
Construct User Guide

Stephen Dipple, Kathleen M. Carley

May 2023

CMU-S3D-23-104

Software and Societal Systems Department

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

sdipple@andrew.cmu.edu, kathleen.carley@cs.cmu.edu

Center for the Computational Analysis of Social and Organization Systems

CASOS technical report

This report/document supersedes the following CMU-ISR Technical Reports:

CMU-ISR-22-102, "Construct User Guide", February 2022

This work was supported in part by the Knight Foundation and Office of Naval Research

under a Minerva Grant (Dynamic Statistical Network Informatics, N00014-15-1-2797 and Multi-

Level Models of Covert Online Information Campaigns, N00014-21-1-2765) and

Multidisciplinary University Research Initiatives (MURI) Program (Persuasion, Identity, &

Morality in Social-Cyber Environments, N00014-21-12749). Additional support for Construct was

provided by the Center for Computational Analysis of Social and Organizational Systems

(CASOS) and the Center for Informed Democracy and Social Cybersecurity (IDeaS) at Carnegie

Mellon University. The views and conclusions contained in this document are those of the authors

and should not be interpreted as representing the official policies, either expressed or implied, of

the Knight Foundation, the Office of Naval Research, or the U.S. Government.

mailto:sdipple@andrew.cmu.edu
mailto:kathleen.carley@cs.cmu.edu

Keywords: Construct, multi-agent simulation, dynamic network analysis, agent-based

modeling, information diffusion, belief diffusion, agent-based simulation, modeling, and

simulation.

Abstract

This technical report provides users and researchers information on the configuration and use

of Construct version 5.4.X. Construct is the CASOS’s agent-based simulation software for

dynamic network and information diffusion in complex socio-technical systems. The report

provides a quick start guide to Construct, a detailed discussion of its configuration, and use through

a sample problem and virtual experiment configuration exemplar, and a set of appendices with

additional useful information. This document is both an introduction to Construct for casual

modelers as well as a reference guide for researchers, modelers, and simulationists.

i

Table of Contents

Table of Figures ... iv

Table of Tables .. iv

Introduction ... 1

Agent Based Models ... 1

Introduction to the Report ... 5

Construct Versions and This Report ... 5

Conventions Used in This Document ... 5

Organization of This Overall Report ... 6

A Motivating Example .. 6

Core Mechanisms .. 6

A Scenario ... 8

PART ONE: Quick-Start Guide.. 10

The Input Deck .. 10

The Objects ... 10

Agents .. 11

Knowledge ... 11

Time ... 11

Object Relations as a Network .. 12

The Knowledge Network ... 13

The Interaction Sphere ... 13

Outputs .. 13

Models and Construct Program Flow.. 15

Initialize Function .. 16

Think Function .. 16

Update Function .. 16

Communicate Function.. 17

Clean Up Function ... 17

Models ... 17

Thoughts on Experimentation ... 19

ii

PART TWO: Construct GUI .. 22

Quick Start Tutorial ... 22

Adding Complexity ... 24

PART THREE: Construct in Detail .. 25

Parameters ... 26

Seed ... 26

Verbose Initialization .. 26

Verbose Runtime ... 26

Working Directory ... 26

Custom Library .. 26

Nodes ... 26

Agent Node set .. 28

Knowledge Node set .. 28

Medium Node set... 29

Time Node set .. 29

Other Node sets ... 29

Node attributes ... 29

Networks ... 31

Network Generators ... 37

CSV Generator .. 37

Perception Generator .. 38

Random Binary Generator ... 40

Random Uniform Generator .. 40

DyNetML Network Generator .. 40

Interaction Models... 41

Standard Interaction Model ... 43

Knowledge Transactive Memory Interaction Model ... 46

Belief Interaction Model .. 48

Task Interaction Model .. 48

Grand Interaction Model ... 49

Location Interaction Model ... 51

iii

Modification Models ... 52

Forgetting Model ... 52

Emotion Model .. 53

Knowledge Learning Difficulty Model ... 54

Mail Model .. 55

Subscription Model.. 55

Trust Model ... 55

Social Media Models ... 56

Twitter Model .. 57

Facebook Model .. 58

Social Media Models with Followers .. 58

Twitter Follower Model... 60

Facebook Follower Model ... 61

Social Media Models with Emotions ... 62

Twitter Emotion Model ... 63

Twitter Emotion Follower Model .. 64

Facebook Emotion Model ... 65

Facebook Emotion Follower Model .. 66

Output .. 67

CSV ... 67

DyNetML... 68

Messages .. 69

Media Events ... 69

PART FOUR: Construct API.. 71

Creating Custom Models ... 71

Creating Custom Output.. 72

Creating Custom Social Media Users ... 72

GUI Integration ... 73

Full Control of a Custom Construct Construction .. 73

References ... 74

Appendices .. 78

iv

Appendix A A History of Construct ... 78

Appendix B Construct in High Performance Computing (HPC) Environments 80

Appendix C Construct in Research Literature .. 84

Table of Figures

Figure 1: A visualization of the Construct framework as a house. ... 7

Figure 2. A depiction of two ‘clean-room’ teams of product developers. 8

Figure 3. Model execution cycle: after INITIALIZATION executes once, each complete time

period begins with all models performing THINK and ends with each completing CLEAN UP.16

Figure 4: The inheritance of various Construct models. Models with a common source are

mutually exclusive and cannot both be present in the input deck... 42

Table of Tables

Table 1. Node attributes used in Construct. .. 29

Table 2. Network relations to node sets. ... 31

Table 3: Networks used by the Standard Interaction Model... 43

Table 4: Networks used by the Knowledge Transactive Memory Interaction Model. 46

Table 5: Networks used by the Belief Interaction Model. .. 48

Table 6: Networks used by the Task Interaction Model. .. 48

Table 7: Networks used by the Grand Interaction Model. .. 49

Table 10: Networks used by the Location Interaction Model... 51

Table 11: Networks used by the Forgetting Model. ... 52

Table 12: Networks used by the Emotion Model. .. 53

Table 13: Networks used by the Knowledge Learning Difficulty Model. 54

Table 14: Networks used by the Mail Model.. 55

Table 15: Networks used by the Subscription Model. .. 55

Table 16: Networks used by the Knowledge Trust Model. .. 55

Table 17: Networks used by the Twitter Model. .. 57

Table 18. Node attributes used by the Twitter Model. ... 58

Table 19: Networks used by the Facebook Model.. 58

Table 20. Node attributes used by the Facebook Model. .. 58

Table 21: Networks used by the Twitter Follower Model. ... 60

Table 22. Node attributes used by the Twitter Follower Model. .. 60

Table 23: Networks used by the Facebook Follower Model. ... 61

Table 24. Node attributes used by the Facebook Follower Model. .. 61

Table 25: Networks used by the Twitter Emotion Model... 63

Table 26. Node attributes used by the Twitter Emotion Model. ... 64

v

Table 27: Networks used by the Twitter Emotion Follower Model. 64

Table 28. Node attributes used by the Twitter Emotion Follower Model. 64

Table 29: Networks used by the Facebook Emotion Model. .. 65

Table 30. Node attributes used by the Facebook Emotion Model. ... 65

Table 31: Networks used by the Facebook Emotion Follower Model. 66

Table 32. Node attributes used by the Facebook Emotion Follower Model. 66

1

Construct User Guide

Introduction

Construct is a software framework enabling agent-based network-centric simulations.

Construct’s primary model, the Standard Interaction Model can be used to examine the co-

evolution of agents and the socio-cultural environment (Carley, 1990, 1991). Construct enables

easy examination of the evolution of networks and the processes by which information moves

around a social network (Carley, 1995; Hirshman et al., 2007a, 2007b). Construct’s models capture

dynamic behaviors in groups, organizations, and populations with different cultural and

technological configurations (Schreiber et al., 2004). Groups and organizations are complex

systems and the variability of human, technological, and organizational factors among such

systems are captured through heterogeneity in information processing capabilities, knowledge, and

resources. Multiple non-linearities in the systems generate complex temporal behavior on the part

of the agents.

Constructuralism is a mega-theory that states that the socio-cultural environment is continually

being constructed and reconstructed through individual cycles of action, adaptation, and

motivation. This theory is at the heart of Construct’s design. Many social science theories and

findings are part of the constructural theoretical approach including structuration theory (Giddens,

1986), social information processing theory (Salancik & Pfeffer, 1978), symbolic interactionism

(Manis & Meltzer, 1978; Stryker, 1980), social influence theory (Friedkin, 1998), cognitive

dissonance (Festinger, 1957), and social comparison (Festinger, 1954). In addition, several

cognitive processes are embedded such as transactive memory (Wegner, 1987). Construct allows

for these theories to coexist and operate while minimizing potential conflicts.

Construct has several advantages as an agent-based model framework. First, the experiment

designer has complete control over a wide range of inputs used for interaction over the course of

a run and facilitates as much customization as theories allow. Second, Construct contains a suite

of agent models, which enable diverse socio-technical conditions to be modeled. Third, general

agent characteristics can be easily configured a priori using empirical data or they can be based

on hypothetical data. To use Construct, the researcher specifies both the relevant agents (Hirshman

et al., 2007b) and the relevant networks (Hirshman et al., 2007a). Additional information about

the Construct and its various models can be found elsewhere (Carley 1991; Hirshman et al.,

2007b).

Agent Based Models

One of the most used and intuitive approaches to Social Networking Services (SNS) is Agent

Based Models (ABM). ABMs employ a bottom-up approach in which a set of heterogeneous

2

agents, their behavioral properties, the “rules” of interaction, the environment, and the interaction

topology that the agent populates is explicitly modeled. Complex social behavior emerges from

simple individual level processes. In ABMs, many computational entities, with varying levels of

cognitive complexity, interact with one another in a manner similar to the real-world entities they

represent. These agents are simplified versions of their real-life counterparts (e.g., ants, people,

robots, or groups), only retaining elements salient to the phenomena being studied. Agents interact

in a virtual world and can be constrained and enabled by the network position they occupy.

In most ABMs, the topology of the virtual world is a simple 2-D grid and agents form

“networks” as they occupy the same or neighboring spaces or the agent’s network is prescribed as

the set other agents within so many spaces of ego. Networks generated from grid-based interactions

or defined in terms of grid-nearness tend not to have the same properties as true social networks,

i.e., the distribution of ties, the method of tie formation and dissolution, and the relation of ties to

physical space are not realistic. Most ABM toolkits support this type of grid-based modeling of

the social topology.

There is, however, a growing interest in and a growing number of ABMs where the agents

exist and move in a socio-demographic or network topology rather than a grid topology. The

Construct models are an example. In these models, the agents occupy a social network position

defined in terms of which other agents the ego agent can interact with. In other words, rather than

physical adjacency, social adjacency is used. This network topology may be static or dynamic.

This latter type of model where agents exist in dynamic social networks rather than on grids is

where most research on SNS is focused. This approach, referred to as agent-based dynamic-

network modeling, is the approach we found to be most valuable for modeling social networks and

it is embodied in Construct.

ABMs vary in how the environment is represented. This could be as simple as a single

dimension or array where ego interacts with those other agents that are within so many squares left

or right of ego. This is the case in Kaufman’s NK model. Traditionally, however, the environment

was a grid and the agents interacted with other agents in and/or could move to those squares that

surrounded them. Most early studies explored the relative impact of von Neuman (squares left,

right, up, down of ego) or Moore (eight squares around ego) or extended Moore neighborhoods

(squares within some distance of ego). In these traditional approaches, the structure of the social

network is directly tied to the physical position of the agents. Examples of such models are the

Game of Life (Gardner, 1970), the original Schelling segregation model (Schelling, 1971, 1978)

and the more recent SugarScape models developed by Epstein and Axtell (1996). In general, it is

difficult to get realistic social networks in this representation of the environment. Further, as early

results showed, unless the grid is bent into a torus, the resultant social behavior is largely dictated

by “edge effects”; i.e., restrictions on activity caused by being at the edge of the physical grid.

More advanced models place agents in a socio-demographic space and separate the physical

and the social space. In such models, very few have explicitly modeled the social network.

Increasingly, however, researchers are incorporating more realistic network representations, such

3

as small-world, scale-free, or other types of network generators. The most advanced of these

models are the dynamic-network ABMs in which the networks and the agents co-evolve (the first

model of this type was Construct). In some cases, the models are instantiated with networks that

are derived from real data. These models will often generate or import an appropriate graph before

the simulation agents are initialized, and then assign each agent to a graph position when the

simulation starts. Other models use a social network gathered from empirical studies. These

networks have the advantage of being as realistic as possible but may potentially bias the

simulation results due to the structure and nature of the particular social network gathered.

Correctly specifying the topology of a social network in an agent-based model has important

implications for the conclusions drawn. In modeling an adversary, it is valuable to use the social

network of the adversarial group.

The quality of social network modeling can have important effects on simulation outcomes.

For instance, in the Construct’s Standard Interaction Model, the social network topology has a

non-linear effect on knowledge diffusion rates in the system. Construct uses sophisticated agents

that can interact and choose partners with which to exchange knowledge and belief. A stylized

meta-network, which specifies the pattern of potential partners with which an agent can interact,

can be imposed to limit the form of the evolved networks. Construct has been used to model

adversarial encounters. Our results indicate that the most effective type of intervention depends on

how the adversary is structured, e.g., Al Qaeda and Hamas have different structures and the same

intervention, such as isolation of the top leader, in the two cases can lead to performance

decrements in one and performance improvements in the other.

Although frequently lumped together, ABMs vary widely in complexity and computational

cost – some are extremely inexpensive (e.g., Swarm (Terna 1998)) and allow hundreds of

thousands or even millions of agents to operate in the same simulation, while others are rather

expensive and often require the support of an entire processor per agent (e.g., SOAR (Laird 2019)

or ACT-R (Anderson 1993)). This increase in computational expense, however, is matched by

construct validity to the actions of cognitively bounded humans: the least computationally

expensive (per agent) simulations replicate the behavior of insects (specifically ants) while ACT-

R has been able to replicate the brain activation patterns of children solving algebra problems and

SOAR has replicated fighter pilot operations in concert with human pilots.

Although economics are an important consideration in picking an agent-based simulation, they

should not be the only consideration; the specific phenomena of interest should impose its own set

of criteria. For problems of traffic analysis or collision avoidance, swarm agents are particularly

appropriate. However, in phenomena with significant cultural freight, such as those involving

deception, leadership, participation in group activities, and/or compliance with group norms, these

swarm-based technologies offer little useful insight to the policy analyst without additional

(expensive) modification and incurring significant increases in computational cost. At the same

time, not all group-based phenomena require the detail and expense imposed by high-fidelity

models of individual agents. Construct, which can support hundreds and thousands of agents,

4

supports an appropriate middle ground. It also supports one of the only agent-based models which

explicitly unites Herb Simon’s dual requirement of bounded rationality, that rationality should be

bounded both cognitively, and socially (Simon, 1957). Most of the highest-fidelity models

constrain interaction to explicit messages, if at all, and many work entirely in isolation from other

agents. Construct, thus, is less expensive and yet more useful for studying group phenomena.

A common query is to which specific theory of group behavior does Construct adhere?

Construct does not subscribe to a specific theory of group behavior. Indeed, the question can reflect

a fundamental misunderstanding of interesting modeling work – rather, the level at which a

simulation is specifically coded/designed is its least interesting level of analysis. Analysis at the

level in which a model is coded suggests merely how well the simulation programmers did their

work, this is an important verification question, but not of practical application interest to model

consumers. It is necessary, but not sufficient, for a model to be correctly coded. Instead, the more

interesting question, available to be asked of agent-based simulations, is what are the larger

implications with how these agents interact? We call this principle “emergence”, what larger

phenomena “emerge” from the interactions of these modeled agents. Construct is, as previously

said, an agent-based simulation, and thus represents a theory of individuals and how they choose

to interact. The Standard Interaction model makes a claim based on research that people tend to

interact with other people based on two competing drives. One, that people tend to interact with

others because they believe they are similar (the drive for homophily), and two, that people tend

to interact with others who they believe have valuable knowledge they do not have (the drive for

knowledge expertise). Both of these human drives are common across various cultures.

Emergent properties of the simulation, then, are much more interesting to the agent-based

simulation modeler than the direct consequences of their modeling decisions. Based on agents

interacting with others due to knowledge expertise and homophily, Construct models have been

able to replicate many group-level behaviors found in people: the S-Shaped curve of diffusion,

yes, but also that beliefs are more durable than the information used to support a belief. Construct

has examined cultural norms in organizations, belief-changes in national decision-makers, and

group stability. In practice, Construct is a valuable support for group-level behavioral theories

because it provides an explanation rooted in individuals for the origin of these phenomena. These

emergent properties, however, may not always be intuitive to the model consumer or model

developer. At such points, it is important to recheck questions of verification, that some bug in the

model process is not to blame for the errant results. But more interesting is when the model’s code

is not in error, but the results are still surprising.

Although not directly attributable to programming error, there may be other sources of

surprising results that should be described. One, the model simulation is, at its core, not a

sufficiently good model of the atomic primitive it represents; this is often the case when extending

swarm agents beyond issues of traffic and navigation. Two, the experimental approach was not

well matched to the empirical reality – if, for example, 75% of adults in the population are internet-

literate, but the model assumes that only 10% of the agents will receive information from internet

5

sources, the model will significantly underestimate the prevalence of information from internet

sources, and there may be further cascading effects of that error. Three, the results of Construct’s

outputs may simply not be well communicated. Relating accurately (and conservatively) the

implications of models is itself a skill that must be polished.

However, sometimes, the results are non-intuitive and yet none of these errors appears to be

present. In such a case, this is the value and joy in modeling counter-factual scenarios – we can

place our simulated humans in situations that do not exist and will never exist and be surprised and

intrigued by how they behave.

Introduction to the Report

Construct Versions and This Report

Construct is, like all but end-of-life software, undergoing continuing development in both its

capabilities and its implementation. This guide is for Construct version 5.4.X which can

downloaded on CASOS’s Construct Download page. Construct versions 5.5.X and later will be

associated with an updated version of this user guide. Finally, experiment developers and designers

should consider subscribing to the CASOS’s ORA Google Group for ad-hoc and peer-to-peer

assistance as well as assistance from students, staff, and faculty of CASOS.

Conventions Used in This Document

Where feasible, this document quotes a provided example of a Construct experiment

configuration file. The sample file can be seen in Section Thoughts on Experimentation, using the

courier new font in a reduced font size. This report uses the following typeface conventions:

Code snippets will also be written in the Courier New, 11 pt. text. These snippets are quotes

from the demonstration input file. We will also frequently call the input file the input deck, or

shorten the name to deck, throughout the document. The origins of this use of the word ‘deck’ will

deliberately remain in the mists of our collective memory lest the authors prove how old they really

are.

Construct keywords, will also use the Courier New, 11 pt. font (the Code style in MS

Word). Additionally, variables and network names will use the same style.

A blue box and text inside the box indicates information the

experiment developer and designer, researcher and simulationist should

be particularly aware of when using Construct.

http://www.casos.cs.cmu.edu/projects/construct/download.php
https://groups.google.com/g/ora-google-group

6

We will reduce the extended list of potential audience members from “experiment developer

and designer, researcher and simulationist” in most cases, to “researcher” and/or “simulationist”

throughout the document.

Egos and Alters are common referents in social science literature that we will use throughout

this report. Their use simplifies establishing frames-of-reference and scoping of interaction

possibilities. When we refer to a single agent, it will most often have the label of ego. When we

refer to the agents or other entities that the ego is connected (in any sense of the word), they will

most often have the label of alter or alters. Agents in the simulation not connected to an ego are

beyond the scope of awareness of the ego, and do not directly affect the ego.

Organization of This Overall Report

The report has three main components and does not need to be read or referred to in front-to-

back sequence. The three parts are below:

PART ONE: Quick-Start Guide is for a relatively quick progression from introduction to

execution of Construct.

PART TWO: Construct GUI is a guide to using the Construct graphical interface and allows

users to run Construct without the need of command line inputs.

PART THREE: Construct in Detail is an in-depth explanation of Construct, complex inputs

and outputs and complex experiments.

PART FOUR: Construct API details how to create custom models.

Appendices holds additional useful sets of information ranging from the use of Construct in

High Performance Computing (HPC) environments such as HTCondor to brief synopses of peer-

reviewed projects where Construct played a role.

A Motivating Example

One method of introducing a set of concepts and the application of those concepts to problem

solving is by a motivating example. In this report, we adopt this method and present a motivating

example for both the questions of interest (QoI) as well as an experimental configuration that can

help answer the QoI.

It is recommended before continuing that the reader contemplate on QoI they intend to answer

using this work keeping in mind that Construct’s roots lie in social networks and information

diffusion. Without well-defined QoI, it may be difficult to understand the necessity for many of

the explanations this guide will go through. This motivating example will stay with this core

capability and defer discussions of additional capabilities and experimental purposes to PART

THREE: Construct in Detail.

Core Mechanisms

7

As previously mentioned, Construct is a framework which can be seen in Figure 1. In this

framework we have nodes, networks, models, input, and output. Construct’s primary function is

to properly interface all these components together like the stairs and hallways in a house. Unlike

a regular house however, Construct can expand, and contract as needed to facilitate an end user’s

requests. Construct is able to handle an arbitrary number of node sets and networks and inputs for

those areas. Construct is also able to handle one to an arbitrary number of models assuming there

are no conflicts between models as well as many different types of output. The models and output

however are limited to what is already built into Construct.

Figure 1: A visualization of the Construct framework as a house.

While Construct is a framework for agent-based simulations, the models built into Construct

are where the magic happens. The Standard Interaction model is Construct’s signature model and

the starting point for additional models and modifications. This model combines many different

aspects such as decision making, technology restrictions, and information propagation. Agents

make decisions about who to interact with, what information to transfer during an interaction, and

which communication medium to use for that interaction. The communication mediums present

technological limitations as mediums such as books, which are rich in information, but is only one

way or face-to-face conversations, which happens instantaneously in both directions. Finally,

when these interactions take place, the resulting information spread affects the decision making of

8

each agent such as the search for more exclusive information as an agent’s repertoire expands.

PART THREE: Construct in Detail goes over the specifics of this and other Construct models.

A Scenario

We, the researchers, are analysts that Acme, Inc. has hired to help Acme design two software

development teams in a ‘clean room’ configuration. Acme wants the two teams to co-developing

a product. Acme also wants structural mechanisms in place to control how much information flows

between the two teams as a method to help reduce the probability of unintentional release of

Acme’s intellectual property. One way of visualizing this scenario is in Figure 2. In this figure, we

also call each team a cluster, aligning with the social network analysis literature when groups of

entities are meaningfully connected to each other.

Figure 2. A depiction of two ‘clean-room’ teams of product developers.

In the figure above, possible questions of interest that are appropriate for the model to help

forecast answers could be:

Without direct modeling, is there any leak of knowledge from one team/cluster to the other? If

so, how fast does the information flow?

Assuming no friendship networks or other communication networks not modeled, how fast

does specific knowledge or specific beliefs within each team spread?

Assuming a requirement to have a controlled mechanism to support the teams passing limited

information back-and-forth, to whom would such an intermediary best talk in each team for rapid

spread of information or beliefs?

Does either team have any organizational weak point that can be structurally overcome?

After stability is reached within teams for knowledge saturation/diffusion, what kinds and how

large are impacts of personnel turnover of various sizes and frequencies have on the group? How

long, if at all, does the team take to return to pre-turnover levels for specific measures of interest?

9

These and other questions can be explored within the Construct framework. In Part 1, we will

describe the entities and key relationships between those entities. The treatment in Part 1 is

intended to be useful towards further orienting a potential model builder or a model consumer.

Part 2 describes mechanisms at a high-level of detail and is suitable to act as a reference even to a

regular user of Construct.

10

PART ONE: Quick-Start Guide

This section is an introduction to core mechanisms of Construct and its Standard Interaction

model, introduces three of the most important networks to understand, and suggests a set of

experiments that may be of some interest to the model consumer. It is intended to provide an initial

suggestion of how Construct may be useful to the model developer. More detail is provided in the

second part of this report. At the end of this section a full example is provided.

We begin this guide by providing a summary of key objects within Construct and provide

examples of the various semantics between these key entities. We then describe, in more detail,

the more precise semantics of three critical networks in the Standard Interaction model. Next, we

show a suggestion of some experiments that could be done using only those key networks,

referencing the motivating scenario. Finally, we go over how to include additional models into

Construct and a high-level discussion of how models interact with each other.

The Input Deck

Construct is machine code which requires interpretation in order to properly interface with and

give instructions to. The XML file format is the language of choice for interfacing with Construct.

XML offers clearer labeling and easier viewing than Json at the cost of larger file sizes. This cost

is offset as it is not expected that files will not be exceedingly large for submitting instructions to

Construct. The following example shows some of the key concepts required to build the various

components that will be used in this document.

<book title=”To Kill a Mockingbird” author=”Harper Lee”>

 <genre type=”Southern Gothic”/>

 <genre type=”Bildungsroman”/>

 <rating media=”Goodreads” value=”4.3”/>

 <rating media=”Common Sense Media” value=”5”/>

</book>

In this example, an XML element is created to represent the book “To Kill a Mockingbird”.

The overall object is a book, which defines the XML element’s name. All XML elements need to

be terminated by a forward slash. In this case the book element has sub-elements and is terminated

by </book> after all other sub-elements have been added. Each element has a set of attributes of

the form [attribute_name]=”[attribute_value]”. Each attribute name must be unique. Sub-

elements are used to display multiple similar pieces of information. In this case, the book fits into

multiple genres and has multiple media ratings. Construct does not have a strict requirement on

the order of sub-elements, however for some components, slightly different results can be yielded

by a reordering.

The Objects

11

Construct organizes sets of objects into what are called node sets. Some examples are agents,

knowledge, and time. A singleton example of each of these object classes is referred to

(respectively) as an agent, knowledge bit, and a time step. Nodes are available globally in

Construct and are used frequently in most areas of Construct. Below is an example of creating a

node set.

<nodeset name="my nodes">

 <node name=”node 1”>

 <attribute name=”attribute 1” value=”value 1”/>

 <attribute name=”attribute 2” value=”value 2”/>

 </node>

</nodeset>

In this example, the node set is named “my nodes” and contains only one node. This node’s

name is “node 1” and has two node attributes indicated by the two sub-elements. Node sets are

required to contain at least one node. Required node attributes can vary based on the models used,

which will be discussed below.

Agents

Agents are the most important class of objects in Construct’s model library. Typically, agents

represent human-like entities, but researchers can also represent other types of entities such as

sources of information (e.g., newspapers, radio programs, or television ads) and information

technology (IT) systems (e.g., databases, data-stores).

Agents have agency and make decisions based on input. Agents are typically treated as

homogenous in that given the same inputs, all agents will perform a given action with the same

probability as any other agents. The inputs themselves can give agents their identity and

uniqueness. Because of this, most of an agent’s decision making comes from a general model

which we discuss in later sections. While most models follow this methodology, other models can

be created in which agents have fundamentally different decision logic.

Knowledge

A knowledge node represents information and any particular knowledge bit represented by a

knowledge node typically represents a single atomic piece of information, such as “Sol is the name

of the star at the center of our solar system”, or “Each water molecule is comprised of two hydrogen

and one oxygen atom.” It is incumbent on a researcher to keep the stylized representation

consistent in their experiments – one bit should not represent “How to pilot a 747-jumbo jet” while

another bit represents ‘flight departed’, without proper modification to how those bits connect to

the rest of the model.

Time

Many simulations will segment a timeline of events into many small slices referred to as time

periods. These time periods are represented by a time node and indicate a specific point in time.

12

Beginning with the first time node to appear in the input, Construct will move from pointing to the

current time node to next time node when a simulation cycle is completed. This continues until the

simulation cycle finishes while pointing to the last time node to appear in the input. Construct

assumes that all actions and events in a time period happen at the exact same time determined by

the current time node being pointed to. In addition, Construct assumes all time nodes are evenly

spaced in time.

It is usually good practice to attempt to identify, loosely, a length of time represented by each

period. Time periods may be minutes, days, weeks, or months. This representation should be

chosen relative to the type of actions being taken during each time period. It may be unrealistic for

a human agent to interact thousands or millions of times in a second. Likewise, for a human agent

to interact only a handful of times in years.

Object Relations as a Network

In Construct, objects such as agent nodes or knowledge nodes can become connected in a

network. Networks come in many different types and representations. A network can be

represented as a dense matrix in the following example.

 Biology Physics Sociology

Aba 1 1 0

Jane 0 1 1

Lu 0 1 1

Raj 1 0 1

Fred 1 0 0

In this representation, a 1 indicates the presence of a link. This can have different meanings in

different contexts but for this example, they act as indication that a person is currently taking the

specified class if a 1 is present in the element. For instance, Aba is taking Biology and Physics,

while Jane is taking Physics and Sociology. Below is an example of creating the above network in

Construct.

<network name="class network" edge_type="int" default="0">

 <source nodeset="agent" representation="dense"/>

 <target nodeset="class" representation="dense"/>

 <link src_name=”Aba” trg_name=”Biology” value=”1”/>

 <link src_name=”Aba” trg_name=”Physics” value=”1”/>

 <link src_name=”Jane” trg_name=”Physics” value=”1”/>

 <link src_name=”Jane” trg_name=”Sociology” value=”1”/>

 <link src_name=”Lu” trg_name=”Physics” value=”1”/>

 <link src_name=”Lu” trg_name=”Sociology” value=”1”/>

 <link src_name=”Raj” trg_name=”Biology” value=”1”/>

 <link src_name=”Raj” trg_name=”Sociology” value=”1”/>

 <link src_name=”Fred” trg_name=”Biology” value=”1”/>

13

</network>

The network XML element has three attributes, “name”, “edge_type”, and “default” in addition

the various sub-elements. The name attribute is self-explanatory and acts as the key for storing and

finding networks in Construct. Construct models will request specific data types which is specified

by the edge type. The default attribute defines the value with which to initialize the network links.

After the initial declaration, there are two elements named “source” and “target”. This specifies

the origin (the source node set) of a link and its destination (the target node set). An additional

dimension will later be added in Part 2: Networks to create three dimensional networks. The

“representation” attribute can only be “dense” or “sparse” and indicates the data structure with

which that dimension is being stored. In a dense structure, an array is used which has constant

lookup time for an index, but consumes memory for every index, even if there is not a link

connecting to that index. In a sparse structure, a binary tree is used which has logarithmic lookup

time but only consumes memory when the index is connected in a link. When to use which

representation is discussed further in Part 2: Networks.

The source and target elements are the only required sub-elements for a network element. An

optional number of “generator” and “link” sub-elements can be included in a network element.

Generators are macros which can populate large networks with relatively few elements. Links are

defined to connect a source node to a target node and can be created using the node’s name

(src_name, trg_name) or the node’s index (src_index, trg_index). Each link also has a value

that must be convertible from a string to the network’s edge_type. Additional information on

types of generators and creating links can be found in Part 2: Network Generators.

The Knowledge Network

The knowledge network is a binary network connecting agent nodes to knowledge nodes. This

defines “who knows what”. Similar to the example above, links in this network represent which

agent knows which knowledge bits.

The Interaction Sphere

The interaction sphere is a binary network connecting agents to other agents and defines “who

can find whom”. Agents can only initiate contact with other agents if they can find them. On a

local level this translates to who knows whom. Agents may not know the agents they’re

communicating with, however, symmetry is not required. As an example, newspapers or tv can

allow certain agents to communicate information to vast number of individuals even though the

broadcaster may not specifically know every individual they are broadcasting to.

Outputs

Researchers usually compare outputs of Construct simulations by examining files written over

the course of the simulation. It is outside the scope of this quick start guide to offer in-depth

14

suggestions on how to deal with large quantities of simulation data. We will instead go over the

basic tools available in this guide. Here is an example that we will start with followed by a

breakdown for each component.

<outputs>

 <output name="csv">

 <parameter name="network name" value="knowledge network"/>

 <parameter name="output file" value="knowledge.csv"/>

 <parameter name="time periods" value="all"/>

 </output>

</outputs>

In this output, the network “knowledge network” is being outputted to “knowledge.csv”. In

addition, all time steps will be output to the csv file. Additional types of output will be discussed

in Part 2: Output.

When Construct writes matrices to file(s), as in this example to a

comma separated value file, it will separate each row from the others

with a line termination symbol appropriate for the host operating system

(Carriage Return/Line Feed for Windows-type OS). If a researcher has

Construct write multiple time periods to a single file, each time period is

separated from others with a single empty line.

15

Models and Construct Program Flow

Models in Construct operate using a plug and play methodology. Ideally, each model can run

simultaneously while operating on the same set of nodes and networks. However, there are always

limitations when attempting to create an arbitrary interface for which the models to interact. For

example, a previously existing model would not know to access a new network created for a newer

model.

 One method that allows better compatibility between models is its implementation of a

message exchange. Messages are entities that are sent by an agent and are then read/parsed by the

receiving agent for any information in the message. By allowing each model to manipulate the

messages that other models may want to send, certain behaviors can be obtained without editing a

model’s source code in a way that would not be possible by editing of networks. As we will show

below, models can cause standard messages to be delayed in a mailbox type data structure or create

irregularities in a message based on an agent’s lack of literacy. In addition, viewing these messages

can give models usage statistics for behaviors like a “use it or lose it” style of forgetting knowledge.

To accomplish this goal, all models have a similar structure. First models access all their

required node sets and networks from Construct and adds a default network for any optional

network not included in the input deck. Each model then performs a standard set of model

functions which can be seen in the Figure 3. Each model has a set of five functions that are called

in the order shown that ensure models can create, manipulate, parse, and digest messages. Each

function is completed by all the models before any model advances to the next step (i.e., each

model completes the Think function before any model performs the Update function).

Additionally, most models can be separated into interaction models, in which the primary purpose

is to determine how interactions form and create messages to be sent between an interaction pair

and manipulation models, in which the primary purpose to manipulate flow and content of

messages. Below we describe in detail the five functions that allow sufficient generality to achieve

plug and play functionality of models.

16

Figure 3. Model execution cycle: after INITIALIZATION executes once, each complete time

period begins with all models performing THINK and ends with each completing CLEAN UP.

Initialize Function

The Initialization function is called at the beginning of the simulation once. The primary

purpose of the initialize function is to check for the existence of other models. As much as this

project aims for models to be independent, it is inevitable that some models are mutually exclusive

with other models. The initialize function allows each model to check for other mutually exclusive

models after all other models have been loaded in. In addition, some models may change behavior

based on the presence of other models which can also be checked here. This function is only

performed once, prior to the start of the model execution cycle proper.

Think Function

The Think function is a critical function for the interaction models as this function's primary

purpose is generating messages. Message creation in this step is generally independent of other

models. Some possible secondary dependencies may arise if one model modifies a network another

model uses, however this is not done by any of the currently developed models. This function is

the first function executed in the model execution cycle during a time period.

Update Function

The Update function allows each model a chance to manipulate messages created by other

models. This ranges from adding additional information to a message, modifying existing

information in the message, removing information in a message, removing a message entirely, to

17

copying a message to send to another recipient, as well as additional fringe cases. This function is

the second executed during a time period.

Communicate Function

The Communicate function takes in each individual message and parses its contents. Each

model is responsible for parsing the contents of messages it creates as well as any information it

tacked onto another model’s message. This allows each model to partition itself from each other

without having to worry about additional content that may be in a message. This can be particularly

useful as the node and message information space increases as previously existing models will not

require modification. This function is the third executed during a time period.

Clean Up Function

The Clean Up function allows each model to update various strategies and characteristics

based on the communicated messages in preparation for the next time period’s Think function.

This function is the last model function called in the execution cycle. After all models have

completed their Clean Up function any output routines are processed.

Models

Construct’s models can be separated into three categories. Interaction models create

interactions based on various networks the agent is connected to. Modification models typically

do not create any interactions, but rather modify the interactions by adding additional details or

modifying networks in response to generated interactions. Social media models emulate a social

media environment where agents create content and then read each other’s content. In this case,

interactions are generated not by how the agent is connected in networks, but by the ordering of

each agent’s feeds. Reading content in these feeds generates the interactions which contain

information from when the content was created rather than the currently available state. Below is

a list and short description of each model.

• Standard Interaction Model

o The most fundamental version of Construct’s interaction models which relies

on proximity, similarity, and expertise to find well suited interaction partners.

• Knowledge Transactive Memory Model

o An expansion on the Standard Interaction model, this model utilizes an error

prone memory of who knows what to provide more realistic interaction seeking.

• Belief Interaction Model

o An expansion of the Standard Interaction model, this model utilizes beliefs

based on known knowledge to modify similarity comparison.

• Task Interaction Model

18

o An expansion of the Standard Interaction model, this model utilizes tasks which

can be completed by agents based on their known knowledge. Agents then

prioritize seeking knowledge required to complete.

• Grand Interaction Model

o An expansion of the Standard Interaction model that can optionally combine

aspects of the Knowledge Transactive Memory Model, Belief Interaction

Model, and Task Interaction Model. These affect the items created in a message,

and similarity and expertise between agents. Finally, a belief transactive

memory can be enabled which updates beliefs based on influence-based

calculations.

• Location Interaction Model

o Model where agents can learn knowledge based on the location the agent is at.

• Mail Model

o Model that temporarily stalls the transmission of messages based on the

medium used.

• Knowledge Learning Difficulty Model

o Model that makes learning can cause agents to stochastically not learn a

knowledge bit when communicated.

• Knowledge Trust Model

o Model that creates a trust for each knowledge bit which is updated based on

other’s trust in that knowledge.

• Forgetting Model

o Model that simulates agents forgetting knowledge which disconnects the

relevant link in the “knowledge network”.

• Emotion Model

o Model that controls the dynamics of how emotions can change over time, adds

emotional information to exchanged messages, and dictates the emotional

response to reading an emotional message.

• Subscription Model

o Model that forwards the content of messages made public based on medium to

agents who subscribe to the message sender.

• Twitter Model

o A model that describes how individuals use the Twitter social media platform

to diffuse information. This includes a data structure for events, personal feed

of unread events for each agent, and mechanisms for how to respond to events

when read.

• Facebook Model

o This model pulls from the same base model as the Twitter Model and can run

in parallel with the model. The two create their own independent social media

structure environment including events and feeds.

19

• Twitter Follower Model

o An expansion of the Twitter Model that adds additional ordering to a feed based

on who the agent is following in the “twitter follower network”. Agents

can update the network by following the author of read messages or

unfollowing other agents based on unreciprocated relationship of significantly

different follower bases.

• Facebook Follower Model

o An expansion of the Facebook Model that adds the same features as the Twitter

Follower Model but uses the “facebook friend network” to affect agent’s

feeds.

• Twitter Emotion Model

o An expansion of the Twitter Model that modifies the probability to perform

various actions based on the emotional state of the agent as determined by the

Emotion Model.

• Facebook Emotion Model

o An expansion of the Facebook Model that modifies the probability to perform

various actions based on the emotional state of the agent as determined by the

Emotion Model.

• Twitter Emotion Follower Model

o Combines both the Twitter Emotion Model and the Twitter Follower Model to

both modify the probabilities based on emotion and modifies each agent’s feeds

based on their follower network.

• Facebook Emotion Follower Model

o Combines both the Facebook Emotion Model and the Facebook Follower

Model to both modify the probabilities based on emotion and modifies each

agent’s feeds based on their friend network.

Below is an example of including a Construct model. Note that some models have required or

optional parameters. See each model for a list of such parameters.

<model name="Standard Interaction Model">

 <param name=”my param 1” value=”my value 1”/>

 <param name=”my param 2” value=”my value 2”/>

 <!—Insert additional parameters here -->

</model>

Thoughts on Experimentation

In this guide, we have discussed how to create nodes, networks that connect those nodes,

models that dictate how nodes interact with each other, and output for networks. Combining all of

these aspects we get the example input deck for a basic simulation in Construct.

<construct>

20

 <models>

 <model name=”Standard Interaction Model”/>

 </models>

 <nodesets>

 <nodeset name="medium">

 <node name="face to face">

 <attribute name=“maximum message complexity" value="1"/>

 <attribute name=“maximum percent learnable" value="1.0"/>

 <attribute name=“time to send" value="1"/>

 </node>

 </nodeset>

 <nodeset name="agent">

 <generator type=”constant”>

 <count value="50"/>

 <attribute name="can send knowledge" value="true"/>

 <attribute name="can receive knowledge" value="true"/>

 </generator>

 </nodeset>

 <nodeset name="knowledge">

 <generator type=”constant”>

 <count value=”20”>

 </generator>

 </nodeset>

 <nodeset name="time">

 <generator type=”constant”>

 <count value=”10”/>

 </generator>

 </nodeset>

 </nodesets>

 <networks>

 <network name="interaction sphere network" edge_type="int" default="1">

 <source nodeset="agent" representation="sparse"/>

 <target nodeset="agent" representation="sparse"/>

 </network>

 <network name="knowledge network" edge_type="int" default="0">

 <source nodeset="agent" representation="dense"/>

 <target nodeset="knowledge" representation="sparse"/>

 <generator type="random binary">

 <param name="density" value="0.2"/>

 </generator>

 </network>

 </networks>

 <outputs>

 <output type="dynetml">

 <param name="network names" value="interaction network,knowledge network"/>

 <param name="output file" value="output.xml"/>

 <param name="time periods" value="all"/>

 </output>

 </outputs>

</construct>

21

This example brings together many of the concepts already discussed and presents a few new

concepts that will be elaborated upon in the following section. From here many modifications can

be made. Many default networks can be explicitly declared to give the simulation additional depth.

An example might be to create a super spreader of information that can interact with many people

each time step rather than the default of one. Another might be to include additional

communication mediums and restrict agent’s access to certain mediums. These are all parameters

that can easily be modified by the user.

The development team use a complementary tool called ORA to analyze results of Construct

simulations. ORA is a network analysis tool capable of creating and analyzing meta-networks, a

collection of nodes and networks, and dynamic meta-networks, a collection of nodes and networks

that can vary over time. Naturally, this tool can be used to analyze the time dependent networks

that Construct produces. Construct thus supports output in the DyNetML XML file format that

ORA uses to import dynamic meta-networks. Usage of this method can be seen in the section on

creating DyNetML output.

In addition, ORA can be used to create and manipulate nodes and networks which can be

imported into Construct. This is expanded upon in the section on the DyNetML Network

Generator. In addition, many models expect attributes in a node set. In ORA, this can be done by

importing attributes from a text file, or by adding attributes to existing node sets and editing the

attribute values with tools such as Transform Attribute Values to manipulate attribute values. See

the ORA manual for additional details regarding how to create nodes, node attributes, and complex

network structure.

http://www.casos.cs.cmu.edu/projects/ora/index.php
http://www.casos.cs.cmu.edu/projects/dynetml/

22

PART TWO: Construct GUI

This section of the report gives a quick overview of the Construct GUI which can be found in

the Construct downloads page. The Construct GUI’s primary function is to allow for a graphical

interface for inputting information for the Construct simulation rather than relying on an input xml

file. The GUI is intended to aid those less familiar with Construct in getting their first simulations

up and running. Large scale simulations are possible using the GUI, but it is recommended that

input for nodesets, networks, or any other complex input be stored in hard drive files to avoid

excessive memory usage.

Quick Start Tutorial

To begin, open the Construct GUI jar file from the Construct downloads page. Opening the jar

file requires that java be installed on your computer. Construct comes as a part of other software

like ORA. In that case, ORA has already installed a java runtime environment and can be launched

directly from ORA.

Once the Construct GUI is open you should see a page similar to the following image.

On the left you’ll see a list of items that should be familiar from PART ONE: Quick-Start Guide.

The Construct GUI can assist you getting started by clicking on the Models item, which will take

you to the model loading screen. When selecting a model on this screen, nodesets and networks

required by that model are automatically added to Construct. The introductory model shown in

this example will be the Standard Interaction Model.

23

After the GUI has populated the MetaNetwork, you are now ready to run the simulation. Click

on the Run tab at the top of the screen to the simulation status screen. Here you can click on the

Run button to begin the simulation. All output indicating what’s happening in the simulation will

appear in the text box below. The simulation can also be canceled at any time by pressing the

cancel button. When the simulation is complete, you should see a screen similar to the following

picture.

24

This starting example lacks a method for saving information for later analysis. The primary

method for outputting information is exporting the state of a network at each time step. This can

be done by adding an output routine. In the Config tab under the Outputs selection, an output can

be added. The two primary methods of output are output to csv and output to dynetml. These

methods will save the specified network(s) to files of their respective types.

Adding Complexity

Additional customization can be found in the Parameters selection. Here you can choose how

much information is being displayed during the simulation, choose where files are saved, and

import a custom Construct library (discussed in further detail in PART FOUR: Construct API).

Nodesets can be added using the menu option from the top of the screen “Nodesets→add

nodeset”. To edit a nodeset, select an existing nodeset denoted by the icon from the left pane.

Using the drop-down menu at the top, the nodeset name can be changed. This operation clears all

attributes values set for that nodeset. Using the input selection drop-down you can select whether

to use a manual input, import from csv, or import from dynetml. In manual input you can add or

remove nodes, add or remove attributes, and modify attribute values for any node. For csv and

dynetml import, the nodes and their attribute values are imported from a file of the respective

format. Only one input method can be selected at a time.

Similarly, to editing a nodeset, a network can be added using the menu option from the top of

the screen “Networks→add network”. A network can be edited by selecting an existing network

denoted by the icon from the left pane. The network name can be changed using the drop-

down menu at the top which resets all input for that network. A default value and dimension

representation can also be selected. For more information on these settings see PART THREE:

Construct in Detail. The same three input methods can be chosen as with nodeset input. For manual

import, a generator can be selected that gives a network a random configuration. Additionally,

individual links can be specified for fine tuning.

A summary page (example below) is given by selecting the MetaNetwork from the left pane.

The Construct GUI will attempt to best describe the nodesets and networks present in meta-

network. These nodesets and networks are only created in Construct when the simulation is started,

and only approximate estimates can be made regarding a network’s density and average link value.

While changes to nodesets and networks are attempted to be tracked as closely as possible, it can

happen that the summary does not reflect all changes in the meta-network. To rectify this

discontinuity the refresh button in the top left will do a full recalculation of all statistics.

25

After setting all desired customizations, the configuration can be saved to an xml file by either

selecting from the drop-down menu at the top of the screen “File→Save” or pressing the save

button above the navigation pane in the Config tab. Additionally any properly formed Construct

xml file can be imported by either using “File→Load” or the open file button above the navigation

pane. A clear button/menu option is also available to reset the parameters, clear the MetaNetwork,

and remove all models and outputs.

For each type, model, nodeset, network, and output, a custom entity can be created. These can

be generated in two ways. The first is by selecting the drop-down name/type selection and selecting

add custom (model/nodeset/network/output). The second is contained in each of the “Nodeset”,

“Network”, “Model”, or “Output” menu options. When selected, a popup will appear asking for

information on your custom entity. These options can be changed by going to the corresponding

menu option and selecting “edit custom (nodeset/network/model/output)”. Then an entity can be

edited by right clicking on the desired entity. Custom entities are stored locally and information

about custom entities are not removed when selecting the clear button/menu option, only the

instances currently contained in the GUI.

PART THREE: Construct in Detail

This section of the report, to some degree, repeats information provided in Part 1: Construct

Essentials. This is a deliberate choice by the authors. Part 3 provides in-depth details of the

workings of Construct. In this section, a more in-depth discussion will be held on nodes, networks,

models, and output.

26

Parameters

Parameters are global values that control how construct operates and are used to modify the

experiment. All parameters should be set within the parameters tag of the input deck, and using

the following syntax:

<construct_parameters>

 <param name=“[name 1]” value=“[value 1]”/>

 <param name=“[name 2]” value=“[value 2]”/>

</construct_parameters>

Parameter names are limited to those predefined by Construct and are all optional parameters.

Seed

Seed is a parameter used to control the random seed for the simulation. For a time dependent

seed, set this parameter value to 0, otherwise set it to an integer value to get a fixed sequence of

random values if the experiment is to be run multiple times.

<param name="seed" value="[seed value]"/>

Verbose Initialization

Verbose initialization provides additional details when loading construct entities (nodes,

networks, models, output).

<param name="verbose initialization" value="[true | false]"/>

Verbose Runtime

Verbose runtime provides additional details about the process of models performing their

functions.

<param name="verbose runtime" value="[true | false]"/>

Working Directory

The working directory specifies the path to which output should be saved. This will obviously

be dependent on the operating systems one is using.

<param name="working directory" value="[path to dir]"/>

Custom Library

Specifies the file that contains a custom model, output, and media user library.

<param name="custom library " value="[path to dir]"/>

Nodes

Nodes are the entities that Construct simulates. Nodes are grouped into groups of like nodes,

called node sets, and are related to each other using networks. This section describes some of the

nodes and node sets in Construct: specifically, the nodes and node sets in the demo input deck.

27

The Construct simulation system uses the idea of “nodes” and “networks”, as opposed to the

more common formulation of “agents” in the agent-based modeling community. This is because

Construct grew out of the social and dynamic network analysis tradition (Carley, 1991; Carley &

Reminga, 2004) and PCANS framework (Krackhardt & Carley 1998). Groups of similar nodes are

grouped by node sets. Thus, all agent nodes are in the agent node set. Node set names in Construct

are unique and any repeated node set name will end the program and return an error. Sets of nodes

can be associated with other sets of nodes to create networks. Links in these networks are then

manipulated when Construct is running. New links in the network can be added or modified: for

instance, if the agent learns knowledge, a new link between the specific agent node and the relevant

knowledge node can be created. Thus, as a Construct simulation runs, the relationship among

different nodes will be modified.

Node sets specify the node’s behavior in the simulation. For instance, agent nodes are the nodes

that interact and learn. While all agent nodes are alike in the sense that they are members of the

same node set, each agent node can be associated with (have links to) different knowledge or have

different preferences. Agents in Construct are just one set of nodes. Another example node set is

the knowledge node set. As with the agent node set, different nodes in the knowledge node set are

alike in the sense that they represent knowledge from the simulation’s perspective but are different

in the way that they represent different knowledge bits. Other node sets include time, groups, and

other entities.

The general XML code segment for creating a node set in Construct is shown below. Each

node set has a name element associated with it. This gives the nodeset its identifier as well as a

root for the names of nodes where a name is not explicitly given (e.g., agent_1, agent_2, agent_43).

There are two methods to create nodes, individually or with a generator. In either case, an

individual node or generator may have required node attributes. Each individual node may have

unique values for attributes, however all nodes created using a single generator gain all same

attributes from that generator.

Below is an example for creating a node set.

<nodeset name=”agent”>

 <generator type=”constant”>

 <count value=”20”/>

 <attribute name= “can send knowledge” value= “true”/>

 <attribute name= “can receive knowledge” value= “true”/>

 </generator>

 <node name= “Sam”>

 <attribute name= “can send knowledge” value= “false”/>

 <attribute name= “can receive knowledge” value= “true”/>

 </node>

</nodeset>

In this example, twenty-one agents are created with the agent at index 20 being named “Sam”.

The first twenty agents can send and receive knowledge whereas Sam can only receive knowledge.

28

In this way, many nodes can be created without having to individually specify each node’s

attributes. Required attributes are determined by the models included in the XML input.

Additionally, if there exists a “[your node set name]” in a DyNetML file, you can import

that node set using the “dynetml” generator seen below.

<nodeset name=”[your node set name]”>

 <generator type=”dynetml”>

 <param name=”file name” value=”[your file name].xml”/>

 </generator>

</nodeset>

This will import the node set in the DyNetML file that matches the name of the node set defined

in the input deck. The imported node’s id is used for its name and the list of “property” elements

are imported as attributes with “id” being the attribute name and “value” being the attribute

value.

Finally, a CSV file can be used to import nodeset information using the following example.

<nodeset name=”[your node set name]”>

 <generator type=”csv”>

 <param name=”file name” value=”[your file name].csv”/>

 </generator>

</nodeset>

The format for the csv should resemble the following table.

(blank space) node attribute 1 node attribute 2 node attribute 3

node name 1 true 4 red

node name 2 false 3.2 green

node name 3 true 0.9876 blue

Agent Node set

The “agent” node set represents the actors in the simulation. Agents interact with each other,

exchange messages that contain information, and make decisions based on interactions. This node

set is used most often in Construct’s library of models.

Knowledge Node set

The “knowledge” node set represents knowledge that can be exchanged between agents. Each

knowledge bit is represented by one node. In this example, ten knowledge nodes are created.

29

Medium Node set

Just like light or sound, communication requires a medium, and different mediums have

different properties which affect the entity that moves through it. The “medium” node set has the

following set of required node attributes:

1. “maximum message complexity” is an integer that gives an upper limit on the

information content of a message. In practice, this means that when the number of items

attached to a message is larger than the “maximum message complexity”, items are

removed randomly until the number returns to the upper bound. Additionally, adding an

item after a message has been created will cause the message to randomly remove an

existing item to make room for the new item.

2. “maximum percent learnable” is a float that sets an upper bound on the link strength

between an agent and knowledge node in the knowledge network. The stronger that link

strength, the more difficult it is to be broken in models like the Forget model. This attribute

has the range [0,1].

3. “time to send” is an integer that dictates how many time periods a message must wait

before being delivered.

Time Node set

Nodes in the “time” node set represent an instantaneous point in time that all events during a

time period occur. The length of the simulation is represented by the number of nodes in this node

set. If no time node set is given, the simulation completes one cycle and exits.

Other Node sets

The nodesets listed above is not an exhaustive list and additional nodesets exist in Construct.

These nodesets primarily exist as a dimension with the nodeset’s size being the only tunable

feature. Developers may create additional node sets for any custom models they wish to create in

PART FOUR: Construct API.

Node attributes

Some models may require node attributes. Note: Construct models do put restrictions on the

number of node attributes a node can have. These attributes act as static properties of a node such

as gender, age, or other characteristics. Non-static properties such as activity are instead stored in

networks with the time node set as the target dimension. As indicated in the example above to add

an attribute to a node, the <attribute> element must be present. These attributes are all unique

and repeating the same attribute name more than once will return a runtime error. Below is a list

of node attributes (which are case sensitive) for node sets, which models directly require these

attributes, what C++ data type these attributes are converted to, and the expected range for these

attributes.

Table 1. Node attributes used in Construct.

30

Attribute Name Node set Data Type Range Models Used In
can receive beliefs agent bool {true,false} Grand Interaction Model

can receive beliefTM agent bool {true,false} Grand Interaction Model

can receive

knowledge
agent bool {true,false}

Standard Interaction Model, Twitter

Interaction Model, Facebook Interaction

Model, Location Interaction Model

can receive

knowledge trust
agent bool {true,false}

Twitter Interaction Model, Facebook

Interaction Model, Knowledge Trust

Model

can receive

knowledgeTM
agent bool {true,false}

Knowledge Transactive Memory

Interaction Model

can send beliefs agent bool {true,false} Grand Interaction Model

can send beliefTM agent bool {true,false} Grand Interaction Model

can send knowledge agent bool {true,false}

Standard Interaction Model, Twitter

Interaction Model, Facebook Interaction

Model, Location Interaction Model

can send knowledge

trust
agent bool {true,false}

Twitter Interaction Model, Facebook

Interaction Model, Knowledge Trust

Model

can send

knowledgeTM
agent bool {true,false}

Knowledge Transactive Memory

Interaction Model

Facebook add

follower scale factor
agent float [0,∞) Facebook Interaction Model

Facebook auto follow agent bool {true,false} Facebook Interaction Model

Facebook charisma agent float [0,1] Facebook Interaction Model

Facebook post

density
agent float [0,∞) Facebook Interaction Model

Facebook quote

probability
agent float [0,1] Facebook Interaction Model

Facebook reading

density
agent float [0,∞) Facebook Interaction Model

Facebook remove

follower scale factor
agent float [0,∞) Facebook Interaction Model

Facebook reply

probability
agent float [0,1] Facebook Interaction Model

Facebook repost

probability
agent float [0,1] Facebook Interaction Model

influence agent float [0,∞) Grand Interaction Model

learning rate agent float [0,1] Forget Model

maximum message

complexity
medium unsigned int [0,∞)

Standard Interaction Model, Location

Interaction Model

maximum percent

learnable
medium float [0,1]

Standard Interaction Model, Location

Interaction Model

susceptibility agent float [0,1] Grand Interaction Model

time to send medium unsigned int [0,∞)
Standard Interaction Model, Location

Interaction Model

Twitter add follower

density
agent float [0,∞) Twitter Interaction Model

Twitter auto follow agent bool {true,false} Twitter Interaction Model

Twitter charisma agent float [0,1] Twitter Interaction Model

Twitter post density agent float [0,∞) Twitter Interaction Model

Twitter reading

density
agent float [0,∞) Twitter Interaction Model

31

Twitter quote

probability
agent float [0,1] Twitter Interaction Model

Twitter remove

follower scale factor
agent float [0,∞) Twitter Interaction Model

Twitter reply

probability
agent float [0,1] Twitter Interaction Model

Twitter repost

probability
agent float [0,1] Twitter Interaction Model

Networks

Networks are the primary data structures for input and output in Construct. Like node sets,

networks must also be uniquely named. Table 2 shows all Construct networks (case sensitive), the

associated node sets for that network, the data type for links, and all models that use that network.

Descriptions of how a network is used are available in the corresponding models.

Table 2. Network relations to node sets.

Network Name
Source, Target, (and

Slice) Node sets
Data
Type

Models Used In

agent active time

network
agent x time bool

Location Interaction Model, Standard

Interaction Model, Twitter Interaction

Model, Facebook Interaction Model

agent current

location network
agent x location bool Location Interaction Model

agent group belief

network
agent group x belief float Grand Interaction Model

agent group

knowledge network
agent group x knowledge float

Knowledge Transactive Memory

Interaction Model, Grand Interaction

Model

agent group

membership

network

agent x agent group bool

Knowledge Transactive Memory

Interaction Model, Grand Interaction

Model

agent initiation

count network
agent x time unsigned int Standard Interaction Model

agent location

preference network
agent x location float Location Interaction Model

agent mail usage by

medium network
agent x medium float Mail Model

agent reception

count network
agent x time unsigned int Standard Interaction Model

belief knowledge

weight network
belief x knowledge float Belief Interaction Model

belief message

complexity network
agent x time unsigned int Grand Interaction Model

belief network agent x belief float Belief Interaction Model

belief similarity

weight network
agent x time float Belief Interaction Model

belief transactive

memory network
agent x agent x belief float Grand Interaction Model

32

Network Name
Source, Target, (and

Slice) Node sets
Data
Type

Models Used In

communication

medium access

network

agent x medium bool Standard Interaction Model

communication

medium preferences

network

agent x medium float Standard Interaction Model

emotion broadcast

bias network
agent x emotion float

Emotion Model, Facebook Emotion

Follower Model, Facebook Emotion

Model, Twitter Emotion Follower Model,

Twitter Emotion Model

emotion network agent x emotion float

Emotion Model, Facebook Emotion

Follower Model, Facebook Emotion

Model, Twitter Emotion Follower Model,

Twitter Emotion Model

emotion regulation

bias network
agent x emotion float Emotion Model

facebook friend

network
agent x agent bool Facebook Interaction Model

first order emotion

broadcast network
emotion x emotion float

Emotion Model, Facebook Emotion

Follower Model, Facebook Emotion

Model, Twitter Emotion Follower Model,

Twitter Emotion Model

first order emotion

reading network
emotion x emotion float Emotion Model

first order emotion

regulation network
emotion x emotion float Emotion Model

first order post

density emotion

network

agent x emotion float

Facebook Emotion Follower Model,

Facebook Emotion Model, Twitter

Emotion Follower Model, Twitter

Emotion Model

first order quote

probability emotion

network

agent x emotion float

Facebook Emotion Follower Model,

Facebook Emotion Model, Twitter

Emotion Follower Model, Twitter

Emotion Model

first order read

density emotion

network

agent x emotion float

Facebook Emotion Follower Model,

Facebook Emotion Model, Twitter

Emotion Follower Model, Twitter

Emotion Model

first order reply

probability emotion

network

agent x emotion float

Facebook Emotion Follower Model,

Facebook Emotion Model, Twitter

Emotion Follower Model, Twitter

Emotion Model

first order repost

probability emotion

network

agent x emotion float

Facebook Emotion Follower Model,

Facebook Emotion Model, Twitter

Emotion Follower Model, Twitter

Emotion Model

interaction

knowledge weight

network

agent x knowledge float
Standard Interaction Model, Location

Interaction Model

interaction network agent x agent bool Standard Interaction Model

interaction

probability weight

network

agent x agent float Standard Interaction Model

33

Network Name
Source, Target, (and

Slice) Node sets
Data
Type

Models Used In

interaction sphere

network
agent x agent bool Standard Interaction Model

knowledge expertise

weight network
agent x time float Standard Interaction Model

knowledge

forgetting prob

network

agent x knowledge float Forget Model

knowledge

forgetting rate

network

agent x knowledge float Forget Model

knowledge learning

difficulty network
agent x knowledge float Knowledge Learning Difficulty Model

knowledge message

complexity network
agent x time unsigned int Standard Interaction Model

knowledge network agent x knowledge bool

Standard Interaction Model, Forget

Model, Location Interaction Model,

Twitter Interaction Model, Facebook

Interaction Model, Knowledge Trust

Model

knowledge priority

network
agent x knowledge float Standard Interaction Model

knowledge select

bias network
agent x knowledge float

Facebook Emotion Follower Model,

Facebook Emotion Model, Twitter

Emotion Follower Model, Twitter

Emotion Model

knowledge select

emotion network
knowledge x emotion float

Facebook Emotion Follower Model,

Facebook Emotion Model, Twitter

Emotion Follower Model, Twitter

Emotion Model

knowledge select

trust network
agent x knowledge float

Facebook Emotion Follower Model,

Facebook Emotion Model, Twitter

Emotion Follower Model, Twitter

Emotion Model

knowledge

similarity weight

network

agent x time float Standard Interaction Model

knowledge strength

network
agent x knowledge float Forget Model

knowledge

transactive memory

network

agent x agent x knowledge bool
Knowledge Transactive Memory

Interaction Model

knowledge trust

network
agent x knowledge float

Twitter Interaction Model, Facebook

Interaction Model, Knowledge Trust

Model

knowledge trust

transactive memory

network

agent x agent x knowledge bool

Twitter Interaction Model, Facebook

Interaction Model, Knowledge Trust

Model

learnable knowledge

network
agent x knowledge bool Standard Interaction Model

location knowledge

network
location x knowledge bool Location Interaction Model

location learning

limit network
agent x location unsigned int Location Interaction Model

34

Network Name
Source, Target, (and

Slice) Node sets
Data
Type

Models Used In

location medium

access network
location x medium bool Location Interaction Model

location network agent x location bool Location Interaction Model

mail check

probability network
agent x time float Mail Model

medium knowledge

access network
medium x knowledge bool Standard Interaction Model

physical proximity

network
agent x agent float Standard Interaction Model

physical proximity

weight network
agent x time float Standard Interaction Model

public propensity

network
agent x time float Subscriber Model

second order

emotion broadcast

network

emotion x emotion x emotion float

Emotion Model, Facebook Emotion

Follower Model, Facebook Emotion

Model, Twitter Emotion Follower Model,

Twitter Emotion Model

second order

emotion reading

network

emotion x emotion x emotion float Emotion Model

second order

emotion regulation

network

emotion x emotion x emotion float Emotion Model

second order post

density emotion

network

emotion x emotion float

Facebook Emotion Follower Model,

Facebook Emotion Model, Twitter

Emotion Follower Model, Twitter

Emotion Model

second order quote

probability emotion

network

emotion x emotion float

Facebook Emotion Follower Model,

Facebook Emotion Model, Twitter

Emotion Follower Model, Twitter

Emotion Model

second order read

density emotion

network

emotion x emotion float

Facebook Emotion Follower Model,

Facebook Emotion Model, Twitter

Emotion Follower Model, Twitter

Emotion Model

second order reply

probability emotion

network

emotion x emotion float

Facebook Emotion Follower Model,

Facebook Emotion Model, Twitter

Emotion Follower Model, Twitter

Emotion Model

second order repost

probability emotion

network

emotion x emotion float

Facebook Emotion Follower Model,

Facebook Emotion Model, Twitter

Emotion Follower Model, Twitter

Emotion Model

social proximity

network
agent x agent float Standard Interaction Model

social proximity

weight network
agent x time float Standard Interaction Model

sociodemographic

proximity network
agent x agent float Standard Interaction Model

sociodemographic

proximity weight

network

agent x time float Standard Interaction Model

35

Network Name
Source, Target, (and

Slice) Node sets
Data
Type

Models Used In

subscription

network
agent x agent bool Subscriber Model

subscription

probability network
agent x agent float Subscriber Model

task assignment

network
agent x task bool Task Interaction Model

task availability

network
task x time bool Task Interaction Model

task completion

network
agent x task unsigned int Task Interaction Model

task guess

probability network
task x knowledge float Task Interaction Model

task knowledge

importance network
task x knowledge float Task Interaction Model

task knowledge

requirement

network

task x knowledge bool Task Interaction Model

transactive belief

message complexity

network

agent x time unsigned int Grand Interaction Model

transactive

knowledge message

complexity network

agent x time unsigned int
Knowledge Transactive Memory

Interaction Model

twitter follower

network
agent x agent bool Twitter Interaction Model

unused knowledge

network
agent x knowledge bool Forget Model

To add network to the input deck, the appropriate sub-elements should be added to the

<networks> element. An example networks can be seen below.

<networks>

<network name="[your network name]" edge_type="[bool | int | unsigned

int | float | string]" default="[your chosen default value]">

 <source nodeset="[source node set]" representation="[dense |

sparse]"/>

 <target nodeset="[target node set]" representation="[dense |

sparse]"/>

 <!-- Insert links here -->

 <!-- Insert generators here -->

</network>

<network name="[your network name]" edge_type="[bool | int | unsigned

int | float | string]" default="[your chosen default value]">

 <source nodeset="[source node set]" representation="[dense |

sparse]"/>

36

 <target nodeset="[target node set]" representation="[dense |

sparse]"/>

 <slice nodeset="[slice node set]" representation="[dense |

sparse]"/>

 <!-- Insert links here -->

 <!-- Insert generators here -->

</network>

</networks>

The top example is a two-dimensional (2d) network while the bottom is an example of a three-

dimensional (3d) network. A 3d network is identified solely by the existence of the <slice> sub-

element. The representation is a free parameter for the source and target, but the slice

representation is required to match the expected representation given by a specific model. In a

dense representation, indexes are stored in an array which has a constant look up time. The sparse

representation stores indexes in a binary tree, which saves memory, but increases the look up time

for a link.

Choosing a representation can drastically change the demands on a simulation. If speed is a

concern, making all networks dense will provide the fastest results. While this does seem

advantageous, it is a waste of memory if the network is a trivial one with all values being the same.

In a sparse representation, links are only stored in memory if their value differs from the default

value. If a link is queried and it is not stored in memory, the network assumes that link has the

default value. If all values in a network are the same, the network can be initialized with a sparse

representation for the source and target dimensions, the default value is then set to the homogenous

value, and no links need to be included. In this way, we can represent a trivial network with

minimal resources. In addition, if only a few links differ, they can be explicitly defined, while

having minimal impact on computation time.

Three dimensional networks typically represent transactive memory. Due to how models

handle three dimensional networks the slice dimension representation is required to match the

model’s specification. These specifications are:

• “knowledge transactive memory network” – dense slice dimension representation

• “knowledge trust transactive memory network” – sparse slice dimension

representation

• “belief transactive memory network” – sparse slice dimension representation

Links can be defined in one of the following examples.

<link src_name=”[src node name]” trg_name=”[trg node name]” value=”[your

value]”/>

<link src_index=”[src node index]” trg_index=”[trg node index]”

value=”[your value]”/>

<link src_name=”[src node name]” trg_name=”[trg node name]” slc_name=”[slc

node name]”value=”[your value]”/>

37

<link src_index=”[src node index]” trg_index=”[trg node index]”

slc_name=”[slc node index]”value=”[your value]”/>

Here, the first two examples are for 2d networks, while the latter two examples are for 3d

networks. In these examples, either the name or the index is required to identify the corresponding

node. Names and indexes cannot be mixed in a link. Node indexes begin at zero and the last node

in that node set has an index equal to the size of the node set minus one. Using a node’s index

produces faster results as finding a node by its name takes logarithmic time with the size of the

node set.

Network Generators

Generators allow non-trivial networks to be generated either through importing from another

file or using stochastic methods to create links. Generators are applied successively based on their

ordering in the input deck and can overwrite links created by previous generators. Below are

examples of a generator.

<generator type="[type]">

 <param name=”row start” value=”first”/>

 <param name=”row end” value=”node name 3”/>

 <param name=”col start” value=”4”/>

 <param name=”col end” value=”last”/>

 <param name=”param 1” value=”value 1”/>

</generator>

<generator type="[type]">

 <param name=”col end” value=”last”/>

 <param name=”param 1” value=”value 1”/>

 <param name=”param 2” value=”value 2”/>

</generator>

Generators are applied on each dimension in accordance with the parameters “row start”,

“row end”, “col start”, “col end”, “slc start”, “slc end”. If a start parameter is not

present, it is assumed to have a value of “first”. If an end parameter is not present, it is assumed to

have a value of “last”. “first” and “last” correspond to a dimension’s first and last node,

respectively. If the value is instead a number less than the size of the corresponding dimension,

the generator will that node index. Otherwise, nodeset names are compared with the parameters

value and an exception is thrown if a node by the given name could not be found. The generator

will then iterator starting at the specified node and continuing up to and including the end node.

CSV Generator

This generator imports the network from a CSV file. It is expected that the only contents of the

file are link values for each corresponding index. Files should not have row or column headers.

Traditional CSV files are used for 2d networks. 3d networks are imported based on their slice

representation. If the slice representation is dense, each element should contain a comma separated

array enclosed by curly brackets (ex. {0,1,0,1,1,0}). If the slice representation is sparse, a

dictionary is instead used with the index first and link value second (ex. {4:1,5:-2,9:7}). This

38

difference in implementation is a small technical difference between a dense and sparse slice

representation. Row, column, slice sizes in the CSV file must match the corresponding node set

sizes for the network. This generator does not use any bounding boxes. Below is an example of

calling this generator followed by a 2d example and 3d example.

<generator type="csv">

 <param name=”file” value=”[your csv file].csv”>

</generator>

Table 3: Example of a 3x4 sized float network in CSV format.

0.0 0.1 0.2 0.3

1.0 11.0 1.2 13.13

20.20 2.1 2.2 2.3

Table 4: Example of a 3x4x2 sized integer network in CSV format.

{0,0} {0,1} {0,2} {0,3}

{1,0} {10,10} {1,2} {0,31}

{20,0} {2,1} {2,2} {2,3}

Perception Generator

Transactive memory is built upon many previous interactions, however the initialization of this

memory by definition has no previous interactions to rely on. Instead, the memory is initialized by

copying elements in another network and adding noise to ensure the transactive memory is similar,

but not equivalent. For more information on transactive memory and its usage, see the example

used in the Knowledge Transactive Memory Interaction Model. Adding noise is slightly

ambiguous when lacking context on what type of variable the noise is being added to. For this

reason, there exists different implementations based on the data type of links as well as multiple

choices for noise production based on the type of link value. Below are two examples for using

this generator.

<network name="[your network name]" edge_type="bool" default="[your default

value]">

 <source nodeset="[source node set name]" representation="[dense |

sparse]"/>

 <target nodeset="[target node set name]" representation="[dense |

sparse]"/>

 <slice nodeset="[slice node set name]" representation="[dense |

sparse]"/>

 <generator type="perception">

 <param name="perception network" value="[your perception network]"/>

 <param name="influence network" value="[your influence network]"/>

39

 <param name="density" value="[your value]"/>

 <param name="false positive rate" value="[your value]"/>

 <param name="false negative rate" value="[your value]"/>

 </generator>

</network>

In this example, a network is created with an edge type of “bool”. The network that the

generator is basing the memory off of is the perception network and must have matching

“edge_type”. The perception network’s source and target node set must match the example’s

target and slice nodeset respectively. Transactive memory is typically limited to only a small

portion of the population even if those nodes interact with other nodes outside of their influence

network. The influence network dictates which target nodes are known by the source nodes with

its “edge_type” always being “bool”, regardless of the perception network “edge_type”. The

influence network’s source and target node set must match with the example’s source and target

node set, respectively.

The “density” parameter which is required to be in range [0,1] determines what fraction of

the “perception network” is copied in the transactive memory. The density parameter is optional

and defaults to one if the XML element isn’t present. The parameters “false positive rate”

and “false negative rate” indicate how error prone the copying process is. A high false

positive rate will create more connections than actually exist in the perception network, while a

high false positive rate will create fewer. Both parameters are in the range [0,1] with zero creating

a perfect copy and one creating an exactly opposite copy of the perception network.

<network name="[your network name]" edge_type="float" default="[your default

value]">

 <source nodeset="[source node set name]" representation="[dense |

sparse]"/>

 <target nodeset="[target node set name]" representation="[dense |

sparse]"/>

 <slice nodeset="[slice node set name]" representation="[dense |

sparse]"/>

 <generator type="perception">

 <param name="perception network" value="[your perception network]"/>

 <param name="influence network" value="[your influence network]"/>

 <param name="density" value="[your value]"/>

 <param name="noise implementation" value="[normal | unit normal]"/>

 <param name="variance" value="[your value]"/>

 </generator>

</network>

Similar to the previous example, this generator is instead applied to a network with an edge

type of float. The perception and influence network perform similar roles as previously and also

follow the same rules regarding dimension node sets and edge types. The critical difference is how

noise is introduced as a simple negating of a float does not produce the same effect in this instance.

Here, the parameter “noise implementation” determines how the noise is applied to the values

40

found in the perception network. “unit normal” adds noise such that the resulting values stay in

the range [0,1]. This requires that the initial range for the values are in [0,1] to begin with. “normal”

does not have any restrictions on range and both initial values and values after adding noise are in

the range (-∞,∞). The initial value is used as the mean for a normal distribution along with the

parameter “variance” as the variance of the distribution. The resulting value is then sampled from

this normal distribution.

The unit normal implementation takes the corresponding perception network value which are

in the range [0,1] and transforms them to the range (-∞,∞). This transformation is 𝜇 = −ln(
𝑥

1+𝑥
),

where 𝑥 is the perception network value. This value is then used as a mean in order to sample from

a normal distribution with the variance coming from the parameter “variance”. The sampled

value is then transformed back to the original range of [0,1] by 𝑥′ = (1 + 𝑒−𝜓)
−1

. The normal

implementation does not require a range transformation, so the copied value is sampled from

normal distribution with the mean equal to the corresponding value in the perception network and

the variance again coming from the variance parameter.

This generator can only be added to 3d networks.

Random Binary Generator

For each link in the bounding box, a one is entered as its value with probability equal to the

“density” parameter and zero otherwise.

<generator type="random binary">

 <param density=”your value”/>

</generator>

Random Uniform Generator

For each link in the bounding box, a random uniform value is assigned with a lower bound

dictated by the “min” parameter, and an upper bound by the “max” parameter. Both bounds are

inclusive bounds. Only a percentage of the links are assigned a value if the “density” parameter

is present and assigned to a value less than one. Any link not assigned a value will continue to be

its default value.

<generator type="random uniform">

 <param name=”min” value=”[your min value]”/>

 <param name=”max” value=”[your max value]”/>

</generator>

DyNetML Network Generator

Links are created based on the “file” parameter which is expected to be of the DyNetML

format. This coincides with the format that ORA uses to save its networks. This generator begins

at the element “DynamicMetaNetwork” → “MetaNetwork” → “networks” and searches for a

http://www.casos.cs.cmu.edu/projects/dynetml/
http://www.casos.cs.cmu.edu/projects/ora/

41

network with name from the parameter “network name”. This search only takes place in the first

dynamic meta network’s first meta network. For each link in the file’s network “source”, “target”,

and “value” attributes are parsed to create links. The source and target attributes indicate the names

of the nodes in their respective node sets. Each link value is assigned based on the value attribute.

If no value attribute is found, the link value is assigned to be 1 converted to the network’s C++

data type.

<generator type="dynetml">

 <param name="file" value="[your file name].xml”/>

 <param name=”network name” value=”[network name in your xml file]”/>

</generator>

This generator can only be added to 2d networks with default value 0.

Interaction Models

Interaction Models are the backbone of Construct models. They provide the rules in the

simulation for who interacts with whom, and what happens when said interaction occurs. While it

is not strictly required that one of these models be included in the input deck, a lack of an

interaction model produces a trivial simulation as no interactions occur and all outputs are equal

to inputs. Some models inherit other models in order to modify a particular behavior of the base

model. This inheritance makes a model mutually exclusive with the inherited model. The figure

below shows the inheritance web of Construct’s models. Only the models displayed are mutually

exclusive with each other.

42

Figure 4: The inheritance of various Construct models. Models with a common source are

mutually exclusive and cannot both be present in the input deck.

Models are added to the <models> element with the only required attribute being the model’s

name. Some models may have optional or required parameters. The below example shows how to

add a model to the input deck.

<model name=”[your model’s name]”>

 <param name=”parameter 1” value=”value 1”/>

 <param name=”parameter 2” value=”value 2”/>

</model>

Each model description begins with the list of networks that are used by the model. Networks

can be required or optional. Required networks must be explicitly declared in the input deck.

Optional networks do not need to be declared, are still created by the model, and can be used in an

output element. In addition, some networks are only intended as output only. These networks are

not expected to be included in the input deck, are reset at the beginning of each time step, and are

meant only to output intermediate calculations a researcher may be interested in. For optional

networks, the default value for the network is also displayed. The “Range” column indicates the

range link values that the model expects. If a link is outside this range, an error may occur or result

in undefined behavior. Finally, the access type refers to the methods that are used to access a link

value. Iterative access iterates over a dimension with the dimension representation having minimal

effect on performance. Random access will access random elements during the simulation

applying a computation time penalty for the usage of a sparse representation. Note that this penalty

43

is avoided if links are not held in memory with the network being homogenous. Note that which

node sets are required are defined by each model’s set of networks.

Standard Interaction Model

Table 5: Networks used by the Standard Interaction Model

Network Name Required/Optional
Default
value

Range Access Type

agent active time network Optional 1 {true,false}
iterative access,

random access

agent initiation count network Optional 1 [0,∞) iterative access

agent reception count network Optional 1 [0,∞)
iterative access,

random access

communication medium access network Optional 1 {true,false} random access

communication medium preferences

network
Optional 1 [0,∞) random access

interaction knowledge weight network Optional 1 [0,∞) iterative access

interaction network Output Only 0 {true,false} random access

interaction probability weight network Output Only 0 [0,∞) random access

interaction sphere network Optional 1 {true,false}
iterative access,

random access

knowledge expertise weight network Optional 1 [0,∞) random access

knowledge message complexity Optional 1 [0,∞) random access

knowledge network Required {true,false} iterative access

knowledge priority network Optional 1 [0,∞) iterative access

knowledge similarity weight network Optional 1 [0,∞) random access

learnable knowledge Optional 1 {true,false} random access

medium knowledge access network Optional 1 {true,false} random access

physical proximity network Optional 1 [0,∞) random access

physical proximity weight network Optional 1 [0,∞) random access

social proximity network Optional 1 [0,∞) random access

social proximity weight network Optional 1 [0,∞) random access

sociodemographic proximity network Optional 1 [0,∞) random access

sociodemographic proximity weight

network
Optional 1 [0,∞) random access

The “Standard Interaction Model” forms interaction pairs and sends messages between

those in the pair containing knowledge for the receipt to learn. This begins in the Think functions

of the model where it assigns interaction pairs based on perfectly known homophily, expertise,

proximity, and interaction access. Agents simultaneously seek other agents that have similar

knowledge to themselves while also seeking agents that know knowledge that the interaction

seeker does not. Interaction pair formation is further impacted by how proximal agents are to

another either by physical distance, social status, or demographic state. Finally, certain agents may

not be able to interact with another if the agent is unaware that an agent exists or if there is no

medium with which communication can occur. First, we will discuss probability weights that

determines who an agent attempts to interact with. Then we will discuss how messages are formed

and the result of an empty message. Finally, we will discuss message parsing and what happens

when the message is received.

44

The Standard Interaction Model requires two networks: the “knowledge network” and the

“interaction sphere network”. The knowledge network represents which knowledge a given

knows through the links in the network. The interaction sphere network dictates which agents are

known to an agent and is not strictly symmetric. An agent can only initiate interactions with agents

connected in the interaction sphere with the initiating agent being the source. This does not

preclude agents from receiving an interaction initiation from another agent. Next, we’ll discuss the

various factors impacting the calculation of probability weights which are stored in the

“interaction probability weight network”.

Proximity between two agents (𝑃𝑋𝑖,𝑗) is comprised of three factors, the “physical proximity

network” (𝑃𝑃𝑖,𝑗), “social proximity network” (𝑆𝑃𝑖,𝑗), and “sociodemographic proximity

network” (𝐷𝑃𝑖,𝑗). Each factor has an associated weight to determine importance in calculating

proximity, “physical proximity weight network”(𝑃𝑃𝑊𝑖(𝑡)), “social proximity weight

network” (𝑆𝑃𝑊𝑖(𝑡)), and “sociodemographic proximity weight network” (𝐷𝑃𝑊𝑖(𝑡)). The

overall proximity is then,

𝑃𝑋𝑖,𝑗 = 𝑃𝑃𝑊𝑖(𝑡)𝑃𝑃𝑖,𝑗 + 𝑆𝑃𝑊𝑖(𝑡)𝑆𝑃𝑖,𝑗 + 𝐷𝑃𝑊𝑖(𝑡)𝐷𝑃𝑖,𝑗.

The other two factors for determining probability weights are knowledge similarity (𝐾𝑆𝑖,𝑗)

and knowledge expertise (𝐾𝐸𝑖,𝑗) . Using 𝐾𝑖
∗ as the set of knowledge that agent 𝑖 knows we

calculate knowledge similarity and expertise as,

𝐾𝑆𝑖,𝑗 = ∑ 𝐾𝑊𝑖,𝑘

𝑘∈𝐾𝑖
∗∩𝐾𝑗

∗

, 𝐾𝐸𝑖,𝑗 = ∑ 𝐾𝑊𝑖,𝑘

𝑘∈𝐾𝑖
∗̅̅ ̅̅ ∩𝐾𝑗

∗

,

where 𝐾𝑊𝑖,𝑘 is the “knowledge weight network” which is the importance for agent 𝑖 on agent

𝑗 being connected to knowledge node 𝑘 . These two factors are weighted by the “knowledge

similarity weight network” (𝐾𝑆𝑊𝑖(𝑡)), and the “knowledge expertise weight network”

(𝐾𝐸𝑊𝑖(𝑡)).

Combining these factors yields an overall probability weight (𝑃𝑖,𝑗)which is stored in the

“interaction probability weight network”,

𝑃𝑖,𝑗 = 𝑃𝑋𝑖,𝑗 +
𝐾𝑆𝑊𝑖(𝑡)𝐾𝑆𝑖,𝑗
1
𝑁
∑ 𝐾𝑆𝑖,𝑗′𝑗′

+
𝐾𝐸𝑊𝑖(𝑡)𝐾𝐸𝑖,𝑗
1
𝑁
∑ 𝐾𝐸𝑖,𝑗′𝑗′

.

These probability weights are not calculated for all agents. The “agent active time network”

defines the time steps an agent is active and, when not active, the agent cannot interact, and the

associated probability weights are set to zero. Additionally, 𝑃𝑖,𝑗 = 0 if the corresponding link in

the interaction sphere network is also zero. Agents also only have so many times they can both

initiate and be initiated upon in each time step which set by the “agent initiation count

network” and “agent reception count network”, respectively. 𝑃𝑖,𝑗 = 0 if either agent 𝑖’s

initiation count is zero or agent 𝑗’s reception count is zero. Finally, both agents require a link to a

45

common communication medium node through the “communication medium access network”.

Under these rules agents can interact with themselves. This would be equivalent to a person

refreshing their memory on a topic.

As mentioned earlier, interaction pair formation is dynamic and as pairs form the interaction

probabilities within a set of agents can change. First, an agent with remaining available initiations

is chosen randomly with equal probability of selection. The initiator’s number of available

initiations is then decremented if a receiver is found, and pair formed. Using the probability

weights discussed above, an agent is chosen with remaining available receptions, which as with

initiations, is then decremented if the pair is formed. Agents can self-interact, in which case

reception count is not decremented. Agents can only interact with another agent once and which

agents interact with whom is recorded in the “interaction network” with the initiators in the

source dimension. This process continues until no more initiators are available.

A number of potential cases can cause the loop to become infinite. A couple examples are an

agent with remaining initiation available, but no other agents with remaining receptions available,

or an agent that does not have access to a common medium with agents with remaining receptions.

An internal counter keeps track of how many times an attempt was made to create an interaction

pair. If the counter goes beyond the threshold, the pair formation process prematurely exits, and

the simulation continues as normal. This threshold can be set via the optional model parameter

“rejection limit” and its default value is the number of agents squared.

Once a potential interaction pair is selected, it is not formally formed until at least one

interaction message is created. Both the initiator and initiated create interaction messages that they

send to the other. Interaction messages are transmitted by a communication medium represented

by the communication medium nodeset. The communication medium node is selected by the

initiator via the “communication medium preference network”. These network elements act

as probabilities, but because not all communication mediums may be common between the

initiator and receiver, probabilities are always normalized after excluding invalid combinations. It

is expected that if an agent has access to a communication medium node, that the agent’s

preference for that medium is greater than zero.

From here, the content of a message is constructed. A message minimally contains information

about the sender, receiver, and communication medium, but additional information, knowledge in

this case, is contained in a set of items attached to the message. First, a check is done on the sending

agent for the node attribute “can send knowledge”, on the receiving agent for the node attribute

“can receive knowledge”, and on the “knowledge message complexity network” link for

the sending agent and current time step. If the values are “true”, “true”, and non-zero

respectively, knowledge items are added based on the “knowledge priority network” with

higher link value increasing the chance a particular knowledge bit is added first. Agents can only

add knowledge bits to a knowledge item if they possess that knowledge in the knowledge network.

Lastly, knowledge is restricted by the “medium knowledge network” and “learnable

knowledge network”. A link is required from the message medium to the knowledge bit and a

46

link is required from the receiving agent to that knowledge bit. Once the set of knowledge items

are selected are added to a message in a randomized order. When a message is created if the number

of items is larger than the medium’s “maximum message complexity” node attribute, items are

removed to ensure the maximum message complexity is enforced.

Finally, both messages are checked to see if they contain a non-zero number of items. If either

message count is non-zero, the interaction pair is formally created. Due to the large amount of

complexity that can arise from heterogenous initial conditions, this step is the only step in the

model in which progression is not deterministic. If the interaction pair is not created, the process

continues with no change to simulation state. Once the interaction pair has been formed its message

is added to Construct’s central message queue.

Knowledge is parsed by the model “Knowledge Parsing Model”. This model is not callable

via the input XML file and is automatically created by the Standard Interaction Model and its

various variants. Its purpose is to ensure that the knowledge in messages are only parsed once.

Knowledge Transactive Memory Interaction Model

Table 6: Networks used by the Knowledge Transactive Memory Interaction Model.

Network Name Required/Optional
Default
value

Range Access Type

agent group knowledge network Output Only 0 [0,1] iterative access

agent group membership network Optional {true,false} iterative access

knowledge transactive memory network Optional 0 {true,false} random access

transactive knowledge message complexity

network
Optional 1 [0,∞) random access

The “Knowledge Transactive Memory Interaction Model” model is an expansion of the

“Standard Interaction Model” and inherits and modifies some or all of the model’s functions.

As this model is executing a modified version of its functions it is mutually exclusive with the

“Standard Interaction Model”. The primary modification is the addition of a transactive

memory (Wegner, 1987) for the knowledge of each agent. Knowledge Transactive Memory

(KTM) is a data storage in the “knowledge transactive memory network” for each ego agent

on what knowledge an alter agents know. This memory is incomplete and error prone as it relies

on recording previous interactions to populate what agents know about each other. This model

builds upon the “Standard Interaction Model” and adopts many of the functions used therein.

Because of this, the Knowledge Transactive Memory Interaction Model is mutually exclusive with

the “Standard Interaction Model”. All required networks in the “Standard Interaction

Model” are also required for the Knowledge Transactive Memory Interaction Model and similarly

for optional networks.

The primary differences are a modification for how similarities and expertise are calculated,

an additional type of item that can be added to a message called a KTM item, and additional parsing

to handle this additional type of message item. For this new type of message item, rather than being

47

the sender sharing a piece of knowledge to the receiver, the sender instead shares the information

that another alter agent knows a piece of knowledge, which we will refer to as a KTM item. When

an ego agent receives either this type of item or a knowledge item, that agent adds that information

to their transactive memory only if the alter agent is in the ego agent’s interaction sphere. Each

agent then has a memory about what other agents knows. This memory is then used instead of the

“knowledge network” to calculate the similarity and expertise values for the “Standard

Interaction Model” probability weights.

This memory is not perfect however, as any secondhand information is not guaranteed to still

be true. One can imagine a game of telephone (AKA Chinese whispers) where a chain of

individuals secretly communicates a message to the next person in the chain in hopes of preserving

the message. In a perfect system, this would be achievable, but it is almost a certainty that in a real

setting an ego agent will eventually send an item about an alter agent, that the ego believes to be

true, but is not. The existence of this divide between reality and perception allows Construct agents

to better match social theory and real-world behaviors. For example, Ren et al. (2006) used

Construct’s transactive memory mechanisms to show evidence that people trained on a task in a

group setting are better able to solve a problem than those trained individually and then forced into

a group setting.

If an alter is not in an ego agent’s transactive memory, a generalized other can be used. By

default, this generalized other is the entire population of agents. The probability that the ego agent

believes an alter outside of the interaction sphere knows a knowledge bit is equal to the percentage

of agents in the node set that know that knowledge bit. This can further be divided into generalized

other groups. The creation of these groups is optional and is done so by the inclusion of the “agent

group” node set. The “agent group membership network” is required if and only if the agent

group node set is present. This generalized group is then used if an agent is a member of a group

in a similar way to the generalized other. If an agent belongs to multiple groups, a group is chosen

at random. The percentage of agents in a group that know a knowledge bit is stored in the “agent

group knowledge network” and is used as the probability an agent in that group knows a

knowledge bit.

In addition to adding knowledge items to a message in the exact same way as the Standard

Interaction Model, KTM items are added in a similar way using “can send knowledgeTM” and

“can receive knowledgeTM” from a node’s attributes. KTM items, however, have no knowledge

priority. The number of KTM items that can be added to a message is restricted by the

“transactive knowledge message complexity network”. These items are then combined

and randomly shuffled with the knowledge items and added to the message. As before if the

medium’s “maximum message complexity” node attribute is less than the number of items added,

items are removed from the message to meet this requirement.

Knowledge items are parsed in the same way except it is also added to the receiver’s transactive

memory with the alter agent being the sender of the message if the sender is in the ego agent’s

interaction sphere. KTM items are added to the receiver’s transactive memory with the alter agent

48

coming from the item the sender attached rather than the sender being the alter agent. As an

example, Agent A may send a message to Agent B that Agent C knows knowledge K. Agent A

will then add that Agent C knows knowledge K into their transactive memory. Some obvious

situations are avoided when sending a KTM item. An agent cannot send a KTM item about

themselves or the intended receiver as both would have perfect memory about what knowledge

they know.

Belief Interaction Model

Table 7: Networks used by the Belief Interaction Model.

Network Name Required/Optional
Default
value

Range
Access

Type

belief knowledge weight network Required (-∞,∞) iterative access

belief network Optional 0 (-∞,∞) iterative access

belief similarity weight network Optional 1 [0,∞) random access

The “Belief Interaction Model” is an expansion of the Standard Interaction Model and

inherits and modifies some or all of the model’s functions. As this model is executing a modified

version of its functions, it is mutually exclusive to the Standard Interaction Model. This model

uses the belief network which uses the belief node set to describe how strongly agents believe or

disbelieve a belief node. A belief is determined by the knowledge bits an agent knows weighted

by the “belief knowledge weight network” and is calculated during the Clean Up function.

This model then directly modifies the Standard Interaction Model by applying an additive

factor 𝐵𝑆𝑊𝑖(𝑡)exp(Σ𝑏𝐵𝑖,𝑏𝐵𝑗,𝑏) to 𝑃𝑖,𝑗, with 𝐵 being the “belief network” and 𝐵𝑆𝑊𝑖(𝑡) being

the “belief similarity weight network”. Those with beliefs that strongly align create very

large additions while those with beliefs that conflict create small additions with the exponential

ensure all values remain positive.

Task Interaction Model

Table 8: Networks used by the Task Interaction Model.

Network Name Required/Optional
Default
value

Range Access Type

task assignment network Optional 1 {true,false} iterative access

task availability network Optional 1 {true,false} iterative access

task completion network Output Only 0 [0,∞) random access

task guess probability network Optional 0 [0,1] random access

task knowledge importance network Optional 1 [0,∞) random access

task knowledge requirement network Required {true,false} iterative access

The “Task Interaction Model” is an expansion of the Standard Interaction Model and

inherits and modifies some or all of the model’s functions. As this model is executing a modified

version of its functions it is mutually exclusive with the Standard Interaction Model. In this model

49

agents, in addition to performing interactions as described in the Standard Interaction Model,

attempt to complete tasks which are represented as task nodes.

Agents attempt to complete tasks during the Clean Up function and can only attempt to

complete a task is the task is available and if the task is assigned to them, which comes from the

“task availability network” and the “task assignment network”, respectively.

Connections to one or many knowledge nodes may be required which comes from the “task

knowledge requirement network”. If an agent does not possess a required knowledge node

connection, the agents can make a guess for each missing connection. The probability that a guess

is correct comes from the “task guess probability network” and if the agent successfully

guesses each missing connection, the task is completed. Each task that is completed by each agent

is recorded in the “task completion network”.

During interactions, ego agents will prioritize interacting with alter agents that have knowledge

the ego agent is lacking that they require to complete their assigned tasks for that time step. The

“task knowledge importance network” is used in place of the “interaction knowledge

weight network” for calculating knowledge expertise. If an agent has no available tasks that they

are assigned to, the knowledge expertise portion of the interaction probability weights is calculated

as normal by the Standard Interaction Model.

Grand Interaction Model

Table 9: Networks used by the Grand Interaction Model.

Network Name Required/Optional
Default
value

Range Access Type

agent group belief network Output Only 0 (-∞,∞) random access

agent group membership network Optional {true,false} iterative access

belief message complexity network Optional 1 [0,∞) random access

belief transactive memory network Optional (-∞,∞) random access

transactive belief message complexity

network
Optional 1 [0,∞) random access

The “Grand Interaction Model” is an expansion of the Standard Interaction Model,

Knowledge Transactive Memory Interaction Model, Belief Interaction Model, and Task

Interaction Model and inherits and modifies some or all of the models’ functions. As this model is

executing a modified version of its functions it is mutually exclusive the indicated models. Each

model except for the Standard Interaction Model has to be specifically enabled by setting model

parameters to “true”:

• “beliefs enabled” to enable the Belief Interaction Model

• “tasks enabled” to enable the Task Interaction Model

• “knowledge transactive memory enabled” to enable the Knowledge Transactive

Memory Interaction Model.

50

All network and node requirements for only enabled models are also required for this model.

An additional model parameter “belief transactive memory enabled” enables a transactive

memory for beliefs when set to “true” in a similar way knowledge transactive memory is utilized.

The parameter “belief rate of change” is required if “belief transactive memory

enabled” is enabled. This parameter is required to be in the range [0,1] and is saved in the variable

𝛼.

Because this model is hybridization of many models, each component of calculating the

interaction probability weights can be modified based on which models are currently active. If

beliefs are enabled, the additive factor described in the Belief Interaction Model is still applied,

however if belief transactive memory (BTM) is enabled, the transactive memory of the ego agent

is instead used to calculate belief similarity. The other two models still apply their modifications

to how interaction probabilities weights are calculated. The only overlap between the two exists

when calculating expertise based on assigned tasks. Here, knowledge transactive memory is used

instead of directly observing the knowledge links of alter agents.

Each model also applies their specific modifications to how interaction messages are created.

If BTM is enabled, beliefs and BTM’s can be sent in as items in messages with the maximum

number of items for each determined by the belief message complexity network and the transactive

belief message complexity network, respectively. Beliefs can only be sent by and received by

agents if their node attributes “can send beliefs” and “can receive beliefs” are “true”,

respectively. Similarly, agents require the node attributes “can send beliefTM” and “can

receive beliefTM” to be set to “true” in order to send or receive BTM items. Which beliefs

and BTM’s that are included in a message is chosen uniformly randomly. Each message must still

respect the overall message complexity of a medium. If the number of items to be added is larger

than this message complexity, items are chosen uniformly randomly to be removed.

When parsing messages in the Communicate function, each model that is enabled parses the

same message with their own Communicate function. If BTM is enabled, belief and BTM items

are also parsed and added to the ego agent’s BTM. The belief network does not become modified

when parsing a belief item, unlike when parsing knowledge. Beliefs continue to be updated in the

Clean Up function.

The Clean Up function performs similar actions depending on which components are enabled

such as updating group knowledge and group beliefs. The notable exception is when BTM is

enabled. Beliefs changes become impacted by the belief of others. Agents weigh how important

others’ beliefs are based on how much the agent wants to interact with them. However, not all

agents with equal interaction probability weights with will necessarily influence the ego agent

equally. Finally, beliefs should not erratically change over time and the agent’s feeling of what the

belief should be should also impact this calculation. Beliefs are then updated in the following

manner,

51

𝐵𝑖,𝑏(𝑡 + 1) = (1 − 𝑆𝑖) ((1 − 𝛼)𝐵𝑖,𝑏(𝑡) + 𝛼 ∑ 𝑉𝑏,𝑘
𝑘∈𝐾𝑖

∗

) + 𝑆𝑖
∑ 𝑃𝑖,𝑗𝐼𝑗𝐵𝑇𝑀𝑖,𝑗,𝑏𝑗

∑ 𝑃𝑖,𝑗𝐼𝑗𝑗
,

where 𝐵 is the “belief network”, 𝑉 is the “belief knowledge weight network”, 𝑃 is the

“interaction probability network”, 𝐵𝑇𝑀 is the “belief transactive memory network”,

𝑆 is the agent’s node attribute “susceptibility” which is in the range [0,1] that determines how

important other’s beliefs are, 𝐼 is the agent’s node attribute “influence” which is in the range

[0,∞) that weights how important an agent’s beliefs are when the interaction probabilities are

similar, and 𝛼 is the model parameter “belief rate of change” and affects the rate at which

beliefs change based on the knowledge the ego agent knows.

Location Interaction Model

Table 10: Networks used by the Location Interaction Model.

Network Name Required/Optional
Default
value

Range Access Type

agent active time network Optional 1 {true,false} iterative access

agent current location network Required {true,false}
iterative access,

random access

agent location preference network Optional 1 [0,1] iterative access

communication medium access network Optional 1 {true,false} random access

communication medium preferences

network
Optional 1 [0,∞) random access

interaction knowledge weight network Optional 1 [0,∞) iterative access

knowledge network Required {true,false}
iterative access,

random access

knowledge priority network Optional 1 [0,∞) iterative access

location knowledge network Optional 1 {true,false} iterative access

location learning limit network Optional 1 [0,∞) random access

location medium access network Optional 1 {true,false} random access

location network Optional 0 [0,1]
iterative access,

random access

The “Location Interaction Model” creates an environment where agents can learn

knowledge based on their current location and without interacting with others. Examples might be

an archaeologist at a dig site, a child at a playground, or a scientist simulating agent-based models.

In each case, agents are learning information from the environment rather than from another agent.

Each agent begins at exactly one location given by the “agent current location network”.

Each location has a set of knowledge available to be learned given by the “location knowledge

network”. The “location learning limit network” puts a cap on how many knowledge bits

can be learned in one time step. During the Think function, agents create messages that are sent

to themselves if they are active given by the “agent active time network”. While the transfer

of information could be self-contained, it is important to pass the knowledge through a message to

ensure other models can observe and interact with the process of learning the knowledge.

52

A medium is required to be used for creating this message. The “communication medium

access network” provides for which communication medium an agent can use to create a

message. The “communication medium preference network” dictates the probability weight

the agent will use that medium. In addition, the “location medium access network” further

restricts which mediums can be used at a location. Knowledge items will then be added to the

message based on the available knowledge at that location. Knowledge is prioritized based on the

“knowledge priority network”. Because messages are restricted by the location’s learning

limit and the medium’s “maximum message complexity” node attribute, knowledge with large

priority are more likely to be added to a message if either of these restrictions are met. If the Task

Interaction Model is enabled, instead of attempting to learn all possible knowledge at a location,

only the knowledge required for completing assigned tasks are learned. These messages are then

parsed in the Communicate function and knowledge links are created appropriately.

The model ends in the Clean Up function with agents deciding on their next location. Agents

are capable of moving locations stochastically with the probability to move to a specific location

coming from the “location preference network”. The “location network” determines

which locations are accessible based on an agent’s current location.

Modification Models

These models do not inherently generate new messages. Rather a modification model aims at

manipulating, removing, or in some cases generating new messages in response to existing

messages. An example is the Subscription Model, which can copy messages and forward them

different agents. Some models parse messages to record statistics or modify networks and even

have Clean Up function usage. As with the interaction models, all networks associated with the

model are presented at the beginning of the model description.

Forgetting Model

Table 11: Networks used by the Forgetting Model.

Network Name Required/Optional
Default
value

Range Access Type

knowledge forgetting prob network Optional 0.1 [0,1] random access

knowledge forgetting rate network Optional 1 [0,1] random access

knowledge network Optional {true,false} iterative access

knowledge strength network Optional 0 [0,1] iterative access

unused knowledge network Output Only 1 {true,false} random access

When messages are parsed during the Communicate function, the “Forgetting Model” can

cause links in the “knowledge network” to be removed if the associated knowledge hasn’t been

used in a time period. This process only happens if the “knowledge network” is already loaded

as a network. The function also increases the corresponding link for that knowledge bit in the

“knowledge strength network” by the receiving agent’s “learning rate” node attribute.

Then during the Clean Up function, if an agent has neither sent nor received a piece of knowledge,

53

the corresponding value in the “knowledge strength network” is decremented with probability

from the “knowledge forgetting prob network”. The amount that is decreased comes from

the “knowledge forgetting rate network”. If the knowledge strength between an agent node

and knowledge node reaches the lower bound of zero, the corresponding link is removed from the

“knowledge network”. The knowledge strength is initially checked to ensure that all links in the

“knowledge network” correspond to non-zero values in the “knowledge strength network”

as well as lack of links corresponding to zeros. Note that the knowledge network is unaffected by

this initialization; only the “knowledge strength network” is modified if a discrepancy occurs.

Emotion Model

Table 12: Networks used by the Emotion Model.

Network Name Required/Optional
Default
value

Range Access Type

emotion broadcast bias network Optional 1 (-∞,∞) random access

emotion broadcast first order network Optional 0 (-∞,∞) random access

emotion broadcast second order network Optional 0 (-∞,∞) random access

emotion network Required [0,1] random access

emotion reading first order network Required (-∞,∞) random access

emotion reading second order network Optional 0 (-∞,∞) random access

emotion regulation bias network Required Special iterative access

emotion regulation first order network Required Special iterative access

emotion regulation second order network Optional 0 Special iterative access

The “Emotion Model” creates and manages each agent’s emotions which take the form of the

emotion nodeset. Each emotion has an emotional valence which is in the range [0,1]. In the Update

function, emotions can be included by the sender in a message. In the Communicate function, the

receiver of a message containing emotions can parse that message’s emotions. Finally, the Clean

Up function updates each agents’ emotions through self-regulation.

Emotions are added to a message with the probability shown in the following equation,

𝑃𝑖,𝑚
(𝑎𝑡)

= 𝑆(𝐴𝑖,𝑚
(𝑎𝑡) +∑𝐸𝑖,𝑛𝐵𝑛,𝑚

(𝑎𝑡)

𝑛

+∑𝐸𝑖,𝑛𝐶𝑛,𝑚,𝑔
(𝑎𝑡) 𝐸𝑖,𝑔

𝑛,𝑔

),

where 𝑖 is the message sender’s index, 𝑃𝑖,𝑚
(𝑎𝑡)

 is the probability that agent 𝑖 attaches emotion 𝑚, 𝑆

is the sigmoid function (𝑆(𝑥) = 1/(1 + 𝑒−𝑥)), 𝐴(𝑎𝑡) is the “emotion broadcast bias

network”, 𝐵(𝑎𝑡) is the “emotion broadcast first order network”, 𝐶(𝑎𝑡) is the “emotion

broadcast second order network”, and 𝐸 is the “emotion network”. If an emotion is

successfully added, the emotion index and corresponding link value in the “emotion network”

are added to the message. A message may contain zero, one or more, or all emotions, but each

emotion can only be included once in a message.

54

When a message that contains emotions are read in the Communicate function, those emotions

are placed into a vector 𝜏. For each emotional index not contained in the message, a value of zero

is entered for that index in the vector 𝜏. The updated emotions for the receiver of the message can

be seen in the following equations,

𝑥𝑚 =∑𝜏𝑛𝐵𝑛,𝑚
(𝑖𝑟)

𝑛

+∑𝜏𝑛𝐶𝑛,𝑚,𝑔
(𝑖𝑟)

𝜏𝑔
𝑛,𝑔

,

𝐸𝑖,𝑚
′ = {

𝐸𝑖,𝑚 + (1 − 𝐸𝑖,𝑚)(1 − 𝑒−𝑥𝑚) 𝑥 ≥ 0

𝑆 (− ln(𝐸𝑖,𝑚
−1 − 1) +

𝑥𝑚
𝐸𝑖,𝑚

) 𝑥 < 0

where 𝐵(𝑖𝑟) is the “emotion reading first order network”, 𝐶(𝑖𝑟) is the “emotion reading

second order network”, and 𝐸′ is the updated “emotion network”.

Finally, agents regulate their emotions in the Clean Up function. The updated emotions for

each agent can be seen in the following equation,

𝐸𝑖,𝑚
′ = 𝐴𝑖,𝑚

(𝑠𝑟) +∑𝐸𝑖,𝑛𝐵𝑛,𝑚
(𝑠𝑟)

𝑛

+∑𝐸𝑖,𝑛𝐶𝑛,𝑚,𝑔
(𝑠𝑟) 𝐸𝑖,𝑔

𝑛,𝑔

,

where 𝐴(𝑠𝑟) is the “emotion regulation bias network”, 𝐵(𝑠𝑟) is the “emotion regulation

first order network”, and 𝐶(𝑠𝑟) is the “emotion regulation second order network”. To

ensure that, when in the extreme of an agent’s emotions all being zero, an emotion go outside the

range [0,1], 0 ≤ 𝐴𝑖,𝑚
(𝑠𝑟) ≤ 1 must hold. In the opposite extreme when all emotions are 1, 0 ≤

𝐴𝑖,𝑚
(𝑠𝑟) +∑ |𝐵𝑛,𝑚

(𝑠𝑟)| + ∑ |𝐶𝑛,𝑚,𝑔
(𝑠𝑟) |𝑛,𝑔𝑛 ≤ 1 must hold. These inequalities are checked when the model

is loaded.

Knowledge Learning Difficulty Model

Table 13: Networks used by the Knowledge Learning Difficulty Model.

Network Name Required/Optional
Default
value

Range Access Type

knowledge learning difficulty network Required [0,1] random access

The “Knowledge Learning Difficulty Model” scans Construct’s central message queue

during the Update function for any message items that are about knowledge. For each knowledge

item, the receiver has a probability from “knowledge learning difficulty network” to not

receive that knowledge item. In the case that a message has no more items, it is removed from the

message queue.

55

Mail Model

Table 14: Networks used by the Mail Model.

Network Name Required/Optional
Default
value

Range Access Type

agent mail usage by medium network Optional 1 [0,1] random access

mail check probability network Optional 0.5 [0,1] iterative access

The “Mail Model” constructs mailboxes for each user. Messages will be placed into mailboxes

with a probability from the “agent mail usage by medium network”. If this happens, that

message is removed from Construct’s central message queue. Agents may then check their inbox

each time step using the probability from the “mail check probability network”. If this

happens, all messages in that agent’s inbox return to Construct’s central message queue. When

implemented in this way, messages can enter a mailbox and subsequently leave when the mailbox

is checked in the same time step.

Subscription Model

Table 15: Networks used by the Subscription Model.

Network Name Required/Optional
Default
value

Range Access Type

public propensity network Optional 0.01 [0,1] random access

subscription network Optional 0 [0,1] iterative access

subscription probability network Optional 0.01 {true,false} random access

When a message is parsed by the “Subscription Model” during the Communicate function,

that message is added to an internal public queue with probability from the sender’s link in the

public propensity network. This public queue is only accessible by the Subscription model. In the

Clean Up function, agents will subscribe to the sender of a message in the public queue with

probability from the “subscription probability network”. Finally, during the Think function,

public messages from the previous time step are copied and forwarded to all subscribing agents.

Trust Model

Table 16: Networks used by the Knowledge Trust Model.

Network Name Required/Optional
Default
value

Range Access Type

agent trust network Optional 0.0 [0,1]
iterative access,

random access

knowledge network Required {true,false}
iterative access,

random access

knowledge trust network Optional 0.5 [0,1] random access

knowledge trust resistance network Optional 1.0 [0,∞) iterative access

knowledge trust transactive memory network Optional 0.5 [0,1] random access

56

The “Trust Model” adds the ability for agents to have trust in agents and knowledge. In this

model, a knowledge bit can be viewed as factually true or false, such as a person saying an arbitrary

statement, or an event that had a specific cause. Agents have a level of confidence that a knowledge

bit is true called knowledge trust which is represented in the “knowledge trust network” and

has a value on the range [0,1]. Agents can also agree or disagree on a knowledge bit’s factuality

based on how similar or dissimilar their trust in the knowledge bit is. Agents that frequently agree

build trust with each other and the opposite degrading that trust. The greater an agent trusts another

agent, the more that agent values their input in updating their trust of a knowledge bit.

Any message item that is created with a knowledge bit and does not already have a knowledge

trust value added to it, has the sender’s knowledge trust for the contained knowledge bit during

the Update function. When the message item is parsed by the receiver, the contained trust for the

corresponding knowledge bit index is added to the receiver’s transactive memory which is stored

in the “knowledge trust transactive memory network”. If the knowledge bit is newly

learned, the receiving agent initially has no perception as to whether it is true or false and their

trust in that knowledge bit is set to 0.5. Finally, the trust the receiver has in the sender is updated

by the following equation,

𝐴𝑖,𝑗
′ = 𝑎𝑖𝐴𝑖,𝑗 + (1 − 𝑎𝑖)(1 − |𝑇𝑖,𝑘 − 𝜏|),

where 𝑖 is the receiver, 𝑗 is the sender, 𝑘 is the knowledge bit index, 𝐴 is the “agent trust

network”, 𝐴′ is the updated “agent trust network”, 𝑇 is the “knowledge trust network”

and 𝑎𝑖 is the node attribute “agent trust resistance” which is a value in the range [0,1].

Knowledge trust is updated during the Clean Up function based on the trust of the agent’s

alters in their transactive memory and how much they trust each of those agents. This update can

be seen in the following equation,

𝑇𝑖,𝑘
′ = (1 − Ω𝑖,𝑘)𝑇𝑖,𝑘 + Ω𝑖,𝑘

∑ A𝑖,𝑗
𝛽𝑖 𝑅𝑖,𝑗,𝑘𝑗

∑ 𝐴𝑖,𝑗
𝛽𝑖

𝑗

where Ω is the “knowledge trust resistance network”, 𝑅 is the “knowledge trust transactive

memory network, 𝑇′ is the updated “knowledge trust network” and 𝛽𝑖 is agent 𝑖’s “alter trust

weight” node attribute.

Social Media Models

Social media models are built upon agents adding content to a social media environment and

then reading content created by other agents. Critically, agents do not decide which content to read

directly. Instead, content is given to an agent by the social media environment. This is dictated by

a feed mechanism that orders content based on what the environment believes the agent should

absorb.

The basics of the social media environments created for Construct start with events. Events

can be created by any agent and represents content in the environment. Agents can have those

57

events be in reply to another event as well as a repost, or a quote. Events that do not respond to

another event and that are spontaneously created by agents are called post events. Agents may also

mention another agent in an event. How agents create events, how many are created, how feeds

are structured, and how many events are read from the feed is dictated by each individual model.

For the base model, node attributes are used to indicate these values.

• post density – A number in the range [0,∞) that describes the mean number of post events

created each simulation cycle by the corresponding agent with the actual number being

sampled from a Poisson distribution.

• reply probability – The probability that when an agent reads an event that they create a

reply event.

• repost probability – The probability that when an agent reads an event that they create a

repost event.

• quote probability – The probability that when an agent reads an event that they create a

quote event.

• reading density – A number greater than zero and less than the size of the agent’s feed

that describes the mean number of events read by that agent each simulation cycle with the

actual number being sampled from a Poisson distribution.

In addition, each event can contain a set of information. While many models add to amount of

information, every model attaches one knowledge bit to an event. The knowledge bit that is

attached to a post event is chosen at random from among knowledge bits that the agents knows.

Each subsequent event in the response thread contains the same knowledge bit. Social media

models then require the agent node attributes “can send knowledge” and “can receive

knowledge”. If the “Trust Model” has been included, then the agent’s trust in that knowledge

bit is also added to their event if it is not a repost event. In the case of a repost event, the same

knowledge trust that the reposted event has is also added to the repost and the probability of

creating the repost gets multiplied by one minus the absolute value of the difference between the

reader’s trust and the author’s trust in the corresponding knowledge bit.

Agents’ feeds in the base social media model are structured by splitting all new events into two

categories for each agent, events that respond to that agent’s event and events that mention the

agent, and all other events. These two categories are then sorted by multiplying how many events

belong to its subtree of responses and the time stamp of the event. This prioritizes events that have

lots of responses and activity around it while also weighing how long the event has had time to

gather this activity. The category of events that contain responses and mentions are placed first in

the feed followed by the events in the other category.

Twitter Model

Table 17: Networks used by the Twitter Model.

Network Name Required/Optional
Default
value

Range Access Type

58

agent active time network Optional 1 {true,false} iterative access

knowledge network Required {true,false} iterative access

Table 18. Node attributes used by the Twitter Model.

Attribute Name Node set Data Type Range
can receive knowledge agent bool {true,false}

can send knowledge agent bool {true,false}

Twitter post density agent float [0,∞)

Twitter quote probability agent float [0,1]

Twitter reading density agent float [0,∞)

Twitter reply probability agent float [0,1]

Twitter repost probability agent float [0,1]

The “Twitter Model” uses the unmodified social media model and adds “Twitter” to the

beginning of the social media specific node attributes.

Facebook Model

Table 19: Networks used by the Facebook Model.

Network Name Required/Optional
Default
value

Range Access Type

agent active time network Optional 1 {true,false} iterative access

knowledge network Required {true,false} iterative access

Table 20. Node attributes used by the Facebook Model.

Attribute Name Node set Data Type Range
can receive knowledge agent bool {true,false}

can send knowledge agent bool {true,false}

Facebook post density agent float [0,∞)

Facebook quote probability agent float [0,1]

Facebook reading density agent float [0,∞)

Facebook reply probability agent float [0,1]

Facebook repost probability agent float [0,1]

The “Facebook Model” uses the unmodified social media model and adds “Facebook” to the

beginning of the social media specific node attributes.

Social Media Models with Followers

Built upon the base social media model, this branch incorporates a follower network. The

model uses this network to prioritize certain events in an agent’s feed based on who they follow.

While reading events and during the Clean Up function, agents can choose to follow or unfollow

another agent.

59

This model uses four media specific node attributes.

• add follower density – A number in the range [0,∞) that describes the mean number

of follower recommendations considered during the Clean Up function with the actual

number being sampled from a Poisson distribution.

• remove follower scale factor – A scale factor that when increased decrease the

probability an agent will unfollow another agent during the Clean Up function.

• auto follow – A boolean value that when true will cause the agent to follow any other

agent that follows them. If this value is false, nothing happens.

• charisma – A value in the range [0,1] that is directly proportional to the probability

that another agent will follow this agent.

When reading an event during the Communicate function, agents may choose to follow the

author of the event. The probability that agent 𝑖 follows the event’s author agent 𝑗 is based on both

charisma and the relative similarity between the two agents.

𝑃𝑖 = 𝑐𝑗
𝑛|𝐾𝑖

∗ ∩ 𝐾𝑗
∗|

1 + ∑ |𝐾𝑖
∗ ∩ 𝐾𝑘

∗|𝑘≠𝑖

where 𝐾𝑖
∗ is the set of knowledge bits that agent 𝑖 knows. This probability is also used when

considering each of the follower recommendations provided during the Clean Up function. When

the “Trust Model” (detailed below) is loaded, agents compare their trust in all their known

knowledge bits with the transactive memory of the agent being considered. The probability is then,

𝑃𝑖 = 𝑐𝑗 (1 −
1

|𝐾𝑖
∗ ∩ 𝑅𝑖,𝑗

∗ |
∑ |𝑇𝑖,𝑘 − 𝑅𝑖,𝑗,𝑘|

𝑘∈|𝐾𝑖
∗∩𝑅𝑖,𝑗

∗ |

)

where 𝑇 is the “trust network” and 𝑅 is the “trust transactive memory network”.

During the Clean Up function, the following processes happen in the following order. First,

the feeds are created with the process being modified by the inclusion of the follower network.

Second, agents examine each other agent they’re following and evaluate whether to unfollow that

agent. Next, agents are given a set of agents that they aren’t following, ranked by how similar they

are to agents they are following and decides whether or not to follow these agents. Changes in the

follower network created by these two steps are not implemented into the network until after both

steps are complete. i.e., Agents cannot decide to follow an agent that they have unfollowed in the

previous step because changes to follower network have been delayed until after follower

recommendations have been given. Finally, after agents get the opportunity to unfollow and follow

various agents, the follower network is updated to reflect all changes queued by the previous two

steps.

60

In the base social media model, the feeds are broken into two groups. An additional group is

added in between the two groups. Events can still only be added to one of the three groups. Events

are still first added to the group containing mentions of the feed’s agent or direct responses (replies,

reposts, quotes). Then events are added to the second group if the event’s author is an agent the

feed’s agent is currently following. Finally, if the event is not added to either of those two groups,

they are added to the third group. The events are then ordered by their group and the process

outlined in the base social media model continues.

In the next step each agent examines each agent they follow and decide whether to unfollow.

The base probability that an ego agent will unfollow any alter agent is the time between time steps

divided by the ego agent’s remove follower scale factor. This probability is then decreased for

each response the alter agent has made to the ego agent’s events such that ten responses decreases

the probability by 50%. A unidirectional relationship increases the probability of unfollowing by

86.9%. Finally, the Jaccard similarity is measured between the followers of the ego agent and the

followers of the alter agent. As the Jaccard similarity decrease the probability to unfollow increases

such that a reduction in 0.1 in the similarity results in a 33% increase in the unfollow probability.

If the ego agent chooses to unfollow an alter agent, this change is not implemented until after all

agents decide on which agents to unfollow and after all agents have resolved their follower

recommendations.

After deciding who to unfollow, recommendations are given to agents to follow. These

recommendations are ordered based on their best follower Jaccard similarity with those the ego

agent is currently following. The ego agent then considers the first 𝑚 alter agents, where 𝑚 is

sampled from a Poisson distribution with mean equal to the ego agent’s add follower density node

attribute. For each consideration, the agent chooses to follow the agent with the same probability

used during the Communicate function. Choices to follow are then queued until after this process

has been completed. This process can be expensive as there are between 𝑛2 and 𝑛3/4number of

Jaccard similarities to calculate each time step where 𝑛 is the total number of agents. For this

reason, a model parameter “disable follower recommendations” is added which when set to

false, skips this step.

Twitter Follower Model

Table 21: Networks used by the Twitter Follower Model.

Network Name Required/Optional
Default
value

Range Access Type

agent active time network Optional 1 {true,false} iterative access

knowledge network Required {true,false} iterative access

twitter follower network Required {true,false} random access

Table 22. Node attributes used by the Twitter Follower Model.

Attribute Name Node set Data Type Range

61

can receive knowledge agent bool {true,false}

can send knowledge agent bool {true,false}

Twitter post density agent float [0,∞)

Twitter quote probability agent float [0,1]

Twitter reading density agent float [0,∞)

Twitter reply probability agent float [0,1]

Twitter repost probability agent float [0,1]

Twitter add follower density agent float [0,∞)

Twitter remove follower scale factor agent float [0,∞)

Twitter auto follow agent bool {true,false}

Twitter charisma agent float [0,1]

The “Twitter Follower Model” specializes the social media with followers models by

defining the follower network as the “twitter follower network” and adding “Twitter” to the

various social media specific agent node attributes.

Facebook Follower Model

Table 23: Networks used by the Facebook Follower Model.

Network Name Required/Optional
Default
value

Range Access Type

agent active time network Optional 1 {true,false} iterative access

facebook friend network Required {true,false} iterative access

knowledge network Required {true,false} iterative access

Table 24. Node attributes used by the Facebook Follower Model.

Attribute Name Node set Data Type Range
can receive knowledge agent bool {true,false}

can send knowledge agent bool {true,false}

Facebook post density agent float [0,∞)

Facebook quote probability agent float [0,1]

Facebook reading density agent float [0,∞)

Facebook reply probability agent float [0,1]

Facebook repost probability agent float [0,1]

Facebook add follower density agent float [0,∞)

Facebook remove follower scale factor agent float [0,∞)

Facebook auto follow agent bool {true,false}

Facebook charisma agent float [0,1]

The “Facebook Follower Model” specializes the social media with followers models by

defining the follower network as the “facebook friend network” and adding “Facebook” to the

various social media specific agent node attributes.

62

Social Media Models with Emotions

Built upon the base social media model, this branch incorporates an emotion network. Each

agent will possess an emotional valence within the emotion network for each node in the emotion

nodeset. This emotional valence is a value in the range [0,1] that represents how strongly an agent

is currently experiencing the corresponding emotion. These emotions affect the probabilities and

probability densities associated with the actions agents can take in the social media model. For

more information on how emotions change over time, see the Emotion Model below.

Because most functional definitions that describe the dependence on emotions is not known,

we can approximate the function with a series expansion up to second order.

𝐹(𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑚) = 𝐴 +∑𝐵𝑖𝑒𝑖

𝑚

𝑖=1

+∑∑𝑒𝑖𝐶𝑖,𝑗𝑒𝑗

𝑚

𝑗=1

𝑚

𝑖=1

+ 𝑂(𝑒3)

where 𝐴, 𝐵, and 𝐶 are constants and represented in their lowest allowable dimensionality. As will

be seen shortly, these constants can be elevated to higher dimensions with the highest dimension

allowable by Construct is 3 dimensions.

This is first applied to the post probability density which must be in the range [0,∞). To

maintain this range an exponential is used to allow all constants to be any real number. The

equation is then,

𝑝𝑑𝑝𝑖 = exp(𝐴𝑖
(𝑝𝑑𝑝)

+∑𝐵𝑖,𝑚
(𝑝𝑑𝑝)

𝐸𝑖,𝑚
𝑚

+∑𝐸𝑖,𝑚𝐶𝑖,𝑚,𝑛
(𝑝𝑑𝑝)

𝐸𝑖,𝑛
𝑚,𝑛

),

where 𝐹 = ln(𝑝𝑑𝑝𝑖), 𝑝𝑑𝑝𝑖 is the probability density to post, 𝑒𝐴𝑖
(𝑝𝑑𝑝)

corresponds to the probability

density to post node attribute for agent 𝑖, 𝐵(𝑝𝑑𝑝) corresponds to the “first order post density

emotion network”, and 𝐶(𝑝𝑑𝑝) corresponds to the “second order post density emotion

network”. A similar equation is used the probability density for reading where 𝑒𝐴𝑖
(𝑝𝑑𝑟)

 corresponds

to the probability density to read node attribute for agent 𝑖, 𝐵(𝑝𝑑𝑟) corresponds to the “first

order read density emotion network”, and 𝐶(𝑝𝑑𝑟) corresponds to the “second order read

density emotion network”.

For probabilities, a similar equation form is used but instead 𝐹 = 𝑆−1(𝑃) used where 𝑆(𝑥) is

the sigmoid function and 𝑃 represent the various probabilities contained in the model. The

probability that an agent will reply to an event when reading it is then,

𝑝𝑟𝑖 = 𝑆(𝐴𝑖
(𝑝𝑟) +∑𝐵𝑖,𝑚

(𝑝𝑑𝑝)𝐸𝑖,𝑚
𝑚

+∑𝐸𝑖,𝑚𝐶𝑖,𝑚,𝑛
(𝑝𝑑𝑝)𝐸𝑖,𝑛

𝑚,𝑛

),

where 𝑆 (𝐴𝑖
(𝑝𝑟)) corresponds to the reply probability node attribute for agent 𝑖, 𝐵(𝑝𝑟) corresponds

to the “first order reply probability emotion network”, and 𝐶(𝑝𝑟) corresponds to the

63

“second order reply probability emotion network”. A similar equation is used for quote

and repost probabilities using 𝐵(𝑝𝑞) as the “first order quote probability emotion

network”, 𝐶(𝑝𝑞) as the “second order quote probability emotion network”, 𝐵(𝑝𝑝) as the

“first order repost probability emotion network”, and 𝐶(𝑝𝑝) as the “second order

repost probability emotion network”. Finally, the probability to add an agent’s emotional

valence is the same as seen in the Emotion Model seen below.

Finally, the probability an agent chooses a knowledge bit when creating a post is also affected

by their emotional state. The probability weight is,

𝑃𝑖,𝑘 = 𝐴𝑖,𝑘 + 𝑆𝑖,𝑘|𝑇𝑖,𝑘 − 0.5| +∑𝐿𝑘,𝑚𝐸𝑖,𝑚
𝑚

,

where 𝐴 corresponds to the “knowledge select bias network”, 𝑆 is the “knowledge select trust

network”, 𝑇 is the “knowledge trust network”, 𝐿 is the “knowledge select emotion network”, and

𝐸 is the “emotion network”. These weights are then normalized, and the knowledge bit is selected

via this distribution.

Twitter Emotion Model

Table 25: Networks used by the Twitter Emotion Model.

Network Name Required/Optional
Default
value

Range Access Type

agent active time network Optional true {true,false} iterative access

emotion broadcast bias network Optional 1.0 (-∞,∞) random access

emotion network Required [0,1] random access

first order emotion broadcast network Optional 0.0 (-∞,∞) random access

first order post density emotion network Optional 0.0 (-∞,∞) random access

first order quote probability emotion

network
Optional 0.0 (-∞,∞) random access

first order read density emotion network Optional 0.0 (-∞,∞) random access

first order reply probability emotion network Optional 0.0 (-∞,∞) random access

first order repost probability emotion

network
Optional 0.0 (-∞,∞) random access

knowledge network Required {true,false} iterative access

knowledge select bias network Optional 1.0 (-∞,∞) random access

knowledge select emotion network Optional 0.0 (-∞,∞) random access

knowledge select trust network Optional 0.0 (-∞,∞) random access

second order emotion broadcast network Optional 0.0 (-∞,∞) random access

second order post density emotion network Optional 0.0 (-∞,∞) random access

second order quote probability emotion

network
Optional 0.0 (-∞,∞) random access

second order read density emotion network Optional 0.0 (-∞,∞) random access

second order reply probability emotion

network
Optional 0.0 (-∞,∞) random access

second order repost probability emotion

network
Optional 0.0 (-∞,∞) random access

64

Table 26. Node attributes used by the Twitter Emotion Model.

Attribute Name Node set Data Type Range
can receive knowledge agent bool {true,false}

can send knowledge agent bool {true,false}

Twitter post density agent float [0,∞)

Twitter quote probability agent float [0,1]

Twitter reading density agent float [0,∞)

Twitter reply probability agent float [0,1]

Twitter repost probability agent float [0,1]

The “Twitter Emotion Model” uses the unmodified social media model with emotions and

adds “Twitter” to the beginning of the social media specific node attributes.

Twitter Emotion Follower Model

Table 27: Networks used by the Twitter Emotion Follower Model.

Network Name Required/Optional
Default
value

Range Access Type

agent active time network Optional true {true,false} iterative access

emotion broadcast bias network Optional 1.0 (-∞,∞) random access

emotion network Required [0,1] random access

first order emotion broadcast network Optional 0.0 (-∞,∞) random access

first order post density emotion network Optional 0.0 (-∞,∞) random access

first order quote probability emotion

network
Optional 0.0 (-∞,∞) random access

first order read density emotion network Optional 0.0 (-∞,∞) random access

first order reply probability emotion network Optional 0.0 (-∞,∞) random access

first order repost probability emotion

network
Optional 0.0 (-∞,∞) random access

knowledge network Required {true,false} iterative access

knowledge select bias network Optional 1.0 (-∞,∞) random access

knowledge select emotion network Optional 0.0 (-∞,∞) random access

knowledge select trust network Optional 0.0 (-∞,∞) random access

second order emotion broadcast network Optional 0.0 (-∞,∞) random access

second order post density emotion network Optional 0.0 (-∞,∞) random access

second order quote probability emotion

network
Optional 0.0 (-∞,∞) random access

second order read density emotion network Optional 0.0 (-∞,∞) random access

second order reply probability emotion

network
Optional 0.0 (-∞,∞) random access

second order repost probability emotion

network
Optional 0.0 (-∞,∞) random access

twitter follower network Required {true,false} random access

Table 28. Node attributes used by the Twitter Emotion Follower Model.

Attribute Name Node set Data Type Range

65

can receive knowledge agent bool {true,false}

can send knowledge agent bool {true,false}

Twitter add follower density agent float [0,∞)

Twitter auto follow agent bool {true,false}

Twitter charisma agent float [0,1]

Twitter post density agent float [0,∞)

Twitter quote probability agent float [0,1]

Twitter reading density agent float [0,∞)

Twitter remove follower scale factor agent float [0,∞)

Twitter reply probability agent float [0,1]

Twitter repost probability agent float [0,1]

The “Twitter Emotion Follower Model” combines the social media model with followers

and the social media model with emotions. Emotion dynamics and follower dynamics happen

independently. Feed generation for each user uses the social media model with followers

implementation.

Facebook Emotion Model

Table 29: Networks used by the Facebook Emotion Model.

Network Name Required/Optional
Default
value

Range Access Type

agent active time network Optional true {true,false} iterative access

emotion broadcast bias network Optional 1.0 (-∞,∞) random access

emotion network Required [0,1] random access

first order emotion broadcast network Optional 0.0 (-∞,∞) random access

first order post density emotion network Optional 0.0 (-∞,∞) random access

first order quote probability emotion

network
Optional 0.0 (-∞,∞) random access

first order read density emotion network Optional 0.0 (-∞,∞) random access

first order reply probability emotion network Optional 0.0 (-∞,∞) random access

first order repost probability emotion

network
Optional 0.0 (-∞,∞) random access

knowledge network Required {true,false} iterative access

knowledge select bias network Optional 1.0 (-∞,∞) random access

knowledge select emotion network Optional 0.0 (-∞,∞) random access

knowledge select trust network Optional 0.0 (-∞,∞) random access

second order emotion broadcast network Optional 0.0 (-∞,∞) random access

second order post density emotion network Optional 0.0 (-∞,∞) random access

second order quote probability emotion

network
Optional 0.0 (-∞,∞) random access

second order read density emotion network Optional 0.0 (-∞,∞) random access

second order reply probability emotion

network
Optional 0.0 (-∞,∞) random access

second order repost probability emotion

network
Optional 0.0 (-∞,∞) random access

Table 30. Node attributes used by the Facebook Emotion Model.

66

Attribute Name Node set Data Type Range
can receive knowledge agent bool {true,false}

can send knowledge agent bool {true,false}

Facebook post density agent float [0,∞)

Facebook quote probability agent float [0,1]

Facebook reading density agent float [0,∞)

Facebook reply probability agent float [0,1]

Facebook repost probability agent float [0,1]

The “Facebook Emotion Model” uses the unmodified social media model with emotions and

adds “Facebook” to the beginning of the social media specific node attributes.

Facebook Emotion Follower Model

Table 31: Networks used by the Facebook Emotion Follower Model.

Network Name Required/Optional
Default
value

Range Access Type

agent active time network Optional true {true,false} iterative access

emotion broadcast bias network Optional 1.0 (-∞,∞) random access

emotion network Required [0,1] random access

first order emotion broadcast network Optional 0.0 (-∞,∞) random access

first order post density emotion network Optional 0.0 (-∞,∞) random access

first order quote probability emotion

network
Optional 0.0 (-∞,∞) random access

first order read density emotion network Optional 0.0 (-∞,∞) random access

first order reply probability emotion network Optional 0.0 (-∞,∞) random access

first order repost probability emotion

network
Optional 0.0 (-∞,∞) random access

knowledge network Required {true,false} iterative access

knowledge select bias network Optional 1.0 (-∞,∞) random access

knowledge select emotion network Optional 0.0 (-∞,∞) random access

knowledge select trust network Optional 0.0 (-∞,∞) random access

second order emotion broadcast network Optional 0.0 (-∞,∞) random access

second order post density emotion network Optional 0.0 (-∞,∞) random access

second order quote probability emotion

network
Optional 0.0 (-∞,∞) random access

second order read density emotion network Optional 0.0 (-∞,∞) random access

second order reply probability emotion

network
Optional 0.0 (-∞,∞) random access

second order repost probability emotion

network
Optional 0.0 (-∞,∞) random access

facebook friend network Required {true,false} random access

Table 32. Node attributes used by the Facebook Emotion Follower Model.

Attribute Name Node set Data Type Range
can receive knowledge agent bool {true,false}

can send knowledge agent bool {true,false}

Facebook add follower density agent float [0,∞)

Facebook auto follow agent bool {true,false}

67

Facebook charisma agent float [0,1]

Facebook post density agent float [0,∞)

Facebook quote probability agent float [0,1]

Facebook reading density agent float [0,∞)

Facebook remove follower scale factor agent float [0,∞)

Facebook reply probability agent float [0,1]

Facebook repost probability agent float [0,1]

The “Facebook Emotion Follower Model” combines the social media model with followers

and the social media model with emotions. Emotion dynamics and follower dynamics happen

independently. Feed generation for each user uses the social media model with followers

implementation.

Output

There are three output methods currently provided by Construct, each of which uses a different

file format. Each output routine follows a similar structure of a the <output> XML element with

a list of <parameter> sub-elements. The type of output is determined by the “type” attribute in the

output element. Below is an example.

 <output type="[your output type]">

 <parameter name="[your parameter 1]" value="[value 1]"/>

 <parameter name="[your parameter 2]" value="[value 2]"/>

 </output>

CSV

The CSV output routine uses “csv” for the type attribute. This output requires three

parameters.

• “network name” specifies the name of the network to be recorded.

• “output file” indicates the name of the output file.

• “time periods” designates whether all or just the last time step is recorded.

Any network that is created during the network loading process, or during model construction

(before a model’s Initialization function) can be used as output. Any file or file path can be used

to designate the output file with the only requirement being the “.csv” extension at the end of the

string. The allowed inputs for the “time periods” parameter are:

• “initial” will output only the initial state of the network before the simulation begins.

• “last” will output the final state of the network at the end of the simulation as well as

the initial state of the network.

• “all” will output the initial network and the network at the end of each time period in

the simulation.

68

• A comma separated list of time period indexes. I.e., “1,3,5,7”. Each index indicates

which time period index should a network’s state be captured. An index of -1 indicates

the network’s state should be captured before any simulation takes place.

The structure of the CSV file contains the source node set on the rows and target node set for

the columns. Node names are not included to reduce file size; rather the row number corresponds

to the source node index and the column number corresponds to the target node index. In the CSV

file, an empty line indicates the transition from one time step to the next. The row number is then

reset at the empty line for determining which row corresponds to which node index. When a 3d

network is used as output, at each element braces contain data for the slice dimension. For a dense

representation, the elements appear as comma separated values such as {v0,v1,v2,…,vN}. For a

sparse representation, the elements appear in a dictionary format such as
{i0:v0,i3:v3,…,iN:vN}.

DyNetML

The DyNetML output routine uses “dynetml” for the type attribute. This output requires three

parameters:

• “network names” is a comma separated list (“net_name1, net_name2,

net_name3”) of the names of all networks to be recorded.

• “output file” indicates the name of the output file.

• “time periods” designates whether all or just the last time step is recorded.

Networks can be any network that is created during the network loading process, or during

model construction (before a model’s Initialization function). Any file or file path can be used to

designate the output file with the only requirement being the “.xml” extension at the end of the

string. The output XML file is consistent with the DyNetML format (DyNetML is an XML

derivative language for exchanging rich social network data) and can be directly loaded in XML

parsing software such as ORA. The allowed inputs for the “time periods” parameter are:

• “initial” will output only the initial state of the network before the simulation begins.

• “last” will output the final state of the network at the end of the simulation as well as

the initial state of the network.

• “all” will output the initial network and the network at the end of each time period in

the simulation.

• A comma separated list of time period indexes. I.e., “1,3,5,7”. Each index indicates

which time period index should a network’s state be captured. An index of -1 indicates

the network’s state should be captured before any simulation takes place.

http://www.casos.cs.cmu.edu/projects/dynetml/
http://www.casos.cs.cmu.edu/projects/ora/

69

Messages

The Messages output routine uses “messages” for the type attribute and has only one

parameter “output file”. Any file or file path can be used to designate the output file with the

only requirement being the “.json” extension be at the end of the string. The JSON representation

in the output file contains all messages sent each time step. Messages contain the sending agent

index, receiving agent index, the name of the communication medium used, and a list of message

items. Each message item contains a set of attributes, indexes, and values. Below is an example of

a message in JSON format.

{

 "sender" : 93,

 "receiver" : 0,

 "medium name" : "CommunicationMedium_0",

 "Items" : [

 {

 "attributes" : {"belief"],

 "indexes" : {

 "belief" : 3

 },

 "values" : {

 “belief” : 4

 }

 }

]

}

In the above example, agent 93 sent a message to agent 0 using

“CommunicationMedium_0”. The message contains only one item. The “belief” attribute

indicates this item contains a belief that is to be sent to the receiver. The belief in indexes indicates

the belief node index being communicated is 3. The belief in values indicates the value of the

sender’s corresponding belief link value. This gives a complete list of all messages sent using

Construct’s central messaging system.

Media Events

The Media Events output routines uses “media events” for the type attribute. This output has

4 parameters.

• “output file” specifies the full name of the file that the output should write to.

• “model name” specifies which model contains a media event container, which is any

model in the Social Media Model family.

• “start time” indicates the date the that the simulation is starting at using the

following format "YYYY-mm-ddTHH:MM:SS.000Z".

• “time conversion to seconds” provides the conversion from the datetime format

to a unit time such that the Social Media Model’s time duration of each time period

multiplies by the conversion equals the duration in seconds of each time period.

70

The output routine will then create a Json formatted file and save information regarding all

events generated. The Twitter V2 Json Format is used and information on indexes such as

knowledge or values such as trust are saved in the “entities” property of an event.

71

PART FOUR: Construct API

The Construct Application Programming Interface (API) exists in the Consturct-API

repository on the CASOS GitHub. The API consists of an executable for each operating system

that can call the API functions, a header and statically linked library to allow the use of Construct’s

classes, functions, and namespaces, and the source files for the Construct API which produces a

dynamically linked library (DLL). The executables seen in this repository differ from the

introductory executable used as they require the file Construct_DLL.dll in order to execute. This

section is geared towards those wishing to develop their own model. The implementation and

example language used is C++. How this API can be used to create custom models, output, and

unique users for social media models is discussed below. This section focuses on overall concepts

and the detailed API documentation can be found on the CASOS Construct main page as well as

through the GitHub repository.

Creating Custom Models

Construct has, throughout its history, constantly evolved as development continues to improve

the underlying code base. Rather than develop for every possible case a modeler may require, the

ability to create custom models was implemented. Models can be created that are completely stand

alone and do not interact with any other part of Construct. Models can also be created to interact

with the shared content between models. Finally, through class inheritance, models can copy

components of an existing model and apply alterations to those components. This section will go

over all the requirements a Construct model must meet to eliminate undefined behavior.

To create a custom model, a new class or struct must be created that inherits from the Model

class. This can be seen in the Template class in the Template.h file. In addition, Template.cpp also

contains many examples of using various Construct functions and classes. Classes that inherit from

the Model class can reimplement five virtual functions that correspond to the steps of Construct

simulation cycle detailed in Models and Construct Program Flow. If the base virtual functions are

not replaced, they do not have any effect on the Construct simulation but will output warnings

when Construct parameter “verbose runtime” is set to true and when using the DEBUG

executable version. Finally, all Construct model constructors require as input the pointer to the

Construct class which is which is subsequently passed to the Model constructor. This will

initialize many of a model’s member variables including the now saved Construct pointer

(Model::construct) and pointers to the Node (Model::ns_manager), Graph

(Model::graph_manager), and Random (Model::random) managers. A Construct model’s

constructor can also accept a dynet::ParameterMap as input and allows for model parameters to

be passed to a model.

Simply creating the class however is insufficient to allow Construct to create the model when

requested via the input deck. The entry point for a custom model is in the function

dynet::create_model, which is defined in Supp_Library.h and Supp_Library.cpp This function

https://github.com/CASOS-IDeaS-CMU/Construct-API
http://casos.cs.cmu.edu/projects/construct/API/index.html

72

is called by the Model Manager class and passes the Construct pointer (construct), the model’s

parameters (parameters), and the name of the model the manager is trying to load (model_name).

In the function is a series of if-else statements used to select appropriate model constructor. To

allow a custom model to be created, the if-else statement checks if the model_name is equivalent

to each model’s name. The string conditioned on in this statement should match the string

submitted to the Model constructor, otherwise an assertion will be raised. The contents of this

statement should allocate the custom model’s pointer using new. The created pointer should then

be immediately returned by the function. Once a Model pointer is returned from the function, the

Model Manager takes ownership (the model pointer will be deallocated by the Model Manager

and should not be deallocated by any other entity). Once the pointer ownership has been transferred

and no exceptions have been raised, Construct will automatically call the appropriate functions of

the custom model during the simulation cycle.

Construct throws dynet::construct_exception as exceptions which is derived from

std::exception as well as other exceptions derived from dynet::construct_exception.

Construct’s exceptions protects for the many possible ways the end user can include potentially

problematic input such as setting a float parameter to “duck”. Exceptions that are not Construct

exceptions indicate possible bugs and should be reported to the ORA google group. Additionally,

when using the DEBUG compilation flag and the corresponding executable in the Debug folder,

Construct will check various conditions and raise assertions upon failure. These assertions contain

only the assertion message, which begin with the phrase “Construct has raised an assertion”.

Creating Custom Output

As with models, the API allows for the creation of custom output routines. A custom output

may be more advantageous than coding an output into a model as the logging of output is

guaranteed to happen after all models have completed their clean up function. There are many

similarities between Models and Output in terms of their injection in Construct. All outputs inherit

from the Output class and the Output Manager calls the function dynet::create_output which

takes as input a similar set as dynet::create_model. Similarly, a series of if-else statements are

used to select the correct constructor but using the input output_name instead of model_name. The

classes and return statement also follow a similar structure except the Output Manager takes

ownership of Output pointers. Classes that inherit from the Output class have no strict

requirements on the form of its constructor and should reimplement Output::process which is

called by the Output Manager after models have completed their clean up functions.

Creating Custom Social Media Users

For all models in the Social Media family of models, an associated dynet::load_users exists

to allow developers to add and create their own custom media users without having to rebuild any

of the existing Social Media models as a custom model. This function is enabled only if the

preprocessor definition CUSTOM_MEDIA_USERS is defined. In this function, each entry in the

Social_Media_no_followers::users data structure should be populated with an example of

https://groups.google.com/g/ORA-google-group

73

population being shown in the default definition. See the API documentation to determine what

methods can be modified and the possible effects of those modifications.

GUI Integration

Custom nodesets, networks, models, and output can be loaded into the Construct GUI. In the

parameters tab under Custom Library, select the dynamic library file containing your

customizations. To set your custom objects in the GUI, select the type of object

(nodeset/network/output/model) from the menu option at the top of the screen. From there you can

add a custom object by selecting the menu option “create custom

(nodeset/network/output/model)”. Once you’ve specified all of the required options and selected

ok, you can select the custom object from a corresponding drop-down option. Alternatively, you

can select the “add custom (nodeset/network/model/output)” in any corresponding drop-down

menu. The latter option in addition to creating the custom entity will also cause the newly created

entity to be selected in the drop-down menu.

Nodesets require only a name, while networks require a name, edge type bool, int, unsigned

int, float, string), a source nodeset, and a target nodeset. If a slice nodeset is given, the network

becomes a 3d network. Models only require a name and can have any number of parameters. The

type of parameters allowed are a true/false option, a file selection, or a general text field. Outputs

are similar to models in terms of inputs, but the types of parameters are instead, model selection,

network selection, multi-network selection, and general text field.

Full Control of a Custom Construct Construction

Developers confident in their knowledge of C++ and of Construct can create an instance of

Construct using its constructor. This constructor only initializes empty managers and sets the

random seed based on the submitted seed value. All Construct parameters, nodesets,

networks/graphs, models, and outputs require manual creation. This obviously allows for

significantly increased customization, but also allows for pointers outside of Construct to be added

to models or outputs as they can be constructed outside of Construct. Once all the components are

loaded, the simulation can be started by calling “Construct::run”, which initializes all models

and begins the simulation cycle. A try statement should surround the section of code that loads all

the Construct components to catch any string exceptions thrown. The “Construct::run” function

is already wrapped internally with the appropriate try and catch statements and returns false if any

exceptions is thrown. “Construct::run” can only be called once otherwise, an assertion is raised.

74

References

Anderson, J. R. (1993). Rules of mind. Psychology Press.

Apache Software Foundation. (2019, September 10). MapReduce Tutorial.

https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-

core/MapReduceTutorial.html

Carley, K. M. (1986). An approach for relating social structure to cognitive structure. Journal of

Mathematical Sociology, 12(2), 137-189. https://doi.org/10.1080/0022250X.1986.9990010

Carley, K. M. (1990). Group stability: A socio-cognitive approach. Advances in Group

Processes: Theory and Research, (Vol. 7, pp. 1-44). JAI Press.

http://www.casos.cs.cmu.edu/events/summer_institute/2014/reading_list/pubs/carley_1990_

groupstability.pdf

Carley, K. M. (1991). A theory of group stability. American Sociology Review, 56(3), 331–354.

https://doi.org/10.2307/2096108

Carley, K. M. 1995. Communication technologies and their effect on cultural homogeneity,

consensus, and the diffusion of new ideas. Sociological Perspectives, 38(4), 547–571.

https://doi.org/10.2307/1389272

Carley, K. M. (2002). Computational organization science: A new frontier. Proceedings of the

National Academy of Sciences of the United States of America, 99(Suppl 3), 7257-7262.

https://doi.org/10.1073/pnas.082080599

Carley, K. M. (2006). A dynamic network approach to the assessment of terrorist groups and the

impact of alternative courses of action. In Visualising Network Information (pp. KN1-1 –

KN1-10). Meeting Proceedings RTO-MP-IST-063, Keynote 1. Neuilly-sur-Seine, France:

RTO. https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/RTO-MP-

IST-063/$MP-IST-063-KN1.pdf

Carley, K. M., Martin, M. K., & Hirshman, B. R. (2009). The etiology of social change, Topics

in Cognitive Science, 1(4), 621-650. https://doi.org/10.1111/j.1756-8765.2009.01037.x

Carley, K. M., & Maxwell, D. T. (2006). Understanding taxpayer behavior and assessing

potential IRS interventions using multiagent dynamic-network simulations. In Dalton &

Bliss (Eds.), Recent Research on Tax Administration and Compliance: Proceedings of

the 2006 IRS Research Conference (pp. 93-106). Washington, D.C.

https://www.irs.gov/pub/irs-soi/06carley.pdf

Carley, K. M., & Newell, A. (1994). The nature of the social agent. Journal of Mathematical

Sociology, 19(4), 221-262. https://doi.org/10.1080/0022250X.1994.9990145

Carley, K. M., & Reminga, J. (2004). ORA: Organization Risk Analyzer. (Technical Report

CMU-ISRI-04-106). Pittsburgh, PA, USA: Carnegie Mellon University, School of

Computer Science, Institute for Software Research. http://reports-

archive.adm.cs.cmu.edu/anon/isri2004/CMU-ISRI-04-106.pdf

Carley, K. M., Robertson, D. C., Martin, M. K., Lee, J. S., St Charles, J. L., & Hirshman, B. R.

(2010). Predicting intentional and inadvertent non-compliance. In M. E. Gangi & A.

Plumley (Eds.). Recent Research on Tax: Selected Papers Given at the 2010 IRS Research

https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://doi.org/10.1080/0022250X.1986.9990010
http://www.casos.cs.cmu.edu/events/summer_institute/2014/reading_list/pubs/carley_1990_groupstability.pdf
http://www.casos.cs.cmu.edu/events/summer_institute/2014/reading_list/pubs/carley_1990_groupstability.pdf
https://doi.org/10.2307/2096108
https://doi.org/10.2307/1389272
https://doi.org/10.1073/pnas.082080599
https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/RTO-MP-IST-063/$MP-IST-063-KN1.pdf
https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/RTO-MP-IST-063/$MP-IST-063-KN1.pdf
https://doi.org/10.1111/j.1756-8765.2009.01037.x
https://www.irs.gov/pub/irs-soi/06carley.pdf
https://doi.org/10.1080/0022250X.1994.9990145
http://reports-archive.adm.cs.cmu.edu/anon/isri2004/CMU-ISRI-04-106.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isri2004/CMU-ISRI-04-106.pdf

75

Conference Administration and Compliance (pp. 53-82). Washington, DC. https://iwp-

koeln.org/wp-content/uploads/Proceedings_IRS_Conference_2010.pdf#page=162

Epstein, J. M. & Axtell, R. (1996). Growing artificial societies: Social science from the bottom

up. Brookings Institution Press.

Festinger, L. (1954). A theory of social comparison processes, Human Relations, 7(2), 117-140.

https://doi.org/10.1177/001872675400700202

Festinger, L. (1957). A theory of cognitive dissonance. Row, Peterson.

Friedkin, N. (1998). A structural theory of social influence, Cambridge University Press.

Gardner, M. (1970, October). Mathematical Games - The Fantastic Combinations of John

Conway's New Solitaire Game 'Life'. Scientific American, 223, 120–123.

https://doi.org/10.1038/scientificamerican1070-120

Giddens, A. (1986). The constitution of society: Outline of the theory of structuration. University

of California Press.

Hirshman, B. R., Birukou, A., Martin, M. K., Bigrigg, M. W., & Carley, K. M. (2008). The

impact of educational interventions on real & stylized cities. (Technical Report CMU-ISR-

08-114). Pittsburgh, PA, USA: Carnegie Mellon University, School of Computer Science,

Institute for Software Research. http://reports-archive.adm.cs.cmu.edu/anon/isr2008/CMU-

ISR-08-114.pdf

Hirshman, B. R., Carley, K. M., & Kowalchuck, M.J. (2007a). Loading networks in Construct.

(Technical Report CMU-ISRI-07-116). Pittsburgh, PA, USA: Carnegie Mellon University,

School of Computer Science, Institute for Software Research. http://reports-

archive.adm.cs.cmu.edu/anon/isri2007/CMU-ISRI-07-116.pdf

Hirshman, B. R., Carley, K. M., & Kowalchuck, M.J. (2007b). Specifying agents in Construct.

(Technical Report CMU-ISRI-07-107). Pittsburgh, PA, USA: Carnegie Mellon University,

School of Computer Science, Institute for Software Research. http://reports-

archive.adm.cs.cmu.edu/anon/isri2007/CMU-ISRI-07-107.pdf

Joseph, K., Carley, K. M., Filonuk, D., Morgan, G. P., & Pfeffer, J. (2014). Arab Spring: From

newspaper. Social Networks and Mining, 4, 177. https://doi.org/10.1007/s13278-014-0177-5

Joseph, K., Morgan, G. P., Martin, M. K., & Carley, K. M. (2014). On the coevolution of

stereotype, culture, and social relationships: An agent-based model. Social Science Computer

Review. 32(3), 295–311. https://doi.org/10.1177/0894439313511388

Kim, B. (2001). Social constructivism. In M. Orey (Ed.), Emerging Perspectives on Learning,

Teaching, and Technology. http://epltt.coe.uga.edu/

Knoeller, J. (2013). Analyzing job/machine matches using condor_q-analyze [PowerPoint

slides]. Paradyn/HTCondor Week 2013:

https://research.cs.wisc.edu/htcondor/HTCondorWeek2013/presentations/KnoellerJ_QAnaly

ze.pdf

Krackhardt, D., & Carley, K. M. (1998). A PCANS model of structure in organizations. In

Proceedings of the 1998 International Symposium on Command and Control Research and

Technology (pp. 113-119). Vienna, VA: Evidence Based Research.

https://iwp-koeln.org/wp-content/uploads/Proceedings_IRS_Conference_2010.pdf%23page=162
https://iwp-koeln.org/wp-content/uploads/Proceedings_IRS_Conference_2010.pdf%23page=162
https://doi.org/10.1177%2F001872675400700202
https://doi.org/10.1038/scientificamerican1070-120
http://reports-archive.adm.cs.cmu.edu/anon/isr2008/CMU-ISR-08-114.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isr2008/CMU-ISR-08-114.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isri2007/CMU-ISRI-07-116.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isri2007/CMU-ISRI-07-116.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isri2007/CMU-ISRI-07-107.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isri2007/CMU-ISRI-07-107.pdf
https://doi.org/10.1007/s13278-014-0177-5
https://doi.org/10.1177/0894439313511388
http://epltt.coe.uga.edu/
https://research.cs.wisc.edu/htcondor/HTCondorWeek2013/presentations/KnoellerJ_QAnalyze.pdf
https://research.cs.wisc.edu/htcondor/HTCondorWeek2013/presentations/KnoellerJ_QAnalyze.pdf

76

Kwak, H., Moon, S., & Lee, W. (2012). More of a Receiver Than a Giver: Why Do People

Unfollow in Facebook?. Proceedings of the International AAAI Conference on Web and

Social Media, 6(1). https://ojs.aaai.org/index.php/ICWSM/article/view/14296

Laird, J. (2019). Soar Cognitive Architecture. MIT Press.

Manis, J. G., & Meltzer, B. N. (1978). Symbolic interaction: A reader in social psychology.

Allyn & Bacon.

MapReduce. (2020, 3 December). In Wikipedia.

https://en.wikipedia.org/w/index.php?title=MapReduce&oldid=992047007

Moon, I.-C., & Carley, K. M. (2007). Modeling and simulation of terrorist networks in social and

geospatial dimensions, IEEE Intelligent Systems, 22(5), 40-49.

https://doi.org/10.1109/MIS.2007.91

Terna, P. (1998). Simulation Tools for Social Scientists: Building Agent Based Models with

SWARM. Journal of Artificial Societies and Social Simulation, 1(2).

http://jasss.soc.surrey.ac.uk/1/2/4.html.

Ren, Y., Carley, K., & Argote, L. (2006). The contingent effects of transactive memory: When is

it more beneficial to know what others know? Management Science, 52(5), 671-682.

https://doi.org/10.1287/mnsc.1050.0496

Salancik, G. R., & Pfeffer, J. (1978). A social information processing approach to job attitudes

and task design. Administrative Science Quarterly, 23(2), 224-253.

https://doi.org/10.2307/2392563

Schelling, T. C. (1978). Micromotives and Macrobehavior, Norton.

Schelling, T. C. (1971). Dynamic models of segregation. Journal of mathematical sociology 1.2,

143-186. https://doi.org/10.1080/0022250X.1971.9989794

Schmerl B., Garlan D., Dwivedi V, Bigrigg M. W., and Carley K. M. 2011. SORASCS: a case

study in soa-based platform design for socio-cultural analysis. In Proceedings of the 33rd

International Conference on Software Engineering (ICSE '11) 643–652.

https://doi.org/10.1145/1985793.1985883

Schreiber, C., & Carley, K. M. (2003). The impact of databases on knowledge transfer:

Simulation providing theory. In 2003 NAACSOS Conference Proceedings, Pittsburgh, PA.

https://www.researchgate.net/publication/228430691_The_impact_of_databases_on_knowle

dge_transfer_Simulation_providing_theory_2003_NAACSOS_conference_proceedings

Schreiber, C., & Carley, K. M. (2007). Agent interactions in Construct: An empirical validation

using calibrated grounding. In 2007 BRIMS Conference Proceedings, Norfolk, VA.

https://www.researchgate.net/publication/228725767_Agent_interactions_in_Construct_An

_empirical_validation_using_calibrated_grounding

Schreiber, C., Singh, S., & Carley, K. M. (2004). Construct-A multi-agent network model for the

co-evolution of agents and socio-cultural environments. (Technical Report CMU-ISRI-04-

109). Pittsburgh, PA, USA: Carnegie Mellon University, School of Computer Science,

Institute for Software Research. http://reports-

archive.adm.cs.cmu.edu/anon/isri2004/abstracts/04-117.html.

https://ojs.aaai.org/index.php/ICWSM/article/view/14296
https://en.wikipedia.org/w/index.php?title=MapReduce&oldid=992047007
https://doi.org/10.1109/MIS.2007.91
http://jasss.soc.surrey.ac.uk/1/2/4.html
https://doi.org/10.1287/mnsc.1050.0496
https://doi.org/10.2307/2392563
https://doi.org/10.1080/0022250X.1971.9989794
https://doi.org/10.1145/1985793.1985883
https://www.researchgate.net/publication/228430691_The_impact_of_databases_on_knowledge_transfer_Simulation_providing_theory_2003_NAACSOS_conference_proceedings
https://www.researchgate.net/publication/228430691_The_impact_of_databases_on_knowledge_transfer_Simulation_providing_theory_2003_NAACSOS_conference_proceedings
https://www.researchgate.net/publication/228725767_Agent_interactions_in_Construct_An_empirical_validation_using_calibrated_grounding
https://www.researchgate.net/publication/228725767_Agent_interactions_in_Construct_An_empirical_validation_using_calibrated_grounding
http://reports-archive.adm.cs.cmu.edu/anon/isri2004/abstracts/04-117.html
http://reports-archive.adm.cs.cmu.edu/anon/isri2004/abstracts/04-117.html

77

Simon, H. A. (1957). Administrative behavior: A study of decision-making processes in

administrative organization (2nd ed.). Macmillan.

Stryker, S. (1980). Symbolic Interactionism: A social structural version. Benjamin Cummings.

Tsvetovat, M., & Carley, K. M. (2004). Modeling complex socio-technical systems using multi-

agent simulation methods. Künstliche Intelligenz, 18(2), 23-28.

http://www.casos.cs.cmu.edu/publications/working_papers/tsvetovat_2004_modeling.pdf

Wegner, D. M. (1987). Transactive memory: A contemporary analysis of the group mind. In B.

Mullen, G. R. Goethals (Eds.) Theories of Group Behavior (pp. 185-205). Springer.

https://doi.org/10.1007/978-1-4612-4634-3_9

http://www.casos.cs.cmu.edu/publications/working_papers/tsvetovat_2004_modeling.pdf
https://doi.org/10.1007/978-1-4612-4634-3_9

78

Appendices

Appendix A A History of Construct

Construct is the embodiment of constructuralism, a mega-theory which states that the socio-

cultural environment is continually being constructed and reconstructed through individual cycles

of action, adaptation, and motivation. Many social science theories and findings are part of the

constructural theoretical approach including structuration theory (Giddens, 1986), social

information processing theory (Salancik & Pfeffer, 1978), symbolic interactionism (Manis and

Meltzer, 1978; Stryker, 1980), social influence theory (Friedkin, 1998), cognitive dissonance

(Festinger, 1957), social constructivism (Kim, 2001), and social comparison (Festinger, 1954). In

addition, several cognitive processes are embedded such as transactive memory (Wegner, 1987).

In 1990, research done by Kathleen M. Carley on group stability initiated early model designs

for Construct. In her paper, Group Stability: A socio-cognitive approach, she created a socio-

cognitive model based on nonstructural theory to predict changes in interaction patterns among

workers in a tailor shop in Zambia (Carley, 1990). The model tested behaviors that occurred on

individuals, such as social change or stability changes that were derived from interaction, as well

as the exchange of information between the workers. The resulting observation and analysis of

these behaviors provided an explanation for why the workers were able to go on strike successfully

after an aborted first strike. The first basic principle of the model is that in every social group, there

are facts within the group that have the potential to be learned by members in the group.

Information can be broken down into individual facts, which can then be measured quantitatively

for a social group. The second basic principle of the model states that there is a probability that

certain individuals will interact with one another and exchange facts, which then leads to shared

knowledge. The third basic principle states that similar individuals who share common knowledge

are more likely to interact. This implies that individuals consider how much in common they have

with others before they choose to interact and communicate information. The combination of these

three principles leads to the interaction/knowledge cycle, which is what Construct is designed to

simulate. This model initially takes a description of a particular society in terms of culture and

structure and predicts the ways in which the society can evolve. With these concepts in place, the

Construct model continued to evolve.

With advances in computing throughout the 1990’s, the Construct model gained more

opportunities and capabilities for real world application. The ability to process large amounts of

data to predict outcomes on large, scaled populations was critical in construct’s development. One

of the key developments for the Construct model computationally was research done on knowledge

transfer, and its effect on an organization or social group. In 2003, Schreiber and Carley explored

database technology and its support of knowledge transfer. Virtual experiments using the construct

model were run using two group conditions, task complexity and experience, to examine how task

and referential data types differ when simulating knowledge transfer (Schreiber & Carley, 2003).

Transactive memory is also represented by the model to incorporate perception of other’s

79

knowledge in the social group. Each agent in the model is assigned task and transactive knowledge,

which are then represented by task databases and referential databases (Schreiber & Carley, 2003).

The virtual experiment showed that these databases influence task complexity as well as

experience, and that knowledge transfer can be represented in different forms to effectively

simulate transfer within an organization. Task data was shown to be most useful for knowledge

transfer of simple to moderate level tasks, while referential data was shown to be more useful for

complex tasks.

In 2004 Schreiber, Singh, and Carley, described a more complex version of the original

Construct-TM model. In addition to having the ability to interact with other human agents, in this

model agents could interact with objects that contain information, such as a book or an

advertisement. Agents were given several types of capabilities and limitations; examples included

control over the ability to communicate and receive information (Schreiber et al., 2004). The

number of agent groups was limited to 3 and the number of agents limited to 101 (Schreiber 2004).

The interaction mechanism allowed agents to interact based on proximity, perception of others,

referrals, access to information, and the ability of forgetting. Knowledge was represented as binary

strings, which determined an agent’s decision as well as perception of other agents’ knowledge.

Knowledge was limited to 500 facts and up to 25 tasks were assigned for each particular knowledge

bit.

New mechanisms for belief were abandoned, several different approaches for adding in

different communication logics were added, and new telecommunication technologies. The ability

to specify event histories in external scripts and new communication regimes supported the ability

to model taxpayer behavior (Carley & Maxwell, 2006). Geo-proximity modeling was added to

support assessment of terror groups (Moon & Carley, 2007). Collectively these changes and others

made the entire system more robust and more powerful at modeling the human condition. At this

point, the entire system was refactored, thereby increasing maintainability and speed. The modern

system is more extensive and can support many more agents and types of communication

technologies such as email, books, news, phone, call-centers, lectures, billboards, web pages and

so on. This system was then used to assess social change (Carley et al., 2009) and non-compliance

(Carley et al, 2010).

The next major innovation was the incorporation of social intelligence. The agents now

perceived their social network, constrained behavior based on socio-cognitive constraints on

network formation, thus focusing on their local sphere of influence (Joseph, Morgan et al., 2014).

This made it possible to increase the size of the populations that could be modeled, increased the

speed of processing, and increased the realism of the results. Memory usage was now

approximately linear with the number of agents.

Meanwhile Construct was more tightly integrated with ORA. The toolchain, linking AutoMap

(later NetMapper), ORA and Construct, meant that the user could go from text mining to the

extraction of networks, to simulation. This process supports model reuse and reduces time to model

large populations. It also means that models could be more easily instantiated with real world data.

80

This was used to assess revolutionary activity during the Arab Spring, and so to predict

revolutionary behavior given changes in what was covered in the news (Joseph, Carley, et al.,

2014).

In 2020, Construct-TM returned to its original name of Construct with many of the components

that were tied into one model, compartmentalized into separate models. Along with utilizing

default values, the overall complexity for new users was drastically reduced. Many of the plethora

of input options including an in-string scripting language and output routines were removed in

place of an Application Programming Interface (API). The increase in popular and accessible

scripting languages like Python for data analysis, removes the necessity this extra complexity. This

decrease in complexity allows for a lower barrier of entry for those wishing to use the software.

Another critical advance is the utilization of a network data structure that can be dense or sparse

along a dimension depending on the user’s needs. The ability to freely decide whether to sacrifice

memory space to increase speed, or sacrifice speed in exchange for less memory space used allows

users far more control and thus access to much larger simulations than previous possible.

These modifications allowed for the addition of a social media model to model medias such as

Facebook and Facebook. These models simulate the actual media structure using events and feeds

rather than using a proxy for transmitting the contents of tweets and posts. In addition, a

mechanism was added to allow others to display their trust in a piece of knowledge. For example,

I trust the statement “The earth is round” or I mostly distrust the statement “This person is

innocent”. Finally, the capability was implemented using the Construct API to allow custom social

medias to be created as well as customization of how the participating agents function in the

existing or custom social media models.

Appendix B Construct in High Performance Computing (HPC)

Environments

In many ways, the resource we are concerned when we do simulation shifts from the person-

hours necessary to complete surveys and in-depth interviews to computational complexity in both

time and space. In particular, the goal is to be able to complete a large-scale simulation project

with the idea of “single-click” from starting the simulation through result generation, and with an

implementation that allows us to quickly tweak simulation parameters and rerun all simulations.

To understand the difficulties associated with simulation in a large-scale project, we now

present the scenario we faced in a previous experiment, described in more detail in Carley and

Maxwell (2006). In this project, we were faced with approximately 2,000 runs, each of a

population of 4,000 agents, along with their attributes, their initial knowledge, and the associated

social network. This model, perhaps one of the most complex social simulation models run in

Construct, took nearly five hours per run. Thus, the sequential cost of running these simulations

for a single researcher on a single processor is just about enough time for a research grant to expire.

As technology has advanced though this limitation has been relieved. In this section, we detail

81

such innovations for the interested user, and then give examples of how to utilize the tools for HPC

environments employed at CASOS.

The first innovation, of course, is the ability for computers to talk to each other. This allows us

to use a single terminal to run simulations on other computers at our disposal and have them return

the results. The second innovation was the development of multi-core processors and computers

with multiple processors. Because Construct, by default, runs on a single core of a processor, we

can not only run our simulations on other computers, but run multiple simulations on each of them

at the same time, independently of each other. The computing power of our center is likely better

than most settings, but by no means ideal. Upon the running of simulations for Carley and Maxwell

(2006), our center possessed 234 processor cores upon which simulation runs could be done,

though many of these cores were being intermittently used by other members of our research

center.

The final innovation of computer science, the MapReduce framework (Apache Software

Foundation, 2019; MapReduce, 2020;), answers the question of how we can “black box” both the

distribution of simulations and the coalition of their output to various machines that can be

potentially interrupted at any time. In its most basic definition, the MapReduce framework “maps”

out simulations to different machines, ensuring in some way that we will receive output from each

machine, and “reduces” all our output to a single format which we can specify.

Several open-source packages exist to implement the MapReduce framework on computers

that researchers have available to them. Importantly, such a framework allows the researcher to be

ignorant of the number of processors he or she has available – the MapReduce concept works in

the same way (though with obvious time increases) on a single core as it does on the millions of

cores used by companies such as Google. We use the HTCondor (formerly Condor) High

Throughput Computing (HTC) software (https://research.cs.wisc.edu/htcondor/) to connect

machines in our center, and their DAGMan (Directed Acyclic Graph Manager)

(https://research.cs.wisc.edu/htcondor/dagman/dagman.html) application, along with some

straightforward scripting, to implement the MapReduce framework.

The MapReduce framework, along with some well-known interventions, allow our workflow

to have two vital properties. First, the given workflow maximizes the resources available to the

researcher. A problem which could have naively taken, even under ideal computing circumstances

on a single machine, months to complete, has been reduced to a few days at most. Indeed, a

researcher need not even obtain more machines, as with the advent of cloud computing, they can

access technologies that hide all implementation details of the MapReduce framework and give

cheap access to an unlimited supply of machines, such as Amazon’s EC2 cluster. Indeed, workflow

technologies like SORASCS (Schmerl 2011) are rapidly evolving to allow full workflow to be

completed without a researcher having access to anything other than a single computer and the

Internet. If the researcher does have a large supply of machines available, such speedup has been

achieved with free, open-source, easy-to-install technologies.

https://research.cs.wisc.edu/htcondor/
https://research.cs.wisc.edu/htcondor/dagman/dagman.html

82

Having explained, at a high level, the concepts incorporated in running Construct in parallel

on multiple machines, it is now useful to describe in more detail how such tools can be utilized.

The first objective, of course, is to obtain some way of submitting Construct runs to multiple

machines. Here, we will discuss the HTCondor cluster framework implemented at CASOS. The

first step, of course, is to install HTCondor onto machines in your cluster- this step is not covered

here but is described in detail in the HTCondor setup manual, located at

https://htcondor.readthedocs.io/en/latest/index.html.

Once installed properly, a machine with HTCondor installed on it and a user with submission

privileges from that machine can submit jobs from that machine onto the cluster in a series of

simple steps. First, the user should set up a CSV file with the parameters indicating the conditions

of the experiment they would like to have changed. From here on out, we will refer to this file as

the conditions file, to represent the fact that it holds all the conditions necessary for the entire

experiment. We will differentiate this later with a parameter file, which holds the conditions

necessary to run a single cell of the experiment. In a trivial experiment, where the goal is to test

an effect on different population sizes, the conditions file would look something like this:

 AgentSize,10,100,100

The first column of the file simply labels the condition being changed - though this is not

necessary (we will never tell Construct to look at this value), it is naturally useful in keeping track

of which lines of your parameters file refer to which condition. Once this parameter file has been

specified, we need some way to submit (in this case) three different runs to multiple machines via

HTCondor. To do so, we need to complete three further steps.

The first step is to create three different parameter files - one for each of the different

conditions. This can be done using your favorite scripting language. Below, we give a simple

example, in Python, which reads a conditions file and generates a parameter file (recall that a

parameter file is simply a set of conditions necessary to run a single experiment) in a directory

whose name specifies the conditions for that directory. (Note that if you are not comfortable doing

such programming, for small experiments, it is quite easy to do this step manually).

import csv, itertools, os

with open("conditions_file.csv", "r") as condFile:

 reader = csv.reader(condFile)

 values = []

 conditionTitles = []

 for line in reader:

 conditionTitles.append(line[0])

 values.append([val for val in line[1:] if val != ""])

 experimentalSet = list(itertools.product(*values))

 numVals = len(conditionTitles)

 for experiment in experimentalSet:

 condsString = '_'.join(str(i) for i in experiment)

 os.mkdir(condsString);

 with open(os.path.join(condsString,"params.csv"), "w") as paramFile:

 for i in range(numVals):

 paramFile.write(conditionTitles[i]+ "," + experiment[i] + '\n')

https://htcondor.readthedocs.io/en/latest/index.html

83

To run this script, place it in the same directory as your conditions file, name the conditions

file “conditions_file.csv”, and use Python (this example was written for Python version 2.7) to run

the script. For information on how to download Python and run a script, consult the Python

documentation at https://www.python.org/.

Assuming you use the same methodology suggested in the script above, you will now have the

following in the directory in which you placed your conditions file and ran the script: your

conditions file (conditions_file.csv), the Python script (your_naming_of_python_script_above.py)

and three Folders 10, 100, and 100, each with one file called params.csv. The second step to submit

to HTCondor is to develop your model (i.e., the XML file described above) and to allow the model

to read in as a parameter from a CSV file the conditions you are interested in. In this case, we

would change the “agent_count” variable to be instantiated as follows:

<var name="agent_count" value="readFromCSVFile[“params.csv”,0,1]/>

As we know from the above sections, this tells Construct to read the agent_count variable from

the first (zeroth) row and the second (zero-indexed) column of the csv file “params.csv”. Once we

have done this, we can add our XML file to the directory we are working in (i.e., at the same level

as conditions_file.csv). Note that this implementation will only require us to have a single model

file, which is desirable with respect to person-hours required to change the model and the amount

of space needed to store results.

The final step is to create a submission file that HTCondor will use. Though we do not detail

in depth the details of HTCondor submission, below is a file that, placed at the same level of the

directory as your XML model file, will allow you to run the simple experiment described here.

Note that you should replace YOUR_MODEL_FILE_NAME.xml with the name of your XML file

and include a construct executable with the name “Construct.exe” in your directory as well.

universe = vanilla

requirements = ((ARCH == "INTEL" || ARCH=="X86_64") &&

((OPSYS == "WINNT51") ||(OPSYS == "WINNT52") || (OPSYS == "WINNT61") ||

(OPSYS == "WINDOWS"))

should_transfer_files = YES

when_to_transfer_output = ON_EXIT

executable = Construct.exe

transfer_executable = true

notification = Never

arguments = YOUR_MODEL_FILE_NAME.xml

output = out_setup_to_construct.txt

error = err_setup_to_construct.txt

log = condor.log

transfer_input_files = params.csv

initialdir = 10

queue

initialdir = 100

queue

initialdir = 1000

queue

https://www.python.org/

84

The file, generally, tells HTCondor where to find your executable and model file, and then to

run three times in each of your experimental directories, using the parameter file within that

directory. This file also contains requirements for what operating system to run on and specifies

that all files written out by Construct (e.g., in ReadGraph operations) should be transferred back

to your machine after they are run. Putting the text above into a file called

“condor_submission.sub” and assuming the PATH variable on your machine includes the

HTCondor executables, opening a command prompt, changing to the directory we have discussed

here, and typing in the following will run the given experiment.

THIS_DIRECTORY> condor_submit condor_submission.sub

You can use other HTCondor programs, such as condor_q to check the status of your runs

- for full details, see the Condor manual (https://htcondor.readthedocs.io/en/latest/man-

pages/condor_q.html) and (Knoeller, 2013).

Appendix C Construct in Research Literature

Below are some brief descriptions of projects that used Construct. Links to the full publications

and project sites are available in the References section.

Predicting Intentional and Inadvertent Non-compliance

By: Kathleen M. Carley, Dawn C. Robertson, Michael K. Martin, Ju-Sung Lee, Jesse L. St.

Charles, Brian R. Hirshman (Carley et al., 2010)

Models for predicting intentional and inadvertent errors on tax returns were developed using

two approaches: the first was metamodeling using literature on errors, and the second was using

statistical machine learning to derive a model from tax audits. The reliability of the models is

dependent on the amount of data, the quality of the data, and whether the learning techniques are

supervised or unsupervised. IRS audit data does have some reliability issues; the taxpayer’s

motives are unknown at the time of filing, and the standard is high for proving intentional

misreporting. The models take these biases into account through an ensemble modeling approach.

The methods shown in this study are useful in creating a predictive model of taxpayer behavior.

Agent Interactions in Construct: An Empirical Validation using Calibrated Grounding

By: Craig Schreiber, Kathleen M. Carley (Schreiber & Carley, 2007)

Schreiber and Carley conducted a validation study for Construct. The focus of the study was

on the ability of Construct to produce an initial state of agent interactions which resemble how a

real-world network communicates. The calibrated grounding technique was used to validate the

model. Construct was shown to produce a valid initial state of interactions.

https://htcondor.readthedocs.io/en/latest/man-pages/condor_q.html
https://htcondor.readthedocs.io/en/latest/man-pages/condor_q.html

85

Computational organization science: A new frontier

By: Kathleen M. Carley (Carley, 2002)

According to synthetic adaptation, any entity that is composed of intelligent, adaptive, and

computational agents is also an intelligent, adaptive, and computational agent. Organizations are

inherently computational because of synthetic adaptation. The behavior of groups and

organizations can be explained by using multi agent computational models that are composed of

intelligent adaptive agents. Construct is an example of such a model; by combining a network with

a multi-agent approach, the model becomes more realistic. A series of virtual experiments use this

model to show the power of this approach for analysis of societies and organizations.

A Dynamic Network Approach to the Assessment of Terrorist Groups and the Impact of

Alternative Courses of Action

By: Kathleen M. Carley (Carley, 2006)

Dynamic network analysis is based on the collection, analysis, understanding, and prediction

of dynamic relations amongst various entities such as actors, events, and resources, and their

impact on individual and group behavior. Using dynamic network analysis, terrorist groups were

examined as complex dynamic networked systems that evolve over time. The use of dynamic

network analysis tools to analyze a terrorist group is demonstrated. Techniques that are

demonstrated include identifying spheres of influence amongst actors, determining emergent

leaders in the network, and how using network metrics can assess the impacts of various actions

within the group.

Modeling Complex Socio-technical Systems using Multi-Agent Simulation Methods

By: Maksim Tsvetovat, Kathleen M. Carley (Tsvetovat & Carley, 2004)

To study complex social and technological systems, underlying psychological and sociological

principles, as well as communication patterns and technologies within these systems must be

measured and understood. The creation of high-fidelity models of these systems requires a

combination of analytical models with empirically grounded simulation, to form multi agent

systems. These multi agent systems incorporate learning algorithms as well as other social network

phenomena. The power of these methods are demonstrated by creating a multi-agent network

model of networks such as terrorist organizations. This ultimately creates a generalizable and

valuable process for analyzing complex social systems, by using AI algorithms combined with an

analytic approach.

On the Coevolution of Stereotype, Culture, and Social Relationships: An Agent-Based

Model

By: Kenneth Joseph, Geoffrey P. Morgan, Michael K. Martin, Kathleen M. Carley (Joseph,

Morgan, et al., 2014)

86

The theory of constructuralism describes how shared knowledge, representative of cultural forms,

develops between individuals through social interaction. Constructuralism argues that through

interaction and individual learning, the social network (who interacts with whom) and the

knowledge network (who knows what) coevolve. In the present work, we extend the theory of

constructuralism and implement this extension in an agent-based model (ABM). Our work focuses

on the theory’s inability to describe how people form and utilize stereotypes of higher order social

structures, in particular observable social groups and society as a whole. In our ABM, we formalize

this theoretical extension by creating agents that construct, adapt, and utilize social stereotypes of

individuals, social groups, and society. We then use this model to carry out a virtual experiment

that explores how ethnocentric stereotypes and the underlying distribution of culture in an artificial

society interact to produce varying levels of social relationships across social groups. In general,

we find that neither stereotypes nor the form of underlying cultural structures alone are sufficient

to explain the extent of social relationships across social groups. Rather, we provide evidence that

shared culture, social relations, and group stereotypes all intermingle to produce macrosocial

structure.

	Table of Figures
	Table of Tables
	Introduction
	Agent Based Models
	Introduction to the Report
	Construct Versions and This Report
	Conventions Used in This Document
	Organization of This Overall Report

	A Motivating Example
	Core Mechanisms
	A Scenario

	PART ONE: Quick-Start Guide
	The Input Deck
	The Objects
	Agents
	Knowledge
	Time

	Object Relations as a Network
	The Knowledge Network
	The Interaction Sphere

	Outputs
	Models and Construct Program Flow
	Initialize Function
	Think Function
	Update Function
	Communicate Function
	Clean Up Function
	Models

	Thoughts on Experimentation

	PART TWO: Construct GUI
	Quick Start Tutorial
	Adding Complexity

	PART THREE: Construct in Detail
	Parameters
	Seed
	Verbose Initialization
	Verbose Runtime
	Working Directory
	Custom Library

	Nodes
	Agent Node set
	Knowledge Node set
	Medium Node set
	Time Node set
	Other Node sets
	Node attributes

	Networks
	Network Generators
	CSV Generator
	Perception Generator
	Random Binary Generator
	Random Uniform Generator
	DyNetML Network Generator

	Interaction Models
	Standard Interaction Model
	Knowledge Transactive Memory Interaction Model
	Belief Interaction Model
	Task Interaction Model
	Grand Interaction Model
	Location Interaction Model

	Modification Models
	Forgetting Model
	Emotion Model
	Knowledge Learning Difficulty Model
	Mail Model
	Subscription Model
	Trust Model

	Social Media Models
	Twitter Model
	Facebook Model
	Social Media Models with Followers
	Twitter Follower Model
	Facebook Follower Model
	Social Media Models with Emotions
	Twitter Emotion Model
	Twitter Emotion Follower Model
	Facebook Emotion Model
	Facebook Emotion Follower Model

	Output
	CSV
	DyNetML
	Messages
	Media Events

	PART FOUR: Construct API
	Creating Custom Models
	Creating Custom Output
	Creating Custom Social Media Users
	GUI Integration
	Full Control of a Custom Construct Construction

	References
	Appendices
	Appendix A A History of Construct
	Appendix B Construct in High Performance Computing (HPC) Environments
	Appendix C Construct in Research Literature

