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Abstract 
 

Analyzing network over time has become increasingly popular as longitudinal 
network data becomes more available.  Longitudinal networks are studied by sociologists 
to understand network evolution, belief formation, friendship formation, diffusion of 
innovations, the spread of deviant behavior and more.  Organizations are interested in 
studying longitudinal network in order to get inside the decision cycle of major events.  
Prior to important events occurring in an organization, there is likely to exist an earlier 
change in network dynamics.  Being able to identify that a change in network dynamics 
has occurred can enable managers to respond to the change in network behavior prior to 
the event occurring and shape a favorable outcome. 

 
The Over Time Viewer is a software tool hosted by the CASOS software suite 

that enables the analysis of longitudinal dynamic network data.  This report introduces 
the Over Time Viewer and provides instruction on how to effectively use its features.  
We provide step-by-step instructions and illustrations as well as a description of the 
technology underlying the tool. 
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1 Introduction 
 
Terrorists from al-Qaeda attacked America on 11 September 2001.  Some suggest 

that these terrorists began to plan and resource this attack as early as 1997.  If social 
network analysts could monitor the social, email, or phone networks of these terrorists 
and detect organizational changes quickly, they may enable military leaders to respond 
prior to the successful completion of their attack. Social network change detection 
(SNCD) is a novel approach to this problem.  It combines the area of statistical process 
control and social network analysis.  The combination of these two disciplines is likely to 
produce significant insight into organizational behavior and social dynamics.  

 
Statistical process control is a statistical approach for detecting anomalies in the 

behavior of a stochastic process over time.  This approach is widely used in 
manufacturing as a means for quality control.  Manufacturing systems experience similar 
issues of high correlation, dependence, and non-ergodicity that is common in relational 
network data.  I posit that applying statistical process control to graph-level network 
measures is effective at rapidly detecting changes in longitudinal network data.   

 
It is important to note that I am not predicting change, but rather detecting that a 

change occurred quickly and making some inference about the actual time of change.  
For example, before a terrorist commits an attack, there will be a change in the social 
network as the organization plans and resources the attack.  SNCD may allow an analyst 
to detect the change in the social network, prior to the successful completion of the 
attack.  In a similar fashion, corporate managers may wish to detect changes in the 
organizational behavior of their companies to capitalize on innovation or prevent 
problems.  For example, the CEO of Dupont became aware of the U.S. recession in late 
2008 in time to enact a crisis management plan averting financial disaster for the 
company.  In this example, the economic change had already occurred.  Dupont’s success 
was not in predicting a recession, but rather detecting that it had occurred quickly, in time 
to respond.   

 
SNCD may offer executives and military analysts a tool to operate inside the normal 

decision cycle.  Figure 1 represents some measure of interest over time.  It could be the 
revenue of a company, the combat power of an enemy, or for our purposes a measure of 
interest from a social network.  When do we conclude from this measure that a change 
may have occurred?  Let us assume that by conventional methods we can detect a change 
in organizational behavior as of “today”, the vertical line in Figure 1. This time point 
might be too late to take and preventative or mitigating action.  In other words, this could 
be the point of inevitable bankruptcy for the company, or the successful culmination of a 
terrorist attack.  Identifying that a change occurred by time period E might allow the 
analyst to respond to the change before it is too late; get inside the decision cycle.   

 
Change detection is more challenging than it may seem at first.  We can see a sudden 

change in the measure between time D and time E, however, this may look very similar 
to the peak at time A.  Furthermore, if we assert that a change in fact occurs at time A, 
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there may exist a large amount of time periods to investigate for the cause of any change.  
If we can identify more likely points in time where change may have occurred, we can 
reduce the costs in terms of time and resources to search for the potential causes of 
change.  Identifying the likely time that a change may have occurred is called change 
point identification. 

 
Another problem that we face is detecting the change as quickly as possible after the 

change occurred.  Can we improve the ability to get inside the decision cycle by detecting 
the change at time D, or even better at time B?  This is called change detection.  This 
thesis is a first attempt to investigate this challenging problem in longitudinal network 
analysis. 

 
 

 
 

Figure 1. Example of Change Detection 
 
 

1.1  Importance of  Change in Longitudinal  Social  Networks 
 

This thesis addresses a new area of research that is a national need.  Research 
agencies throughout the Department of Defense (DoD) and the U.S. Government have 
demonstrated recent interest in pursuing research in the area of social network analysis.  
Particular interest is in stochastic and predictive modeling of these networks.  The 
National Research Council (NRC) (2005) in a recent report on Network Science 
identified a lack of understanding in the stochastic behavior of networks.  They further 
stated that there existed a great need for this understanding in order to develop effective 
predictive models.  Twenty percent of the research tasks in the Office of Naval 
Research’s (ONR) recent broad agency announcement 07-036 were in the area of social 
networks.  One of the research tasks were for “real time methods for the analysis of 
networks.”  Another task was to develop “metrics extracted in real time to diagnose 
effective or ineffective collaboration or negotiation,” and for creating “unobtrusive data 
collection methodologies” for social networks.  The U.S. Army Research Institute for the 

A 

B C 

D 

E 

today 
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Behavioral and Social Sciences (ARI) has requested research in social networks to 
“investigate individual unit and organizational behavior within the context of complex 
networked environments” in their fiscal year 2008 BAA.  The U.S. Army Research 
Office has already budgeted over $1 Million per year for faculty and cadets at the U.S. 
Military Academy to study the stochastic behavior of networks.  The National Academies 
identified the need for research in this area as early as 2003 in the Dynamic Social 
Network Modeling and Analysis workshop in Washington, DC. 

 
While this research will not predict network behavior, it will provide an approach 

for more accurately detecting that a change occurred and when that change likely 
occurred.  This is an important first step for any predictive analysis.  If a social scientist 
can accurately detect change and the time change occurred, only then can he investigate 
the cause of change with any real success.  Therefore, I posit that this approach will 
contribute to longitudinal network analysis in general, enabling future researchers to 
address the problem of prediction. 

 
Much research has been focused in the area of longitudinal social networks 

(Sampson, 1969; Newcomb, 1961; Sanil, Banks, and Carley, 1995; Snijders, 1990, 2007; 
Frank, 1991; Huisman and Snijders, 2003; Johnson et al, 2003; McCulloh et al, 2007a, 
2007b).  Wasserman et al. (2007) state that, “The analysis of social networks over time 
has long been recognized as something of a Holy Grail for network researchers.”  
Doreian and Stokman (1997) produced a seminal text on the evolution of social networks.  
In their book they identified as a minimum, 47 articles published in Social Networks that 
included some use of time, as of 1994.  They also noted several articles that used over 
time data, but discarded the temporal component, presumably because the authors lacked 
the methods to properly analyze such data.  An excellent example of this is the Newcomb 
(1961) fraternity data, which has been widely used throughout the social network 
literature.  More recently, this data has been analyzed with its’ temporal component 
(Doreian et al., 1997;  Krackhardt, 1998).   

 
Methods for the analysis of over time network data has actually been present in 

the social sciences literature for quite some time (Katz and Proctor, 1959; Holland and 
Leinhardt, 1977; Wasserman, 1977; Wasserman and Iacobuccci 1988; Frank, 1991).  The 
dominant methods of longitudinal social network analysis include Markov chain models, 
multi-agent simulation models, and statistical models.  Continuous time Markov chains 
for modeling longitudinal networks were proposed as early as 1977 by Holland and 
Leinhardt and by Wasserman.  Their early work has been significantly improved upon 
(Wasserman, 1979; 1980; Leenders, 1995; Snijders and van Duijn, 1997; Snijders, 2001; 
Robins and Pattison, 2001) and Markovian methods of longitudinal analysis have even 
been automated in a popular social network analysis software package SIENA.  A related 
body of research focuses on the evolution of social networks (Dorien, 1983; Carley, 
1991; Carley, 1995; Dorien and Stokman, 1997) to include three special issues in the 
Journal of Mathematical Sociology (JMS Vol 21, 1-2; JMS Vol 25, 1; JMS Vol 27, 1).  
Evolutionary models often use multi-agent simulation.  Others have focused on statistical 
models of network change (Feld, 1997; Sanil, Banks, and Carley, 1995; Snijders, 1990, 
1996; Van de Bunt et al, 1999;  Snijders and Van Duijn, 1997).  Robins and Pattison 
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(2001, 2007) have used dependence graphs to account for dependence in over-time 
network evolution. We can clearly see that the development of longitudinal network 
analysis methods is a well established problem in the field of social networks. Table 1 
provides a comparison of the dominant methods for longitudinal network analysis. 

 
The literature shows that there exist four network dynamic states in longitudinal 

social networks.  A network can exhibit stability.  This occurs when the underlying 
relationships in a group remain the same over time.  Observations of the network can 
vary between time periods due to observation error, survey error, or normal fluctuations 
in communication.  A network can evolve.  This occurs when interactions between agents 
in the network cause the relationships to change over time.  A network can experience 
shock.  This type of change is exogenous to the social group.  Finally, a network can 
experience a mutation.  This occurs when an exogenous change initiates evolutionary 
behavior. 

 
Much of the research in longitudinal social networks has focused on evolutionary 

change.  Markov methods and multi-agent simulation are effective at helping social 
scientists understand evolutionary change.  However, a careful review of the literature did 
not reveal any research in detecting shock or mutations in the network.   

 
SNCD provides a statistical approach for detecting changes in a network over 

time.  In addition to change detection, change point identification is also possible.  
Identifying changes and change points in empirical data, will allow social scientists to 
better isolate factors affecting network evolution as well as the relatively new concept of 
shock.  Moreover, knowing when a network change occurs provides an analyst insight in 
how to bifurcate longitudinal network data for analysis.  

 
A complete review of methods for longitudinal social network analysis is beyond 

the scope of this thesis.  The reader is referred to Wasserman and Faust (1994); Dorien 
and Stokman (1997); and Carrington, Scott and Wasserman (2007).  Essentially, methods 
for longitudinal social network analysis have been focused on modeling and testing for 
the significance of social theories in empirical data.  These methods have not been 
designed to detect change over time.  This thesis is focused on detecting change in a 
social network over time. 
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 Markov Chain Multi-Agent Statistical SNCD 
Problem 
Addressed 

1. Network 
evolution based 
on Markovian 
assumptions. 
2. Determine 
how underlying 
social theories 
affect group 
dynamics. 

1. Network 
evolution based 
on node-level 
behavior. 
2. Evaluate the 
impact of social 
intervention on 
group 
dynamics. 

1. Compare the 
properties of 
networks at 
different points 
in time. 

1. Detect 
change (shock, 
evolution, or 
mutation) over 
time in 
empirical 
networks. 

Key 
Assumptions 

1. Future 
behavior of 
network is 
independent of 
the past. 
2. There is no 
exogenous 
change in the 
network. 

1. Node level 
behavior can 
drive group 
behavior. 
2. Underlying 
social theories 
affecting group 
dynamics are 
known. 

Assumptions 
vary, but 
include such 
things as dyadic 
independence/ 
dependence, 
over-time 
independence, 
one node class. 

Group behavior 
can be inferred 
from 
longitudinal 
social networks 

Limitations for 
change detection 

1. Does not 
account for 
exogenous 
change. 
2. Markov 
assumption. 

1. Used to 
model both 
exogenous and 
evolutionary 
change, but not 
to detect 
change. 
2. Underlying 
social theories 
must be known. 

1.  Does not 
handle over-
time 
dependence. 
2.  Not a 
longitudinal 
approach. 
 

1. Ergodicity 
and dependence 
is not fully 
addressed. 

Strengths Determining 
significant 
social theories 
affecting group 
dynamics. 

Simulating 
group dynamics 
in a social 
network. 

Comparing 
social 
networks. 

Detecting 
changes in 
empirical social 
networks over 
time. 

 
 
 
1.2  Applicat ion 
 

This thesis will provide insight into the stochastic behavior of social networks.  In 
addition, algorithms will be proposed that detect subtle changes in a social network.  
Imagine Joe Analyst working in an intelligence center trying to understand the dynamics 
of global terrorism.  He currently has wide array of tools to assist him.  He can piece 
together social networks from news papers and broadcasts, intercepted voice 
communication, and intelligence gathered from field agents.  He can model this 
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information with social networks and use various measures to identify individuals who 
are well connected, influential, or connect otherwise disconnect terrorist cells.  In other 
words, he can tell you who was likely responsible for an attack in the past, and who was 
influential in the organization.  But, what about today?  Have influential members 
become less important?  Are other members of the organization assuming more 
influential positions in the social network?  Can we detect a change in the social network 
of a terrorist organization as they increase their communication before they are able to 
execute their planned terrorist attack?  These are the questions that this research will help 
answer.   

 
Applications are not limited to the military.  Consider a civilian company, whose 

managers can identify major leadership challenges before they affect the productivity of 
the company.  The introduction of e-mail and cell phones into the workplace has 
significantly changes the dynamics of communication.  In the past, workers had limited 
peers available that they could ask about problems, before they had to seek guidance 
from senior management.  Today, the available peers to consult are limited only by a 
person’s social network.  With growing on-line communities of practice, this network is 
becoming larger and larger.  While this is good that workers are able to resolve problems 
at a lower level, senior managers are unable to influence decisions with their senior 
judgment and experience.   This research will provide those managers with a tool to 
detect potential problems in their organization, by detecting subtle changes in the social 
network of employees. 
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2 Using the Over Time Viewer 
 
This section provides step-by-step instructions on how to use the Over Time Viewer 

in ORA to conduct longitudinal network analysis.  This procedure is illustrated with a 
longitudinal network data set constructed from email activity.  The data set is part of 
McCulloh’s IkeNet 3, (McCulloh, 2009).  The IkeNet data set consists of longitudinal 
network data constructed from email traffic on a group of officers and cadets at the U.S. 
Military Academy.  The participants agreed to allow the researchers to monitor their 
email activity in exchange for the use of a blackberry.  Daily networks were created, 
where the nodes were the participants and their email messages.  There were directed 
links from a node sending an email to the email message that they sent and from the 
email message to the recipients of the message, creating a bipartite network.  For this 
report, we conducted a relational algebra in ORA to multiply  the (agent x email) network 
by the (email x agent) network to create a social network, where individuals were related 
with a weight corresponding to the number of email messages sent between individuals.   

 
 

2.1  STEP 1:  Launching the Over Time Viewer 
 

To analyze networks over time, several features have been created in ORA.  
Before attempting to use the Over Time Viewer, the analyst must first load the meta-
networks corresponding to different time periods into ORA.  The meta-networks can be 
time stamped in ORA, otherwise, they must be loaded in the order of the correct time 
sequencing.  Once the networks are loaded into ORA, the longitudinal analysis features 
can be found in the Over-Time Viewer which can be accessed from the pull down menu.   

 

 
  

A pop-up window will appear, asking the user how to conform the networks.  
When you have multiple networks over time, some nodes may appear in certain time 
periods and be absent from others.  The user must therefore decide whether to: 

 
a) include nodes as isolates in time periods where they are not observed (union); 

 b) exclude nodes that are not in all time periods (intersection); 
 c) calculate graph level measures on the networks as they are (do nothing). 
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ORA will spend a bit of time calculating measures and then the following screen will 
appear. 
 

 
 

The data used in this example comes from IkeNet 3.  The networks analyzed are daily 
snapshots of the network.   
 

In the upper left the user can make some choices about the aggregation level.  In 
other words, if you have daily networks, do you want to aggregate over 7 time periods to 
have weekly networks?  Or perhaps you would prefer every 3 days.   

 
Below this are some options to restrict the time periods that the analyst wants to 

look at.  This is particularly useful when there are many more than about 30 time periods. 
This can also be used, even if the dates are not recorded for the networks.  If no dates are 
recorded, integer time periods are assigned to the networks beginning with time 1.  An 
example of networks with no dates recorded is shown in the screen capture above.  

In the upper right of the Over Time Viewer, the analyst will choose the particular 
measures that they want to analyze.  So far, we have only explored network level 
measures.  Theoretically, there is no reason why this will not work for any node level or 
meta network measure.  Therefore, this capability is included in ORA.  We provide this 
disclaimer that analysis of agent level measures has not been proven as of the date of this 
publication. 
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2.2  STEP 2:   Over Time Dependence 
 

One major obstacle to the study of network dynamics is periodicity or over-time 
dependence in longitudinal network data.  For example, if we define a social network link 
as an agent sending an email to another, we have continuous time stamped data.  
Intuitively, we can imagine that individuals are more likely to email each other at certain 
times of the day, days of the week, etc.  If the individuals in the network are students, 
then their email traffic might follow the school’s academic calendar.  Seasonal trends in 
data are common in a variety of other applications as well.  When these periodic changes 
occur in the relationships that define social network links, social network change 
detection methods are more likely to signal a false positive.  A false positive occurs when 
the social network change detection method indicates that a change in the network may 
have occurred, when in fact there has been no change.  To illustrate, assume that we are 
monitoring the density of the network for change in hourly intervals.  The density of the 
network measured for the interval between 3 A.M. and 4 A.M. might be significantly less 
than the network measured from 3 P.M. to 4 P.M. because most of the people in the 
network are asleep and not communicating between 3 A.M. and 4 A.M.  This behavior is 
to be expected, however, and it is not desireable for the change detection algorithm to 
signal a potential change at this point.  Rather, it would be ideal to control for this 
phenomenon by accounting for the time periodicity in the density measure.  Only then 
can real change be identified quickly in a background of noise. 

 
Periodicity can occur in many kinds of longitudinal data.  Organizations may 

experience periodicity as a result of scheduled events, such as a weekly meeting or 
monthly social event.  Social networks collected on college students are likely to have 
periodicity driven by both the semester schedule and academic year.  Even the weather 
may introduce periodicity in social network data, as people are more or less likely to 
email, or interact face-to-face.  At the U.S. Military Academy, people tend to run outside 
in warm weather in small groups of two or three.  During the winter, people go to the 
gym, where they are likely to see many people.  This causes an increase in face-to-face 
interaction as people stay inside.  In a similar fashion, during the Spring and Fall, many 
people participate in inter-unit sporting events such as soccer, or Frisbee football.  This 
can also affect people’ face-to-face interaction and thus the social network data collected 
on them. 

 
Spectral analysis provides a framework to understand periodicity.  Spectral 

analysis is mathematical tool used to analyze functions or signals in the frequency 
domain as opposed to the time domain.  If we look at some measure of a social group 
over time, we are conducting analysis in the time domain.  The frequency domain allows 
us to investigate how much of the given measure lies within each frequency band over a 
range of frequencies.  For example, Figure 11 shows a notional measure on some made-
up group in the time domain.  It can be seen that the measure is larger at points B and D 
corresponding to the middle of the week.  The measure is smaller at points A, C, and E.   
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Figure 2 Notional Measure in Time Domain 

 
 
If the signal in Figure 11 is converted to the frequency domain as shown in Figure 

12, we can see how much of the measure lies within certain frequency bands.  The 
negative spike in Figure 12 corresponds to 7 days, which is the weekly periodicity in the 
notional signal.  The actual frequency signal only runs to a value of 8 on the x-axis in 
Figure 12.  The frequency domain signal after a value of 8 is a mirror image, or harmonic 
of the actual frequency signal. 

 

 
Figure 3. Notional Measure in Frequency Domain 

 
The frequency domain representation of a signal also includes the phase shift that 

must be applied to a summation of sine functions to reconstruct the original over-time 
signal.  In other words, we can combine daily, weekly, monthly, semester, and annual 
periodicity to recover the expected signal over-time due to periodicity.  For example, 
Figures 13-15 represent monthly, weekly, and sub-weekly periodicities.  If these signals 
are added together, meaning that the observed social network exhibits all three of these 
periodic behaviors, the resulting signal is shown in Figure 16.   
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   Figure 4. Monthly Period      Figure 5. Weekly Period    Figure 6. Sub-weekly Period 

 
 

 
Figure 7. Sum of the Signal in Figures 13-15 

 
 If the periodicity in the signal shown in Figure 16 is not accounted for, it appears 
that there may be a change in behavior around time period 20, where the signal is 
negatively spiked.  In reality, this behavior is caused by periodicity.  If we transform the 
signal to the frequency domain as shown in Figure 17, we can see the weekly periodicity 
at point B and the sub-weekly periodicity at point A. 
 
 
 

 
Figure 8.  Transformation of Figure 16 to the Frequency Domain 
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 I propose that spectral analysis applied to social network measures over time will 
identify periodicity in the network.  I will transform an over time network measure from 
the time domain to the frequency domain using a Fourier transform.  I will then identify 
significant periodicity in the over-time network and present two methods for handling the 
periodicity.   
 
 The over time dependence analysis is accessed by selecting the Fast Fourier 
Transform tab in the Over Time Viewer as shown below.  This displays the frequency 
plot of the data. 
 

 
 

The analyst can use the Over Time Viewer to help determine which frequencies 
are significant.  Selecting Dominant Frequencies on the radio button to the lower left, 
displays only the statistically significant frequencies. The Fourier Transform uses the 
normal distribution in order to transform data from the time domain to the frequency 
domain.  Therefore, the normal distribution is an appropriate distribution to fit to the 
frequencies plotted in the frequency plot.  All frequencies that are within two standard 
deviations of the mean are then set equal to zero for the dominant frequency plot, 
revealing only the dominant frequencies.  A dominant frequency is a potential source of 
periodicity, as opposed to random noise in the over time signal. 
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The analyst will often want to transform the statistically significant frequencies 
from the frequency domain back into the time domain so that he/she can make better 
sense of them.  To do this, the analyst must select the radio button on the lower left called 
Period Plot.   
 

The period plot shows the analyst the expected periodicity in the over-time data.  
In the example, you can see weekly periodicity. The peaks and valleys in the period plot 
occur approximately every 7 days.  At this point, the analyst may wish to merge the daily 
data into weekly networks.  This would average out the effects of weekends and evenings 
that are likely to affect the properties of daily networks.  Another approach is to simply 
look at the networks departure from what is expected.   
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The Filtered Plot radio button will create an over-time plot of how the measure 
deviates from what is expected, based on the periodicity of the measure.  You can also 
plot the filtered measure with the original measure to see the difference as shown below. 
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2.3  STEP 3:  Network Change Detect ion 
 

The user may also wish to detect statistically significant change in the network 
over time.  The user can select the Change Detection tab shown in the screen capture 
below.  There are three different control chart procedures that can be applied to the 
signal.  We are applying the Cumulative Sum or CUSUM in this example.  The user must 
enter the number of “In-control” networks.  This is the number of networks that you must 
assume to be typical.  The procedure actually detects networks that are significantly 
different from the networks that are “in the first however many networks are selected as 
in-control”.  For the CUSUM, the analyst can select a standardized magnitude of change 
to optimize the procedure for.  A novice user should just use the default value of 1.  
Finally, the user must determine the procedure’s sensitivity to false alarms.  The user can 
select a decision interval, or specify the false positive risk, or specify the expected 
number of observations until a false positive is reached.  For this example, we use a false 
positive risk of 0.01, which corresponds to a decision interval of 3.5 and 100 expected 
observations until a false positive. 

 

 
 

The maroon horizontal line is the decision interval of the change detection 
procedure.  When a plot of the CUSUM crosses the decision interval, the analyst may 
conclude that a change in network behavior may have occurred.  The red line in the plot 
is the CUSUM statistic for detecting a decrease in the Betweenness Network 
Centralization.  The blue line in the plot is the CUSUM statistic for detecting an increase 
in the Betweenness Network Centralization.  The example above indicates that there may 
have been a statistically significant change in the network over time.  We detect a change 
in the network on 18 September 2008 (time period 18), when the blue line crosses the 
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decision interval.  This signals an increase in the Betweenness Network Centralization.  
The most likely time the change actually occurred was the last time the statistic was 0, 
which was 14 September 2008. 

 
The cadet regimental chain of command assumed duties on 18 August.  Part of 

the IkeNet3 experiment was to introduce blackberries to the chain of command and 
observe the impact.  The blackberries were scheduled to be issued to the cadet chain of 
command on 18 September.  They were notified at their weekly meeting on 14 
September.  All of the cadets were not issued their blackberries until 22 September, but 
the first blackberry was issued on 18 September.  Therefore, dynamic network change 
detection is successful at detecting this significant event in the organizational behavior of 
one of three subpopulations monitored.  In other words, the behavior only changed for 24 
out of 68 individuals in the network.  This demonstrates the ability of dynamic network 
change detection to detect small persistent change in network behavior in a background 
of noise. 

 
The Over Time Viewer can be used to investigate multiple different network 

measures, different risks for false positives, and different aggregation levels.  The analyst 
must simply make their selections and then hit the “Compute” button in the Change 
Detection tab.  Different aggregation levels can also be investigated by selecting the 
aggregation level in the upper right of the interface, hitting “Recompute”, then hitting the 
“Compute” button in the Change Detection tab. 
 
 

3 Future Work 
 

Additional features in the Over Time Viewer will include additional change 
detection procedures.  Currently, the software tool contains three procedures, the 
Shewhart (1927) x-bar chart, the CUSUM (Page, 1951), and the Exponentially Weighted 
Moving Average (Roberts, 1959).  While these have been demonstrated to be an effective 
approach for network change detection (McCulloh, 2009) other approaches exist.   

 
There are many factors that contribute to an analyst’s choice of change detection 

procedure.  Additional work is still required on the performance of network change 
detection to determine which of these factors are appropriate for network applications of 
statistical process control.  The Over Time Viewer will continue to incorporate additional 
change detection procedures to allow users to investigate change detection using the 
CASOS software suite.  An early example is the incorporation of agent level measures 
for change detection.  Although unproven, these features are already present in the Over 
Time Viewer. 

 
Change detection in longitudinal networks is a relatively new field of active and 

ongoing research.  No doubt, new approaches and concerns will be raised as scientists 
explore network change.  As new methods are developed, we intend to incorporate them 
in future versions of the Over Time Viewer. 
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