in describing 
constructuralism: 

 
1. Individuals are continuously engaged in acquiring and communicating information 
2. What individuals know influences their choices of interaction partners 
3. An individual's behavior is a function of his or her current knowledge 
 
In addition to these primary assumptions there were a series of implicit assumptions 

that upon explication serve to clarify and expand the primary assumptions.  Following is 
an expanded list of assumptions, numbered to clarify their relation to the primary 
assumptions: 

 
1a. Individuals, when interacting with other individuals, can communicate 

information 
1b. Individuals, when interacting with other individuals, can acquire information 
1c. Individuals can learn the newly acquired information thus augmenting their store 

of knowledge 
2a.  Individuals select interaction partners on the basis of relative similarity and 

availability 
2b. individuals engage in interaction concurrently thus an individual's first choice of 

interaction partner may not be available. 
3a. individuals have both an information processing capability and knowledge which 

jointly determine the individual's behavior 



147 
 

3b. individuals have the same information processing capabilities 
3c. individuals differ in knowledge as each individual's knowledge depends on the 

individual's particular socio-cultural-historical background 
3d. individuals can be divided into types or classes on the basis of extant knowledge 

differences. 
 
These assumptions lead to a simulation template, which features a dynamic LPM as 

the stochastic engine. The LPM has convenient advantages in this capacity.  The LPM 
avoids the issues of model degeneracy inherent in the ERGM.  The probability of link 
occurrence is based on the historic presence of links and on social theory established in 
the literature, therefore, it does not use a Markov assumption or over specify a statistical 
model like other approaches. For these reasons, the LPM provides a reasonable stochastic 
engine for the Construct multi-agent simulation model.  The multi-agent simulation 
simply adds additional relational dependence into a model that already performs well as 
we saw in Chapter 3, to make it more realistic and capable of evolution over time. 

 
 

B.1 Importance of  Simulation 
 

The theoretical underpinnings of constructuralism as manifested in Construct lead us 
to a multi-agent simulation which utilizes a dynamic LPM as a stochastic engine for the 
development of knowledge diffusion and relationship building. What does this simulation 
provide the user? 

 
The simulation provides an accurate, realistic simulation of social dynamics.  We 

envision several ways in which this will be important to the military in particular and the 
wider academic audience in general. 

 
Construct can be used as a valuable decision support tool for military commanders.  

The social dynamics of terrorist organizations, local culture, or friendly military forces 
can all be modeled with the simulation.  A commander can war-game potential courses of 
action, and evaluate alternatives using Construct.  It can be very difficult to reason 
through the many potential interactions, factors, and competing theories.  This simulation 
provides a framework that is grounded in social theory, and validated against empirical 
evidence, that can be used to evaluate potential courses of action.   

 
For example, a commander might consider detaining one or more suspected 

terrorists.  By modeling the course of action in Construct, he can observe the impacts of 
removing the individual, on the organizations performance, situational awareness, and 
overall effectiveness.  Given limited resources, the commander could even use the 
simulation to optimize the individuals to remove from the social group.  The simulation 
provides the military analyst the ability to predict the future social dynamics of an 
organization.  This is a powerful combat multiplier for today’s non-kinetic asymmetric 
war fighter. 
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The Army could also use Construct to evaluate the organizational structure of newly 
formed doctrinal units, such as the Future Combat System (FCS) operational units.  The 
simulation can evaluate which personnel communicate more or less frequently.  This can 
help inform efficient organization of soldiers from staff organizations to vehicle crews. 

 
Focused research on social groups can follow better experimental design, and yield 

greater knowledge, if an array of research questions is first evaluated in simulation.  
Social dynamics are complex and it can be difficult to correctly reason through different 
scenarios.  Simulation can provide insight that may shape the research questions to be 
more effective. 

 
Finally, the normal behavior of an organization can be simulated many times.  From 

the simulations, statistical distributions can be fit to various measures of group behavior.  
These statistical distributions can be used to evaluate statistical hypotheses or to detect 
statistically significant differences between observations of the group and normal 
behavior.  This statistical framework, therefore, increases the relevant findings one can 
discover in socially dynamic organizations. 

 
Using the social simulation program, Construct (Carley, 1990; Carley 1995; 

Schrieber and Carley, 2004), military units of varying size are simulated.  A variety of 
changes will be introduced to the network at a known point.  The Cumulative Sum 
(CUSUM) (Page, 1961), Exponentially Weighted Moving Average (EWMA) (Roberts, 
1959), and Scan Statistic (Fisher and Mackenzie, 1922), statistical process control charts 
will be applied to several social network graph level measures taken on the network at 
each time step.  The number of time steps between the actual change and the time that an 
SNCD method signals a change will be recorded as the Detection Length.  The Average 
Detection Length (ADL) over multiple independently seeded runs is then a measure of 
the SNCD method’s performance.  The ADL will be compared for different changes and 
different SNCD parameters. 

The basic military structure that will be simulated is an infantry training model.  This 
is the most basic US military unit and is used for training soldiers and officers across the 
US Army Training and Doctrine Command (HQ, Dept of the Army, 1992).  An 
organizational diagram is shown in Figure 73.  Within this model, soldiers are organized 
into four man teams.  Two teams and a squad leader form a 9 man squad.  Three squads 
and a three person headquarters form a 30 man platoon.  Three platoons and a 10 person 
command post form a company.  Each soldier is trained in various skills that are 
distributed throughout the organization.  Each team for example will have an automatic 
gunner, a grenadier and two riflemen.  One member on a team will also be trained as a 
medic, another in demolitions, and two will be able to search enemy prisoners of war.  
Each soldier possesses individual skill in stealth, situational awareness, physical fitness, 
intelligence, military rank, and motivation.  Homophily in these individual skills create 
stronger bonds between members of a unit which will increase their probability of 
communication.  Organizational proximity will also affect communication, with 
individuals in the same sub-unit being more likely to communicate.   The objective of the 
simulation will be to model communication within the military unit. 
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Figure 73. Platoon Organizational Diagram. 
 

B.2 Docking   
 

Other simulation studies have been performed on communication within military 
organizations (Kilduff, et.al., 2006; Rahimi, S., et.al., ).  The Future Combat System 
(FCS) initiative has made extensive use of simulation to evaluate many system design 
considerations to include communication flow.  The U.S.Army Research Laboratory’s 
Human Research and Engineering Directorate (ARL-HRED) uses a simulation tool called 
C3TRACE (command, control, and communication: techniques for reliable assessment of 
concept execution). C3TRACE is a simulation environment that models organizations of 
varying sizes as they complete simulated tasks under various levels of workload.  One 
study modeled communication within an infantry company very similar to the object of 
this paper’s study.  Some differences were introduced as part of the FCS revised 
personnel manning concept.  The model equipped soldiers with differing communications 
devices to evaluate the impact on communication flow.  The ARL-HRED focused on 
performance measures such as utilization, dropped messages, and decision quality.  Their 
study did not look at the communication network however.  The relationships between 
the modeled agents were not investigated.  Change detection was not applied to the 
communication patterns in the simulated organization. 

 
Another study investigated wireless platoon communication alternatives through 

simulation (Rahami, Mohamed, and Paredes, 2007).  The focus of the study was on 
designing robust communication network topologies.  While this study considered the 
relationships between simulated agents, they were essentially static.  The model was a 
discrete event simulation created in Arena, which is better suited for process flow than it 
is for modeling relational network data.  More importantly, the simulation did not explore 
dynamic changes over time. 
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The C3TRACE and Arena simulation models provide some insight into modeling a 
military organization, but they are not well suited to modeling dynamic network change 
over time.  Construct was specifically designed to model relational network data and 
evolve it over time.  In addition, Construct has the ability to vary the interactions of 
simulated agents based on their relative homophily, knowledge, and expertise.  Dynamic 
social networks are easily exported to social network analysis software, where change 
detection can be evaluated.  Construct’s ability to realistically simulate the social 
dynamics of an organization over time and provide network representations of 
communication makes this model uniquely well suited for SNCD exploration.  An 
extensive search of the literature did not reveal any other relevant, similar models.  Table 
36 shows a comparison or docking of the three simulations.  

 
Table 36. Docking: Construct, C3TRACE, Arena. 

 Construct C3TRACE Arena 
Simulated 

Organizations 
Squad, Platoon, 
Company HQ 

Squad, Platoon, 
part of 

Company HQ 

Squad, Platoon 

Size of Squad 9 men 9 men 9 men 
Size of Platoon 30 men 49 men undefined 
Agent Details Knowledge, 

expertise, 
beliefs, 

resources 

Information 
quality, 

expertise 

Knowledge 

How agents 
interact 

Uses an 
interaction 

sphere.  
Probability 
based on 

homophily or 
expertise. 

Fixed in 
advance, based 

on doctrine 

Interaction 
Strength is 

proportional to 
distance 

between agents 

Output Social network 
measures for 

each time step 
(Table 3). 

Soldier 
utilization, 

soldier 
performance, 
and decision 

quality 

Successful 
communication 

Type of 
Simulation 

Multi-Agent Multi-Agent Discrete Event 

Virtual 
Experiment 

Inject a change 
at a specified 
time point, to 
measure ARL 

Change the 
agent 

interactions that 
will occur 

No virtual 
experiment 
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 While the three simulations are similar in terms of the organization being modeled, 
their objectives are different.  The C3TRACE and Arena models are focused on 
measuring and improving unit performance.  The purpose of this study is to realistically 
model the evolving social/communication network of an Army unit over time, so that 
methods of SNCD can be objectively compared to each other.  In addition, Construct is 
much more sophisticated than the other methods at modeling how humans actually 
interact in an organization.  This level of detail in modeling provides a much more 
rigorous test of the success of SNCD. 

 
B.3 Verif ication and Validation 
 

Verification and validation will focus on the communication dynamics within the 
organization.  The input to the model is typical, frequent, verbal communication.  The 
focus of the simulation is information sharing within a military organization.  Issues of 
varying social capital for differing information is not considered in this model.  Future 
research could investigate the effect of the importance of the information on 
communication dynamics.  That type of investigation is beyond the scope of this thesis.  
Therefore, the model inputs are very simple. 

There are several data sources that can be used to validate the process component of 
the simulation model.    I have served as an instructor at the US Military Academy at 
West Point.  During summer cadet training, I collected social network data on 
communication between soldiers ranging from team member to the company level.  Data 
was collected for over 20 training missions from seven different company units.  The 
communication within the simulation should be within the range of the real-world data.  
Simulated communication was also presented to four Army subject matter experts 
(Johnson, 2008; Gauthier, 2008; Smith, 2008; Trent, 2008) with recent combat 
experience to provide qualitative validation of model accuracy.   The expert input was 
qualitative, where the soldiers were asked if a random sample of baseline (no change 
imposed) social networks appeared to reasonably describe communication patterns in an 
Army Infantry unit.  Adjustments were made to weights placed on socio-demographic 
variables such as rank and job title to accurately reflect military communication.  All four 
experts validated the final model. 

The simulation output is validated by calculating several graph level social network 
measures for the baseline simulation and comparing those results to the data collected on 
cadet summer training.  There was no statistically significant difference in the average 
betweenness, average closeness, or density.  Unfortunately, more detailed information 
was not available.  The output validation coupled with subject matter expert review 
provides reasonable evidence of the model’s accuracy. 
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APPENDIX C - Analytical Derivation of Decision Interval 
 The Cumulative Sum (CUSUM) statistical process control chart is used to detect 
small changes in the mean of a random process.  For quality control applications, it is 
desirable to detect any changes in the process mean as quickly as possible.  For example, 
a manufacturing process may experience a change in mean as a result of tool wear, 
breakage, or adjustment, or any number of other unknown causes.  The process is more 
likely to produce a product that does not meet quality specifications while the process 
mean is operating at its changed value.  The product that does not meet quality 
specifications represents a financial loss to the company in terms of scrap product or re-
working costs.   
 
 Methods that attempt to detect a change in a random process can sometimes 
signal that a change may have occurred, when in fact the process is still in-control.  This 
is referred to as a false alarm.  The probability of a false alarm occurring is sometimes 
referred to as Type I error.  A false alarm in a manufacturing process can also represent 
financial loss for a company.  If the company halts the process to search for a potential 
change that does not exist, the company is still paying for labor and overhead, while no 
product is being produced.  Therefore, quality engineers must strike a balance between 
the probability of false alarm and the rapid detection of changes. 
  

The determination of an appropriate balance between false alarm and rapid 
detection requires an expression that relates the probability of false alarm with control 
chart parameters.  This was easily done with the Shewhart (1927) X-bar control chart, 
where an observation was compared against decision intervals set at μ ± Lσ, where μ is 
the mean of the process, σ is the standard deviation, and L is the width parameter.  The 

probability of false alarm, α, can be calculated from the expression, ∫
∞

∗=
L

dxxf )(2α , 

where f(x) is the assumed symmetric probability density function of the process.  The 
CUSUM control chart (Page 1954), on the other hand, was derived from the sequential 
probability ratio test (Wald, 1947), therefore the control chart statistic at each time point 
is conditioned on the previous time points.  The CUSUM control chart statistic is given 
by, { }1,0max −+−= ttt CkZC , where tZ is the standardized observation at time t and k is 
an optimality constant.  When the value of hCt > , where h is the control chart’s decision 
interval, the chart signals that a change in the process mean may have occurred.  As a 
result of the max operator and the 1−tC  expression, an analytical expression would 
somehow need to account for the nested conditional probability and the results are likely 
to be non-intuitive. 

 
 Several attempts have been made to provide quality engineers with insight into 
understanding the false alarm probability of the CUSUM.  In situations where it is not 
necessary to know the precise probability of false alarm, but acceptable and rejectable 
quality levels have been established, an expression for the value k can be determined 
(Kemp, 1967).  The optimal value of k is ( ) 2/ra mmk += , where amm ≤  is an 
acceptable value from the random process, m, and rmm ≥  is a rejectable value of m.  It 



153 
 

has also been shown that the CUSUM is the most powerful test for detecting a change in 
the process mean of 2*k*σ (Moustakides, 2002).  These results for the parameter k still 
do not provide a relationship between the parameter k, the decision interval, h, and the 
probability of false alarm.  Expressions have been proposed that relate k, h, and a 
Brownian approximation to the expected number of observations until an in-control 
process signals a false alarm (Nadler and Robbins, 1971; Reynolds, 1975).  This 
approximation was shown to overestimate the probability of false alarm (Reynolds, 
1975).  Thus, an accurate relationship between k, h, and the probability of false alarm has 
not yet been proposed. 
 
 In this chapter, Monte Carlo simulation is used to simulate the performance of the 
CUSUM on a random process consisting of independent and identically distributed 
observations for a range of false alarm probabilities between 0.001 and 0.05.  A hybrid 
function is fit to the simulated values.    The function provides a good fit to the simulated 
data with an R2 value of 99.07%.  Methods for using the newly proposed function for 
establishing CUSUM control chart parameters are discussed. 

 
C.1 Method 
 Monte Carlo simulation was used to estimate the expected number of 
observations until an in-control CUSUM control chart signaled a false alarm.  Results 
from the simulation were averaged over 100,000 independently seeded runs.  Values of k 
ranged from 0.05 to 1.25 in increments of 0.05.  Values for h ranged from 3.0 to 5.0.  The 
specific values of h were adjusted for each setting of k to produce an expected number of 
observations until false alarm that fell within a range of 20 to 1000.  This range was 
chosen for pragmatic reasons.  The standard deviation of the number of observations until 
false alarm can be almost as large as the expected number of observations for an in-
control process (Ewan and Kemp, 1960; Brook and Evans, 1972).  Expected number of 
observations exceeding 1000 would, therefore, have such a deviation in the probability of 
false alarm as to be impractical.  I submit that most practical applications using a 
probability of false alarm between 0.005 and 0.05. 

 
The simulated data was plotted on a contour plot to observe trends in the data.  

The dependent variable was the decision interval.  The optimality parameter, k, was an 
independent variable, and the expected number of observations until false alarm were 
contours.  Initial observation suggested that the data exhibited the characteristics of 
exponential growth, where increasing h and k would lead to significant increases in the 
number of observations until false alarm.  Three candidate functions were investigated: 
the exponential, power, and logarithmic functions, given by,  

kekh 2
1)( ββ= ,     (1) 

2
1)( ββ kkh = ,     (2) 

21 )()( ββ += kLnkh .    (3) 

  Each function was fit to the data by the method of least square error.  After 
analyzing the sum of square error and the R2 values for the three functions, it was found 
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that the exponential and logarithmic functions estimated the decision interval better for 
the lower numbers of observation until false alarm, and the power function estimated the 
larger values better. In order to create a consistent function that provided accurate 
estimations for all values, a combination of the functions, or hybrid function was 
constructed to fit the full range of simulated data. 

Several combinations of functions were investigated.  These include linear 
combinations of two functions.   The first hybrid function was the combination of the 
exponential and power function, given by, 

42
3

1

1)( ββ β
β

ke
k

kh k +







= .    (4) 

The alteration of the coefficient of the exponential function to ( )k1/1 β  allows the 
exponential portion of the equation to become insignificant as the optimality constant 
increases.  This was applied because small changes in the k value cause larger changes in 
the decision interval as the expected number of observations until false alarm gets larger.  
This function was also fit to the data by the method of least squares. 

A second hybrid function was created to combine the logarithmic and power 
functions.  This function is also a linear combination of two functions, where the 
coefficient of the logarithmic function is replaced with the value ( )k1/1 β  and is given by, 
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Both of these hybrid functions were designed to incorporate the strengths of both 
functions involved in the linear combination to create the best estimate of h based on the 
simulated data. 

 
C.2 Results  

 The logarithmic-power hybrid combination provided the best fit to the simulated 
data.  The function for the decision interval is therefore given by, 
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where λ represents the expected number of observations until a false alarm occurs.  Since 
all of the simulated data was used to fit the function, the performance of the function was 
evaluated using a 10-fold cross validation.  The coefficient of determination, R2, ranged 
from 98.79% to 99.81% with an average value of 99.07% across the 10 folds.  The newly 
proposed function therefore provides a good approximation of the required decision 
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interval based on the optimality parameter and expected number of observations until a 
false alarm over a wide range of potential values. 

 The function can also be expressed in terms of the probability of false alarm.  The 
probability of false alarm, α, is equivalent to the reciprocal of the expected number of 
observations until a false alarm, λα /1= .  Substituting α, in Equation 6 and simplifying 
provides an alternate expression for the decision interval given by,   
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This alternate expression provides an estimate for the decision interval based on a desired 
optimality parameter and the probability of false alarm.  Both expressions are equivalent. 
 
C.3 Discussion 
 
 A quality engineer can determine the parameters of the CUSUM control chart for 
a specific application, using the newly proposed expression in Equation 6 or Equation 7.  
First the engineer should investigate the costs associated with a change in the process.  
Does the product need to be scrapped, reworked, or sold at a lower price for certain 
quality characteristics? Based on these costs the engineer can determine the maximum 
acceptable and minimum rejectable process means for the process.  The optimality 
parameter, k, should be set half way between these values and expressed in standardized 
units according to Ewan and Kemp (1960).  The engineer must then decide on an 
acceptable risk level for false alarms.  The engineer should choose a probability of false 
alarm, α, between 0.001 and 0.05 for most applications.  The engineer could alternatively 
choose an expected number of observations until a false alarm, λ, if this is more intuitive 
for deciding upon a value.  The choice of λ should be between 20 and 1000.  Finally, the 
quality engineer can use the expressions proposed in this paper to determine an 
appropriate decision interval, h, for the CUSUM control chart.   

Without these expressions, the quality engineer would either look up candidate 
values for h, k, and λ, as published in Van Dobben de Bruyn (1968), Nadler and Robbins 
(1971), Bagshaw and Johnson (1975), Vance (1986), Fellner (1990), Luceno (1999), or 
McCulloh (2004).  Unfortunately, the published values of h, k, and λ, do not conform to 
the more ideal values associated with a specific process as determined in the method 
described above or according to the procedure laid out by Kemp (1962).  Alternatively, a 
quality engineer could use an expression that approximates λ, under certain conditions as 
published in Reynolds (1975), or Luceno and Puig-Pey (2000).  The expressions 
presented here more accurately estimate h for a range of k spanning 0.05 to 1.25, and a 
range of λ spanning 20 to 1000. 

Perhaps the most useful applications of the newly proposed expressions are in 
software used to automate statistical process control.  Many manufacturing processes 
include automated sampling, measurement, and control charting.  The specific parameters 
for the process are still usually set by the quality engineer, however.  With the analytical 
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expression for the decision interval, the parameterization can be automated as well.  In 
addition, statistical process control is finding applications outside of manufacturing.  The 
CUSUM has been used to identify changes in the organizational behavior of Al-Qaeda8

 

 
(McCulloh et al, 2007), shifts in the membership commitment within on-line 
communities of practice (Galbreath, 2008), and changes within the semantic content of e-
mail messages in the Enron corpus (McCulloh et al, 2008).  For these new applications of 
statistical process control, determining appropriate control chart parameters is less clear.  
An analytic expression for the decision interval is necessary to broaden the potential 
application areas for statistical process control in general and for the CUSUM in 
particular. 

 
  

                                                 
8 The Shewhart X-bar and Cumulative Sum statistical process control charts have been implemented in the 
software package Organizational Risk Analyzer (ORA) available from the Center for Computational 
Analysis of Social and Organizational Systems (CASOS) at Carnegie Mellon University, 
www.casos.cs.cmu.edu.  ORA is used for social and dynamic network analysis. 

http://www.casos.cs.cmu.edu/�
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APPENDIX D -- Longitudinal Network Data Collection 
An important concern for the construction of a Link Probability Model (LPM) and 

monitoring a network for longitudinal change is a good source of data.  Social network 
data can be time and resource intensive.  Fortunately, email provides a rich source of 
longitudinal social network data that can be used for applications ranging from command 
and control, to military intelligence, to basic social science research.  This Chapter 
reviews several methods available to extract email network data and compares them in 
terms of data quality and convenience of collection.  In general, it is preferable to obtain 
email data directly from the central SMTP email server.  In situations where this is not 
possible, alternative approaches presented here can be useful.  These techniques for 
analyzing email data have been automated in the Organizational Risk Analyzer (ORA) 
software, which is freely available to DoD and academia. 

 
Email has significantly changed how people communicate and interact. In many ways 

communication is easier and more reliable with email, however, there are many new 
challenges introduced. Over the past decade, many people have turned to email as the 
primary means to send information and to communicate (Ducheneaut, &  Bellotti, 2001). 
It has enabled groups to work together, socialize and collaborate across any distances and 
outside of structured organizational boundaries. When organizational relationships do 
exist, email traffic among that group often mirrors this structure (Diesner, Frantz & 
Carley, 2005; Frantz & Carley, 2008; Tyler, Wilkinson, & Huberman, 2003). As a result, 
studying and analyzing communication patterns of email traffic can provide much insight 
into not only how an organization is structured, but also into how it actually operates 
(Carvalho, & Cohen, 2007). For example, a supervisor may typically send email to all his 
immediate subordinates and, likewise, those subordinates will respond. An increase in 
peer to peer collaboration may indicate that problems are being solved at a much lower 
level. Individual agents that connect disconnected groups might represent organizational 
vulnerabilities. Identifying these patterns from collected email data is extremely useful in 
identifying the underlying social network behavior of an organization.  
 

I present two general methods for gathering and analyzing email data along with an 
analysis of each of these methods. During the course of this study, I gathered client-side 
email data over a seven month period to reveal the social network of a group of 24 mid-
career Army officers.  I also employed a centralized data collection procedure over a five 
month period directly from the central Simple Mail Transfer Protocol (SMTP) email 
server.  The data collection schemes are compared in terms of data quality, ease of 
collection, and subject cooperation.  

 
These email collection methods have been automated in a feature called CEMAP II 

contained in ORA (Carley, et al., 2008) --- a software package from the Center for 
Computational Analysis of Social and Organizational Systems (CASOS) at Carnegie 
Mellon University (Frantz & Carley, 2008b).  The ORA software program is freely 
available to people in the DoD and at academic institutions at www.casos.cs.cmu.edu.  
   

http://www.casos.cs.cmu.edu/�
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D.1 Background 
Gathering email related data has shown to identify actual social and communal patterns 
among the email users (McCulloh et al, 2007; 2008). A collaborative group at Hewlett 
Packard Labs demonstrated that simply gathering the “TO” and “FROM” fields from a 
large collection of email messages can produce community structure when applied to a 
graph representation (Tyler, Wilkinson, & Huberman, 2008). This study focused on email 
data only at the organization’s central mail server.  In contrast, Themail, a visualization 
which shows an individual user’s email exchange presents a visual network analysis of a 
user’s email content simply by analyzing the archived mail on his or her personal 
computer (Viégas, Golder, & Donath, 2006). Users in this study were required to 
manually upload their entire Microsoft Outlook archive folder for analysis. Similar to this 
technique, Gloor and Zhao (2004) developed a software tool, TeCFlow, which gathers 
email data from a user’s computer contained in various mailboxes and outlook archived 
files and stores that data into an SQL-database.  
 

Communication via email can be divided into two types of relationships: the human-
computer interaction; and the computer-computer interaction.  People are usually most 
familiar with the human-computer interaction, where they sit at a computer, write an 
email, and push “send”; or they login to their email account and read messages contained 
in the “inbox”.  The computer-computer interaction, is actually an automated exchange 
between two computers, often with several other computers serving as intermediaries in 
the delivery process. A message sent from one computer is received by the target 
computer(s), in its electronic form, via a client software program that ultimately copies 
the email message from its host server. The email message is stored on a designated 
central server until the receiver “picks up” the message from the server.  This process is 
the electronic version of picking up a package at the post office. The electronic email can 
be delivered to the post office repository for you to physically pick up, or directly to your 
personal mail box for you to pick up. Once a target computer picks up the message, the 
human-computer interaction allows the human to read, print, or store the electronic 
message via their email client software.  

 
There are several different ways in which email can be delivered through the 

computer-computer interaction in the world-wide electronic email architecture.  The 
message can be delivered to the equivalent of post office lobby-box, called an IMAP 
server.  The email can be delivered to a personal mailbox, called a Post Office Protocol 
(POP) server.   The email can also be routed through a Microsoft Exchange (MSEx) 
server.  There are many technical differences between these email servers, but their 
purpose is the same. However, the principal difference between an IMAP and a POP 
email server is the storage feature of the server. An IMAP server will allow you (or your 
email client software) to persist, or store, your email physically on that server. A POP 
server only serves as a temporary holding station for a message that is removed once it 
has been retrieved by your email client software.  An MSEx server is a Microsoft 
proprietary system that is widely used throughout the DoD. While it has some additional 
security features, it is more difficult to extract email network data from this system 
because of the propriety data format that Microsoft institutes.  An IMAP server is 
designed to store the message even after the email has been initially retrieved. It should 
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be noted that the POP protocol calls for an email to be removed from the incoming mail 
box once it has been retrieved, however some software extensions do allow for a read-
only access to the POP inbox, resulting in the message remaining in the inbox when 
retrieved and is therefore managed by the client software level. The popular Yahoo mail 
service implements this feature for paying customers. 

 
Once a target computer receives an email, the human-computer interaction involves 

the computer displaying the message using client software.  Email messages at the 
computer-computer interaction level are most often formatted in a world-wide standard 
format called MBOX. MBOX allows for different email client software programs to 
access the email from the server without confusion. The MBOX format specifies two 
sections of the email, the header section and the body section.  The header section 
includes the From:, To:, CC:, BCC:, Subject:, and Date:, information.  The body section 
contains the message text and any attachments to the email.   

 
The MSEx server does not store messages in the MBOX format.  Microsoft’s 

proprietary standards create technical and licensing hurdles in accessing email data 
directly from the server in any manner other than using Microsoft software. 
Unfortunately, the MSEx format is widely used throughout DoD, making email data 
extraction more difficult.  There are three approaches that we have discovered for 
extracting email content from an MSEx format.  One approach is a custom client-side 
visual basic patch (McCulloh, et. al., 2007).  Another client-side approach involves using 
.NetMap, which is a plug-in for Microsoft Excel 2007 that extracts email data from a 
proprietary *.pst file into an Excel format.  The data can then be manipulated or saved to 
other file formats.  The third approach involves parsing header data from a server log file.  
These approaches will be discussed in more detail in this paper.  Analysis of dyad counts 
will be used to compare the performance of a client-side data collection with a centralized 
data collection.   

 
D.2 Method 
 This study involves monitoring the email traffic of 24 mid-career Army officers in 
a one-year graduate program administered jointly by Columbia University and the U.S. 
Military Academy (USMA).  Each of the officers participating were asked to sign a 
consent form in accordance with the institutional review board (IRB), approved by the 
USMA Human Subjects Research Review Board allowing their data to be collected for 
research purposes. 
 
 As part of this study, the participants permitted me to place a custom developed 
program (Appendix 1) that works in conjunction with their MSEx Outlook email 
accounts. This program allowed me to collect email data from the sent items folder found 
on participants’ personal computers. The information included all of the header 
information associated with an email. I did not view or include the body of the email in 
the study.  I was also able to collect similar email header information directly from the 
log files maintained by the Directorate Of Information Management (DOIM).  The data 
collected from the custom program is referred to as the Client-Side Method, while data 
collected from the DOIM log files is referred to as the Centralized Method. I did not 
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investigate .NetMap as an approach as it has identical underlying email data-sourcing 
capabilites and functionality only with a different, al beit a more elegant, user interface.  
The email data collected from all methods was analyzed using a dynamic network 
analysis approach (Carley, 2003). 

 

D.2.1  Cl ient-Side Method 
 

 A client side Visual Basic for Applications (VBA) program was installed on the 
personal computers (PC) of all participants, in the session window of their Microsoft 
Outlook. This data collection approach was designed to overcome the difficulty in pulling 
information from a subject’s sent mail folder in a proprietary Outlook Exchange system. 
This patch is easy to implement in Visual Basic and works harmoniously with Microsoft 
Outlook. The principal investigator could then compile the data from all participants into 
one master file and ensure anonymity of the names. 
 

One of the chief advantages in managing a client-side patch is the low-level control in 
gathering data.  A researcher does not have to obtain permissions from a network 
administrator to collect email data.  They merely need the consent of the monitored 
individuals, who must login to their Outlook for the client-side patch to be installed.  
Furthermore, the program designers can pick and choose which data to import from the 
local client. If, for example, we wanted to include message content, then that could have 
been an option. We could have also just as easily gathered incoming email traffic, as 
opposed to only monitoring outgoing mail. This could provide further insight into areas 
such as whether a user classifies email as junk mail, whether they delete an incoming 
message, or even if they flag a particular message as important.  

 
Managing the data collection from the individual participant required minimal effort. 

Once fully developed and installed, the Visual Basic patch is little to no overhead on the 
part of the user to manage. Furthermore, these participants felt more comfortable 
knowing that they have some degree of control in how the data is collected. While this 
could impede the data collection process, the subjects felt more comfortable knowing 
what was actually monitoring their email. Initially, most of the participants’ email were 
sent to other students or people affiliated with their graduate program.  Within two to 
three weeks, the participants began to email family members and friends.  We suppose 
that this represents an increased level of trust.  In the beginning, participants felt that their 
email needed to appear strictly business related.  Gradually, as they incrementally sent 
personal email messages while they were “at work” without any negative consequences, 
they began to feel comfortable and appear to have returned into a normal cadence of 
email communication.  Most of the participants knew how to remove the patch when 
their participation in the project ended. Several participants said they felt more 
comfortable knowing that the software sending the principal investigator information was 
on their computer, and that “Big Brother” was not pulling their information from 
somewhere else. 
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D.2.2  Central ized Method 
 
As an alternative method, we developed a software application which analyzes email 

data gathered directly from a centralized email exchange server. This software gathered 
data over a five month period and extracted those email messages which were sent and 
received from the participants in this study.  The server log files contain the email header 
information.  This information was parsed into the same format as the client-side method.   

 
With this method of data collection, the participants were not aware of the precise 

time that the collection process started.  They did provide consent in accordance with the 
IRB, however, we were not required to inform them of the exact date when collection 
would begin.  There was no significant observable change in the participants’ pattern of 
communication.  The centralized method was completely unobtrusive.   
 
 
D.3 Dyad Analysis 

 
It was not clear at the beginning of this investigation whether email communication 

within a homogenous group of people would appear random, if it would remain relatively 
consistent from week to week, or if there were identifiable factors that would affect 
changes in network structure. To investigate the structure of the network, we computed 
the dyad count.   The dyad count, defined as the communication between two nodes 
(Wasserman, & Faust, 1994) distinguishes three different types of communication: 
asymmetric, mutual, and null. In an asymmetric dyad, one node talks to another, but does 
not receive a response. This type of communication could be an example of a group that 
has members who are sending out information. A mutual dyad signifies two nodes 
communicating with each other. This type of communication might occur in a group that 
collaborates equally, or one in which subordinates verify or clarify directives. Finally, a 
null dyad occurs when two nodes which are part of the network do not have any 
communication activity. In a dyad count, we conduct a census and tabulate the number of 
null, mutual, and asymmetric dyads. With 24 members in our study comprising a 
network, there exists 276 combinations of possible undirected pairs.  Each of the 276 
dyads could be either null, mutual, or asymmetric.  The dyad counts are compared for 
data collected with the client-side method, centralized method, and with a calendar of 
significant events. 

 
 

D.4 Results  
 

There were significant differences in the client-side and centralized methods of data 
collection.  The data from both methods was coded as a meta-network (Carley, 2002).  
Considering that the participants are a random sample of mid-career Army officers that 
all fulfill the same role of student in the organization, we might hypothesize that the 
email relationships formed in the network are random.  Given that there are 24 nodes in 
the network, there exist 24 x 23 = 552 possible dyads.  We can test the hypothesis: 
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Ho: Graph ~ Binomial(552, 0.5) 
HA: Graph ≠ Binomial(552, 0.5), 

 
using the test statistic z =( l – E(l) ) / Sqrt( V(l) ), where l is the number of directed links 
in the graph.  This reduces to z = ( l – 276 ) / 11.75, where l is the sum of the mutual and 
asymmetric dyad counts.  Under the null hypothesis, this number follows a standard 
normal distribution.  The p-value was significant at the 0.05 level for most weeks, 
providing evidence to reject the hypothesis that email communication patterns are 
random binomial with a probability parameter of 0.5.  A week with a corresponding p-
value that was not significant at the 0.05 level can be identified in Table 37 by the 95% 
confidence interval on the Binomial parameter p that includes 0.5. 
 

A confidence interval on the probability of communication can be constructed for 
each week according to the expression given by, 

 

( ) 552/ˆ1ˆˆ
2/ PPzP −± α  

 
where P̂ is the maximum likelihood estimate of the unknown parameter p in the assumed 
binomial distribution and equal to l / 552. Table 37 shows the mutual, asymmetric, and 
null dyad counts recorded using the client-side and centralized methods.  The right most 
column of Table 37 shows the 95% confidence interval on the random probability of 
communication.  A confidence interval that spans 0.5 will correspond to a significant p-
value in the random binomial hypothesis test above.  For each week in Table 37, two 
values are shown for each of the dyad counts: Mutual, Asymmetric, and Null.  The 
numbers in the top of each cell in Table 37 correspond to the client-side data collection 
method.  The numbers in the bottom of each cell in Table 37 correspond to the 
centralized data collection method.  The data presented in Table 37 corresponds to the 
time period beginning with the first week of the Spring semester and ending with the 
week before Spring break.  The students took their comprehensive exam following 
Spring break and then began to transition to their military duties at West Point.  
Therefore, this data represents a reasonable time period for comparison of the client-side 
and centralized methods of data collection. 

 
It can be seen in the Confidence column of Table 37 that there is a statistically 

significant difference in the probability of communication between the client-side and 
central data collection methods for all weeks, by observing that the 95% confidence 
intervals do not overlap.  In all cases, the client-side method underestimates the 
probability of communication in the network.  The general pattern of the probability 
parameter is correlated at a value of 0.69, which is low considering they are estimates on 
the same group of individuals during the same week.  The client-side data collection 
method is therefore biased. 
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Table 37. Recorded directed links using client-side and central methods. 
Week Mutu

al 
Asymm

etric 
Null Confidenc

e 
13 Jan 2008 0 

54 
44 
89 

232 
133 

(0.06,0.10) 
(0.22,0.30) 

20 Jan 2008 6 
218 

88 
83 

182 
0 

(0.14,0.20) 
(0.50,0.59) 

27 Jan 2008 0 
118 

78 
92 

198 
66 

(0.11,0.17) 
(0.34,0.42) 

3 Feb 2008 8 
202 

162 
81 

106 
0 

(0.27,0.35) 
(0.47,0.55) 

10 Feb 2008 0 
112 

148 
100 

128 
64 

(0.23,0.31) 
(0.34,0.42) 

17 Feb 2008 6 
230 

114 
79 

156 
0 

(0.18,0.25) 
(0.52,0.60) 

24 Feb 2008 26 
204 

108 
92 

142 
0 

(0.21,0.28) 
(0.49,0.58) 

2 Mar 2008 84 
320 

192 
51 

0 
0 

(0.46,0.54) 
(0.58,0.66) 

9 Mar 2008 26 
204 

143 
73 

107 
0 

(0.27,0.34) 
(0.46,0.54) 

* Client-side dyad counts are above central dyad counts. 
 
The dyad count analysis can provide additional insight into the organizational 

dynamics of the participants by comparing their probability of interaction to significant 
events on their academic calendar.  We restrict our investigation to data collected using 
the centralized method since it is complete.  The centralized method captures all data sent 
or received through the central server.  The maximum likelihood estimate of the 
parameter, p, in the binomial distribution of dyads is plotted over time and displayed in 
Figure 74. 

 

 
Figure 74. MLE of parameter p using centralized method. 
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The lowest MLE of p is shown in the first week of the semester, when the participants 

were just returning from Christmas leave.  This was followed by an increase in 
communication as the group begins to plan for group academic assignments, carpooling, 
and other administrative issues.  The low points in the MLE of p occur during the weeks 
of 27 January and 10 February when major group academic projects or presentations 
were due.  This is consistent with the findings of McCulloh, et. al. (2007) who observed a 
similar decrease in email communication during times of group activity.  They 
hypothesized that during times of increased face-to-face communication, people 
communicate verbally and have less time and need for email communication.  
Furthermore, during these times of increased subgroup activity, people have less time to 
write and respond to emails from individuals outside of their immediate subgroup.  
Following the group assignments due during the week of 10 February, the next major 
academic event was the comprehensive exam following Spring break.   

 
A similar dyad analysis for the client-side method is shown in Figure 75.  The 

characteristic dip in email communication corresponding to group activity is not clear.  A 
careful review of the participants’ academic calendar does not reveal any activities or 
events that would explain the behavior of the plot in Figure 75.  This further suggests the 
importance of centralized email data collection. 

 

 
Figure 75. MLE of parameter p using client-side method. 

 
The client-side method of data collection is not completely without merit.  It can still 

be seen in Figure 75 that the first week has the lowest MLE of p.  There is also a dip in 
the plot for the group assignment for the week of 27 January.  The identification of the 
week of 10 February is missed however.  This suggests that even client-side data can 
provide some insight into group behavior.  This may be an appropriate method to use 
when complete centralized data is unavailable.  Centralized data may be unavailable for 
reasons of security, privacy, damage, or other technical difficulties.  In these situations, 
the client-side method may still provide valuable information on social network behavior. 
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D.5 Discussion 
 
I found that the primary advantage to utilizing a server-side method to gather data is the 
improved data integrity. Every user with an email account must both send and receive 
data from that account’s associated mail server. Therefore, to ensure that all data is 
gathered it must be collected at its source. All data contained within the centralized server 
is available for collection, such as from, to, cc, bcc, subject, time of receipt at the mail 
server, etc. Copying data directly from the server allows the social network analyst to 
accurately study all email communications within a study group for those utilizing their 
given email address.  
 
 Implementing a server based application also precludes the subjects involved in 
the study from corrupting and inserting bias into the data. With a client-side application, 
users had the ability to turn off, remove or disrupt the execution of the program used to 
monitor email. With a server-side collection technique, the clients are completely 
unaware or knowledgeable about when or what is collected. I found that while it takes 
more overhead to initiate the retrieval of email traffic from a mail server, there is 
surprisingly little overhead on the part of a server administrator to actually assist the 
research effort in gathering data. Since log files are typically stored in a common location 
on the server, the administrator need only make these files available. When operated 
across a network, he/she can easily copy these log files to a common location from where 
the server-based data collection program can import the data. 
 

By presenting two methods for gathering and analyzing email data, we have shown 
both advantages and disadvantages for the social network analyst. These strengths and 
limitations must be considered by any social network analyst when studying email traffic. 
Even though gathering data at its source does provide better data integrity, such data 
collection means are not always feasible. In these cases, email data collected in a 
decentralized manner can still provide insightful analysis of the underlying social 
network. 

 
I advise a practitioner to be highly sensitive to the privacy implications of this 

process, especially in the public and private sectors.  People within the military typically 
do not maintain the expectation of email and internet privacy.  This may not be true in 
other populations.  Care must also be exercised with interpreting the results of these types 
of social networks.  It is important that trained social network analysts provide proper 
interpretation of the organizational behavior, while respecting the privacy of individual 
identities.  Revealing the position an individual maintains in the social network of an 
organization may lead to an overall decrease in trust and adversely affect the leadership 
climate within the organization.  When used properly, however, social network analysis 
can provide a wealth of valuable information to the organization.  Several commands 
within the Army have already implemented social network data collection from email.  
These methods have been automated in the software package ORA, which is maintained 
by CASOS at Carnegie Mellon University and can be freely downloaded by the military 
and academia. 
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Future research in this area will likely explore the impact of cellular phone 
communication and blackberries on social networks within the military.  This line of 
research will further support the efficacy of Netcentric Operations within the Army.  
Focused research into the usage of cell phones, blackberries, e-mail, and face-to-face 
communication during major group activities will provide greater insight into social 
network data collection.  Understanding the desired channels of communication for 
military leaders, may significantly contribute to shaping the communication technologies 
that the DoD invests in.  This line of research may also provide data for real-time 
monitoring of organizational change.  It will certainly be valuable in enhancing command 
and control systems used by the military. 
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