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Abstract 

This technical report provides users and researchers information on the configuration and use 

of Construct version 5.4.X. Construct is the CASOS’s agent-based simulation software for 

dynamic network and information diffusion in complex socio-technical systems. The report 

provides a quick start guide to Construct, a detailed discussion of its configuration, and use through 

a sample problem and virtual experiment configuration exemplar, and a set of appendices with 

additional useful information. This document is both an introduction to Construct for casual 

modelers as well as a reference guide for researchers, modelers, and simulationists. 
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Construct User Guide 

Introduction 

Construct is a software framework enabling agent-based network-centric simulations. 

Construct’s primary model, the Standard Interaction Model can be used to examine the co-

evolution of agents and the socio-cultural environment (Carley, 1990, 1991). Construct enables 

easy examination of the evolution of networks and the processes by which information moves 

around a social network (Carley, 1995; Hirshman et al., 2007a, 2007b). Construct’s models capture 

dynamic behaviors in groups, organizations, and populations with different cultural and 

technological configurations (Schreiber et al., 2004).  Groups and organizations are complex 

systems and the variability of human, technological, and organizational factors among such 

systems are captured through heterogeneity in information processing capabilities, knowledge, and 

resources. Multiple non-linearities in the systems generate complex temporal behavior on the part 

of the agents.  

Constructuralism is a mega-theory that states that the socio-cultural environment is continually 

being constructed and reconstructed through individual cycles of action, adaptation, and 

motivation. This theory is at the heart of Construct’s design. Many social science theories and 

findings are part of the constructural theoretical approach including structuration theory (Giddens, 

1986), social information processing theory (Salancik & Pfeffer, 1978), symbolic interactionism 

(Manis & Meltzer, 1978; Stryker, 1980), social influence theory (Friedkin, 1998), cognitive 

dissonance (Festinger, 1957), and social comparison (Festinger, 1954). In addition, several 

cognitive processes are embedded such as transactive memory (Wegner, 1987). Construct allows 

for these theories to coexist and operate while minimizing potential conflicts. 

Construct has several advantages as an agent-based model framework. First, the experiment 

designer has complete control over a wide range of inputs used for interaction over the course of 

a run and facilitates as much customization as theories allow. Second, Construct contains a suite 

of agent models, which enable diverse socio-technical conditions to be modeled. Third, general 

agent characteristics can be easily configured a priori using empirical data or they can be based 

on hypothetical data. To use Construct, the researcher specifies both the relevant agents (Hirshman 

et al., 2007b) and the relevant networks (Hirshman et al., 2007a). Additional information about 

the Construct and its various models can be found elsewhere (Carley 1991; Hirshman et al., 

2007b). 

Agent Based Models 

One of the most used and intuitive approaches to Social Networking Services (SNS) is Agent 

Based Models (ABM). ABMs employ a bottom-up approach in which a set of heterogeneous 
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agents, their behavioral properties, the “rules” of interaction, the environment, and the interaction 

topology that the agent populates is explicitly modeled. Complex social behavior emerges from 

simple individual level processes. In ABMs, many computational entities, with varying levels of 

cognitive complexity, interact with one another in a manner similar to the real-world entities they 

represent.  These agents are simplified versions of their real-life counterparts (e.g., ants, people, 

robots, or groups), only retaining elements salient to the phenomena being studied. Agents interact 

in a virtual world and can be constrained and enabled by the network position they occupy. 

In most ABMs, the topology of the virtual world is a simple 2-D grid and agents form 

“networks” as they occupy the same or neighboring spaces or the agent’s network is prescribed as 

the set other agents within so many spaces of ego. Networks generated from grid-based interactions 

or defined in terms of grid-nearness tend not to have the same properties as true social networks, 

i.e., the distribution of ties, the method of tie formation and dissolution, and the relation of ties to 

physical space are not realistic. Most ABM toolkits support this type of grid-based modeling of 

the social topology. 

There is, however, a growing interest in and a growing number of ABMs where the agents 

exist and move in a socio-demographic or network topology rather than a grid topology. The 

Construct models are an example. In these models, the agents occupy a social network position 

defined in terms of which other agents the ego agent can interact with. In other words, rather than 

physical adjacency, social adjacency is used. This network topology may be static or dynamic. 

This latter type of model where agents exist in dynamic social networks rather than on grids is 

where most research on SNS is focused. This approach, referred to as agent-based dynamic-

network modeling, is the approach we found to be most valuable for modeling social networks and 

it is embodied in Construct. 

ABMs vary in how the environment is represented. This could be as simple as a single 

dimension or array where ego interacts with those other agents that are within so many squares left 

or right of ego. This is the case in Kaufman’s NK model. Traditionally, however, the environment 

was a grid and the agents interacted with other agents in and/or could move to those squares that 

surrounded them. Most early studies explored the relative impact of von Neuman (squares left, 

right, up, down of ego) or Moore (eight squares around ego) or extended Moore neighborhoods 

(squares within some distance of ego). In these traditional approaches, the structure of the social 

network is directly tied to the physical position of the agents. Examples of such models are the 

Game of Life (Gardner, 1970), the original Schelling segregation model (Schelling, 1971, 1978) 

and the more recent SugarScape models developed by Epstein and Axtell (1996). In general, it is 

difficult to get realistic social networks in this representation of the environment. Further, as early 

results showed, unless the grid is bent into a torus, the resultant social behavior is largely dictated 

by “edge effects”; i.e., restrictions on activity caused by being at the edge of the physical grid.  

More advanced models place agents in a socio-demographic space and separate the physical 

and the social space. In such models, very few have explicitly modeled the social network. 

Increasingly, however, researchers are incorporating more realistic network representations, such 
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as small-world, scale-free, or other types of network generators. The most advanced of these 

models are the dynamic-network ABMs in which the networks and the agents co-evolve (the first 

model of this type was Construct). In some cases, the models are instantiated with networks that 

are derived from real data. These models will often generate or import an appropriate graph before 

the simulation agents are initialized, and then assign each agent to a graph position when the 

simulation starts. Other models use a social network gathered from empirical studies. These 

networks have the advantage of being as realistic as possible but may potentially bias the 

simulation results due to the structure and nature of the particular social network gathered. 

Correctly specifying the topology of a social network in an agent-based model has important 

implications for the conclusions drawn. In modeling an adversary, it is valuable to use the social 

network of the adversarial group. 

The quality of social network modeling can have important effects on simulation outcomes. 

For instance, in the Construct’s Standard Interaction Model, the social network topology has a 

non-linear effect on knowledge diffusion rates in the system. Construct uses sophisticated agents 

that can interact and choose partners with which to exchange knowledge and belief. A stylized 

meta-network, which specifies the pattern of potential partners with which an agent can interact, 

can be imposed to limit the form of the evolved networks. Construct has been used to model 

adversarial encounters. Our results indicate that the most effective type of intervention depends on 

how the adversary is structured, e.g., Al Qaeda and Hamas have different structures and the same 

intervention, such as isolation of the top leader, in the two cases can lead to performance 

decrements in one and performance improvements in the other. 

Although frequently lumped together, ABMs vary widely in complexity and computational 

cost – some are extremely inexpensive (e.g., Swarm (Terna 1998)) and allow hundreds of 

thousands or even millions of agents to operate in the same simulation, while others are rather 

expensive and often require the support of an entire processor per agent (e.g., SOAR (Laird 2019) 

or ACT-R (Anderson 1993)). This increase in computational expense, however, is matched by 

construct validity to the actions of cognitively bounded humans: the least computationally 

expensive (per agent) simulations replicate the behavior of insects (specifically ants) while ACT-

R has been able to replicate the brain activation patterns of children solving algebra problems and 

SOAR has replicated fighter pilot operations in concert with human pilots. 

Although economics are an important consideration in picking an agent-based simulation, they 

should not be the only consideration; the specific phenomena of interest should impose its own set 

of criteria. For problems of traffic analysis or collision avoidance, swarm agents are particularly 

appropriate. However, in phenomena with significant cultural freight, such as those involving 

deception, leadership, participation in group activities, and/or compliance with group norms, these 

swarm-based technologies offer little useful insight to the policy analyst without additional 

(expensive) modification and incurring significant increases in computational cost. At the same 

time, not all group-based phenomena require the detail and expense imposed by high-fidelity 

models of individual agents. Construct, which can support hundreds and thousands of agents, 



4 

 

supports an appropriate middle ground. It also supports one of the only agent-based models which 

explicitly unites Herb Simon’s dual requirement of bounded rationality, that rationality should be 

bounded both cognitively, and socially (Simon, 1957). Most of the highest-fidelity models 

constrain interaction to explicit messages, if at all, and many work entirely in isolation from other 

agents. Construct, thus, is less expensive and yet more useful for studying group phenomena.  

A common query is to which specific theory of group behavior does Construct adhere? 

Construct does not subscribe to a specific theory of group behavior. Indeed, the question can reflect 

a fundamental misunderstanding of interesting modeling work – rather, the level at which a 

simulation is specifically coded/designed is its least interesting level of analysis. Analysis at the 

level in which a model is coded suggests merely how well the simulation programmers did their 

work, this is an important verification question, but not of practical application interest to model 

consumers. It is necessary, but not sufficient, for a model to be correctly coded. Instead, the more 

interesting question, available to be asked of agent-based simulations, is what are the larger 

implications with how these agents interact? We call this principle “emergence”, what larger 

phenomena “emerge” from the interactions of these modeled agents. Construct is, as previously 

said, an agent-based simulation, and thus represents a theory of individuals and how they choose 

to interact. The Standard Interaction model makes a claim based on research that people tend to 

interact with other people based on two competing drives. One, that people tend to interact with 

others because they believe they are similar (the drive for homophily), and two, that people tend 

to interact with others who they believe have valuable knowledge they do not have (the drive for 

knowledge expertise). Both of these human drives are common across various cultures.  

Emergent properties of the simulation, then, are much more interesting to the agent-based 

simulation modeler than the direct consequences of their modeling decisions. Based on agents 

interacting with others due to knowledge expertise and homophily, Construct models have been 

able to replicate many group-level behaviors found in people: the S-Shaped curve of diffusion, 

yes, but also that beliefs are more durable than the information used to support a belief. Construct 

has examined cultural norms in organizations, belief-changes in national decision-makers, and 

group stability. In practice, Construct is a valuable support for group-level behavioral theories 

because it provides an explanation rooted in individuals for the origin of these phenomena. These 

emergent properties, however, may not always be intuitive to the model consumer or model 

developer. At such points, it is important to recheck questions of verification, that some bug in the 

model process is not to blame for the errant results. But more interesting is when the model’s code 

is not in error, but the results are still surprising.  

Although not directly attributable to programming error, there may be other sources of 

surprising results that should be described. One, the model simulation is, at its core, not a 

sufficiently good model of the atomic primitive it represents; this is often the case when extending 

swarm agents beyond issues of traffic and navigation. Two, the experimental approach was not 

well matched to the empirical reality – if, for example, 75% of adults in the population are internet-

literate, but the model assumes that only 10% of the agents will receive information from internet 
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sources, the model will significantly underestimate the prevalence of information from internet 

sources, and there may be further cascading effects of that error. Three, the results of Construct’s 

outputs may simply not be well communicated. Relating accurately (and conservatively) the 

implications of models is itself a skill that must be polished. 

However, sometimes, the results are non-intuitive and yet none of these errors appears to be 

present. In such a case, this is the value and joy in modeling counter-factual scenarios – we can 

place our simulated humans in situations that do not exist and will never exist and be surprised and 

intrigued by how they behave. 

Introduction to the Report 

Construct Versions and This Report 

Construct is, like all but end-of-life software, undergoing continuing development in both its 

capabilities and its implementation. This guide is for Construct version 5.4.X which can 

downloaded on CASOS’s Construct Download page. Construct versions 5.5.X and later will be 

associated with an updated version of this user guide. Finally, experiment developers and designers 

should consider subscribing to the CASOS’s ORA Google Group for ad-hoc and peer-to-peer 

assistance as well as assistance from students, staff, and faculty of CASOS. 

Conventions Used in This Document 

Where feasible, this document quotes a provided example of a Construct experiment 

configuration file. The sample file can be seen in Section Thoughts on Experimentation, using the 

courier new font in a reduced font size. This report uses the following typeface conventions: 

Code snippets will also be written in the Courier New, 11 pt. text. These snippets are quotes 

from the demonstration input file. We will also frequently call the input file the input deck, or 

shorten the name to deck, throughout the document. The origins of this use of the word ‘deck’ will 

deliberately remain in the mists of our collective memory lest the authors prove how old they really 

are.  

Construct keywords, will also use the Courier New, 11 pt. font (the Code style in MS 

Word). Additionally, variables and network names will use the same style.  

  

A blue box and text inside the box indicates information the 

experiment developer and designer, researcher and simulationist should 

be particularly aware of when using Construct.  

http://www.casos.cs.cmu.edu/projects/construct/download.php
https://groups.google.com/g/ora-google-group


6 

 

We will reduce the extended list of potential audience members from “experiment developer 

and designer, researcher and simulationist” in most cases, to “researcher” and/or “simulationist” 

throughout the document. 

Egos and Alters are common referents in social science literature that we will use throughout 

this report. Their use simplifies establishing frames-of-reference and scoping of interaction 

possibilities. When we refer to a single agent, it will most often have the label of ego. When we 

refer to the agents or other entities that the ego is connected (in any sense of the word), they will 

most often have the label of alter or alters. Agents in the simulation not connected to an ego are 

beyond the scope of awareness of the ego, and do not directly affect the ego.  

Organization of This Overall Report 

The report has three main components and does not need to be read or referred to in front-to-

back sequence. The three parts are below: 

PART ONE: Quick-Start Guide is for a relatively quick progression from introduction to 

execution of Construct. 

PART TWO: Construct GUI is a guide to using the Construct graphical interface and allows 

users to run Construct without the need of command line inputs. 

PART THREE: Construct in Detail is an in-depth explanation of Construct, complex inputs 

and outputs and complex experiments. 

PART FOUR: Construct API details how to create custom models. 

Appendices holds additional useful sets of information ranging from the use of Construct in 

High Performance Computing (HPC) environments such as HTCondor to brief synopses of peer-

reviewed projects where Construct played a role. 

A Motivating Example 

One method of introducing a set of concepts and the application of those concepts to problem 

solving is by a motivating example. In this report, we adopt this method and present a motivating 

example for both the questions of interest (QoI) as well as an experimental configuration that can 

help answer the QoI.  

It is recommended before continuing that the reader contemplate on QoI they intend to answer 

using this work keeping in mind that Construct’s roots lie in social networks and information 

diffusion. Without well-defined QoI, it may be difficult to understand the necessity for many of 

the explanations this guide will go through. This motivating example will stay with this core 

capability and defer discussions of additional capabilities and experimental purposes to PART 

THREE: Construct in Detail. 

Core Mechanisms 
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As previously mentioned, Construct is a framework which can be seen in Figure 1. In this 

framework we have nodes, networks, models, input, and output. Construct’s primary function is 

to properly interface all these components together like the stairs and hallways in a house. Unlike 

a regular house however, Construct can expand, and contract as needed to facilitate an end user’s 

requests. Construct is able to handle an arbitrary number of node sets and networks and inputs for 

those areas. Construct is also able to handle one to an arbitrary number of models assuming there 

are no conflicts between models as well as many different types of output. The models and output 

however are limited to what is already built into Construct. 

 

Figure 1: A visualization of the Construct framework as a house. 

 

While Construct is a framework for agent-based simulations, the models built into Construct 

are where the magic happens. The Standard Interaction model is Construct’s signature model and 

the starting point for additional models and modifications. This model combines many different 

aspects such as decision making, technology restrictions, and information propagation. Agents 

make decisions about who to interact with, what information to transfer during an interaction, and 

which communication medium to use for that interaction. The communication mediums present 

technological limitations as mediums such as books, which are rich in information, but is only one 

way or face-to-face conversations, which happens instantaneously in both directions. Finally, 

when these interactions take place, the resulting information spread affects the decision making of 
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each agent such as the search for more exclusive information as an agent’s repertoire  expands. 

PART THREE: Construct in Detail goes over the specifics of this and other Construct models. 

A Scenario 

We, the researchers, are analysts that Acme, Inc. has hired to help Acme design two software 

development teams in a ‘clean room’ configuration. Acme wants the two teams to co-developing 

a product. Acme also wants structural mechanisms in place to control how much information flows 

between the two teams as a method to help reduce the probability of unintentional release of 

Acme’s intellectual property. One way of visualizing this scenario is in Figure 2. In this figure, we 

also call each team a cluster, aligning with the social network analysis literature when groups of 

entities are meaningfully connected to each other. 

 

Figure 2. A depiction of two ‘clean-room’ teams of product developers. 

In the figure above, possible questions of interest that are appropriate for the model to help 

forecast answers could be: 

Without direct modeling, is there any leak of knowledge from one team/cluster to the other? If 

so, how fast does the information flow? 

Assuming no friendship networks or other communication networks not modeled, how fast 

does specific knowledge or specific beliefs within each team spread? 

Assuming a requirement to have a controlled mechanism to support the teams passing limited 

information back-and-forth, to whom would such an intermediary best talk in each team for rapid 

spread of information or beliefs? 

Does either team have any organizational weak point that can be structurally overcome? 

After stability is reached within teams for knowledge saturation/diffusion, what kinds and how 

large are impacts of personnel turnover of various sizes and frequencies have on the group? How 

long, if at all, does the team take to return to pre-turnover levels for specific measures of interest? 
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These and other questions can be explored within the Construct framework. In Part 1, we will 

describe the entities and key relationships between those entities. The treatment in Part 1 is 

intended to be useful towards further orienting a potential model builder or a model consumer. 

Part 2 describes mechanisms at a high-level of detail and is suitable to act as a reference even to a 

regular user of Construct. 
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PART ONE: Quick-Start Guide 

This section is an introduction to core mechanisms of Construct and its Standard Interaction 

model, introduces three of the most important networks to understand, and suggests a set of 

experiments that may be of some interest to the model consumer. It is intended to provide an initial 

suggestion of how Construct may be useful to the model developer. More detail is provided in the 

second part of this report. At the end of this section a full example is provided.  

We begin this guide by providing a summary of key objects within Construct and provide 

examples of the various semantics between these key entities. We then describe, in more detail, 

the more precise semantics of three critical networks in the Standard Interaction model. Next, we 

show a suggestion of some experiments that could be done using only those key networks, 

referencing the motivating scenario. Finally, we go over how to include additional models into 

Construct and a high-level discussion of how models interact with each other.  

The Input Deck 

Construct is machine code which requires interpretation in order to properly interface with and 

give instructions to. The XML file format is the language of choice for interfacing with Construct. 

XML offers clearer labeling and easier viewing than Json at the cost of larger file sizes. This cost 

is offset as it is not expected that files will not be exceedingly large for submitting instructions to 

Construct. The following example shows some of the key concepts required to build the various 

components that will be used in this document. 

<book title=”To Kill a Mockingbird” author=”Harper Lee”> 

 <genre type=”Southern Gothic”/> 

 <genre type=”Bildungsroman”/> 

 <rating media=”Goodreads” value=”4.3”/> 

 <rating media=”Common Sense Media” value=”5”/> 

</book> 

In this example, an XML element is created to represent the book “To Kill a Mockingbird”. 

The overall object is a book, which defines the XML element’s name. All XML elements need to 

be terminated by a forward slash. In this case the book element has sub-elements and is terminated 

by </book> after all other sub-elements have been added. Each element has a set of attributes of 

the form [attribute_name]=”[attribute_value]”. Each attribute name must be unique. Sub-

elements are used to display multiple similar pieces of information. In this case, the book fits into 

multiple genres and has multiple media ratings. Construct does not have a strict requirement on 

the order of sub-elements, however for some components, slightly different results can be yielded 

by a reordering. 

 

 

The Objects 
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Construct organizes sets of objects into what are called node sets. Some examples are agents, 

knowledge, and time. A singleton example of each of these object classes is referred to 

(respectively) as an agent, knowledge bit, and a time step. Nodes are available globally in 

Construct and are used frequently in most areas of Construct. Below is an example of creating a 

node set. 

<nodeset name="my nodes"> 

 <node name=”node 1”> 

  <attribute name=”attribute 1” value=”value 1”/> 

  <attribute name=”attribute 2” value=”value 2”/> 

 </node> 

</nodeset> 

In this example, the node set is named “my nodes” and contains only one node. This node’s 

name is “node 1” and has two node attributes indicated by the two sub-elements. Node sets are 

required to contain at least one node. Required node attributes can vary based on the models used, 

which will be discussed below. 

Agents 

Agents are the most important class of objects in Construct’s model library. Typically, agents 

represent human-like entities, but researchers can also represent other types of entities such as 

sources of information (e.g., newspapers, radio programs, or television ads) and information 

technology (IT) systems (e.g., databases, data-stores).  

Agents have agency and make decisions based on input. Agents are typically treated as 

homogenous in that given the same inputs, all agents will perform a given action with the same 

probability as any other agents. The inputs themselves can give agents their identity and 

uniqueness. Because of this, most of an agent’s decision making comes from a general model 

which we discuss in later sections. While most models follow this methodology, other models can 

be created in which agents have fundamentally different decision logic. 

Knowledge 

A knowledge node represents information and any particular knowledge bit represented by a 

knowledge node typically represents a single atomic piece of information, such as “Sol is the name 

of the star at the center of our solar system”, or “Each water molecule is comprised of two hydrogen 

and one oxygen atom.” It is incumbent on a researcher to keep the stylized representation 

consistent in their experiments – one bit should not represent “How to pilot a 747-jumbo jet” while 

another bit represents ‘flight departed’, without proper modification to how those bits connect to 

the rest of the model. 

Time 

Many simulations will segment a timeline of events into many small slices referred to as time 

periods. These time periods are represented by a time node and indicate a specific point in time. 
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Beginning with the first time node to appear in the input, Construct will move from pointing to the 

current time node to next time node when a simulation cycle is completed. This continues until the 

simulation cycle finishes while pointing to the last time node to appear in the input. Construct 

assumes that all actions and events in a time period happen at the exact same time determined by 

the current time node being pointed to. In addition, Construct assumes all time nodes are evenly 

spaced in time. 

It is usually good practice to attempt to identify, loosely, a length of time represented by each 

period. Time periods may be minutes, days, weeks, or months. This representation should be 

chosen relative to the type of actions being taken during each time period. It may be unrealistic for 

a human agent to interact thousands or millions of times in a second. Likewise, for a human agent 

to interact only a handful of times in years. 

Object Relations as a Network 

In Construct, objects such as agent nodes or knowledge nodes can become connected in a 

network. Networks come in many different types and representations. A network can be 

represented as a dense matrix in the following example. 

 Biology Physics Sociology 

Aba 1 1 0 

Jane 0 1 1 

Lu 0 1 1 

Raj 1 0 1 

Fred 1 0 0 

In this representation, a 1 indicates the presence of a link. This can have different meanings in 

different contexts but for this example, they act as indication that a person is currently taking the 

specified class if a 1 is present in the element. For instance, Aba is taking Biology and Physics, 

while Jane is taking Physics and Sociology. Below is an example of creating the above network in 

Construct. 

<network name="class network" edge_type="int" default="0"> 

 <source nodeset="agent" representation="dense"/> 

 <target nodeset="class" representation="dense"/> 

 

 <link src_name=”Aba” trg_name=”Biology” value=”1”/> 

 <link src_name=”Aba” trg_name=”Physics” value=”1”/> 

 <link src_name=”Jane” trg_name=”Physics” value=”1”/> 

 <link src_name=”Jane” trg_name=”Sociology” value=”1”/> 

 <link src_name=”Lu” trg_name=”Physics” value=”1”/> 

 <link src_name=”Lu” trg_name=”Sociology” value=”1”/> 

 <link src_name=”Raj” trg_name=”Biology” value=”1”/> 

 <link src_name=”Raj” trg_name=”Sociology” value=”1”/> 

 <link src_name=”Fred” trg_name=”Biology” value=”1”/> 
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</network> 

The network XML element has three attributes, “name”, “edge_type”, and “default” in addition 

the various sub-elements. The name attribute is self-explanatory and acts as the key for storing and 

finding networks in Construct. Construct models will request specific data types which is specified 

by the edge type. The default attribute defines the value with which to initialize the network links. 

After the initial declaration, there are two elements named “source” and “target”. This specifies 

the origin (the source node set) of a link and its destination (the target node set). An additional 

dimension will later be added in Part 2: Networks to create three dimensional networks. The 

“representation” attribute can only be “dense” or “sparse” and indicates the data structure with 

which that dimension is being stored. In a dense structure, an array is used which has constant 

lookup time for an index, but consumes memory for every index, even if there is not a link 

connecting to that index. In a sparse structure, a binary tree is used which has logarithmic lookup 

time but only consumes memory when the index is connected in a link. When to use which 

representation is discussed further in Part 2: Networks. 

The source and target elements are the only required sub-elements for a network element. An 

optional number of “generator” and “link” sub-elements can be included in a network element. 

Generators are macros which can populate large networks with relatively few elements. Links are 

defined to connect a source node to a target node and can be created using the node’s name 

(src_name, trg_name) or the node’s index (src_index, trg_index). Each link also has a value 

that must be convertible from a string to the network’s edge_type. Additional information on 

types of generators and creating links can be found in Part 2: Network Generators. 

 

The Knowledge Network 

The knowledge network is a binary network connecting agent nodes to knowledge nodes. This 

defines “who knows what”. Similar to the example above, links in this network represent which 

agent knows which knowledge bits.  

The Interaction Sphere 

The interaction sphere is a binary network connecting agents to other agents and defines “who 

can find whom”. Agents can only initiate contact with other agents if they can find them. On a 

local level this translates to who knows whom. Agents may not know the agents they’re 

communicating with, however, symmetry is not required. As an example, newspapers or tv can 

allow certain agents to communicate information to vast number of individuals even though the 

broadcaster may not specifically know every individual they are broadcasting to.  

Outputs 

Researchers usually compare outputs of Construct simulations by examining files written over 

the course of the simulation. It is outside the scope of this quick start guide to offer in-depth 
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suggestions on how to deal with large quantities of simulation data. We will instead go over the 

basic tools available in this guide. Here is an example that we will start with followed by a 

breakdown for each component. 

<outputs> 

 <output name="csv"> 

  <parameter name="network name" value="knowledge network"/> 

  <parameter name="output file" value="knowledge.csv"/>  

  <parameter name="time periods" value="all"/> 

 </output> 

</outputs> 

In this output, the network “knowledge network” is being outputted to “knowledge.csv”. In 

addition, all time steps will be output to the csv file. Additional types of output will be discussed 

in Part 2: Output. 

When Construct writes matrices to file(s), as in this example to a 

comma separated value file, it will separate each row from the others 

with a line termination symbol appropriate for the host operating system 

(Carriage Return/Line Feed for Windows-type OS). If a researcher has 

Construct write multiple time periods to a single file, each time period is 

separated from others with a single empty line. 
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Models and Construct Program Flow 

Models in Construct operate using a plug and play methodology. Ideally, each model can run 

simultaneously while operating on the same set of nodes and networks. However, there are always 

limitations when attempting to create an arbitrary interface for which the models to interact. For 

example, a previously existing model would not know to access a new network created for a newer 

model.  

 One method that allows better compatibility between models is its implementation of a 

message exchange. Messages are entities that are sent by an agent and are then read/parsed by the 

receiving agent for any information in the message. By allowing each model to manipulate the 

messages that other models may want to send, certain behaviors can be obtained without editing a 

model’s source code in a way that would not be possible by editing of networks. As we will show 

below, models can cause standard messages to be delayed in a mailbox type data structure or create 

irregularities in a message based on an agent’s lack of literacy. In addition, viewing these messages 

can give models usage statistics for behaviors like a “use it or lose it” style of forgetting knowledge. 

To accomplish this goal, all models have a similar structure. First models access all their 

required node sets and networks from Construct and adds a default network for any optional 

network not included in the input deck. Each model then performs a standard set of model 

functions which can be seen in the Figure 3. Each model has a set of five functions that are called 

in the order shown that ensure models can create, manipulate, parse, and digest messages. Each 

function is completed by all the models before any model advances to the next step (i.e., each 

model completes the Think function before any model performs the Update function). 

Additionally, most models can be separated into interaction models, in which the primary purpose 

is to determine how interactions form and create messages to be sent between an interaction pair 

and manipulation models, in which the primary purpose to manipulate flow and content of 

messages. Below we describe in detail the five functions that allow sufficient generality to achieve 

plug and play functionality of models. 
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Figure 3. Model execution cycle: after INITIALIZATION executes once, each complete time 

period begins with all models performing THINK and ends with each completing CLEAN UP.  

Initialize Function 

The Initialization function is called at the beginning of the simulation once. The primary 

purpose of the initialize function is to check for the existence of other models. As much as this 

project aims for models to be independent, it is inevitable that some models are mutually exclusive 

with other models. The initialize function allows each model to check for other mutually exclusive 

models after all other models have been loaded in. In addition, some models may change behavior 

based on the presence of other models which can also be checked here. This function is only 

performed once, prior to the start of the model execution cycle proper. 

Think Function 

The Think function is a critical function for the interaction models as this function's primary 

purpose is generating messages. Message creation in this step is generally independent of other 

models. Some possible secondary dependencies may arise if one model modifies a network another 

model uses, however this is not done by any of the currently developed models. This function is 

the first function executed in the model execution cycle during a time period. 

Update Function 

The Update function allows each model a chance to manipulate messages created by other 

models. This ranges from adding additional information to a message, modifying existing 

information in the message, removing information in a message, removing a message entirely, to 
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copying a message to send to another recipient, as well as additional fringe cases. This function is 

the second executed during a time period. 

Communicate Function 

The Communicate function takes in each individual message and parses its contents. Each 

model is responsible for parsing the contents of messages it creates as well as any information it 

tacked onto another model’s message. This allows each model to partition itself from each other 

without having to worry about additional content that may be in a message. This can be particularly 

useful as the node and message information space increases as previously existing models will not 

require modification. This function is the third executed during a time period. 

Clean Up Function 

The Clean Up function allows each model to update various strategies and characteristics 

based on the communicated messages in preparation for the next time period’s Think function. 

This function is the last model function called in the execution cycle. After all models have 

completed their Clean Up function any output routines are processed. 

Models 

Construct’s models can be separated into three categories. Interaction models create 

interactions based on various networks the agent is connected to. Modification models typically 

do not create any interactions, but rather modify the interactions by adding additional details or 

modifying networks in response to generated interactions. Social media models emulate a social 

media environment where agents create content and then read each other’s content. In this case, 

interactions are generated not by how the agent is connected in networks, but by the ordering of 

each agent’s feeds. Reading content in these feeds generates the interactions which contain 

information from when the content was created rather than the currently available state. Below is 

a list and short description of each model. 

• Standard Interaction Model 

o The most fundamental version of Construct’s interaction models which relies 

on proximity, similarity, and expertise to find well suited interaction partners. 

• Knowledge Transactive Memory Model 

o An expansion on the Standard Interaction model, this model utilizes an error 

prone memory of who knows what to provide more realistic interaction seeking. 

• Belief Interaction Model 

o An expansion of the Standard Interaction model, this model utilizes beliefs 

based on known knowledge to modify similarity comparison. 

• Task Interaction Model 



18 

 

o An expansion of the Standard Interaction model, this model utilizes tasks which 

can be completed by agents based on their known knowledge. Agents then 

prioritize seeking knowledge required to complete. 

• Grand Interaction Model 

o An expansion of the Standard Interaction model that can optionally combine 

aspects of the Knowledge Transactive Memory Model, Belief Interaction 

Model, and Task Interaction Model. These affect the items created in a message, 

and similarity and expertise between agents. Finally, a belief transactive 

memory can be enabled which updates beliefs based on influence-based 

calculations. 

• Location Interaction Model 

o Model where agents can learn knowledge based on the location the agent is at. 

• Mail Model 

o Model that temporarily stalls the transmission of messages based on the 

medium used. 

• Knowledge Learning Difficulty Model 

o Model that makes learning can cause agents to stochastically not learn a 

knowledge bit when communicated. 

• Knowledge Trust Model 

o Model that creates a trust for each knowledge bit which is updated based on 

other’s trust in that knowledge. 

• Forgetting Model 

o Model that simulates agents forgetting knowledge which disconnects the 

relevant link in the “knowledge network”. 

• Emotion Model 

o Model that controls the dynamics of how emotions can change over time, adds 

emotional information to exchanged messages, and dictates the emotional 

response to reading an emotional message. 

• Subscription Model 

o Model that forwards the content of messages made public based on medium to 

agents who subscribe to the message sender. 

• Twitter Model 

o A model that describes how individuals use the Twitter social media platform 

to diffuse information. This includes a data structure for events, personal feed 

of unread events for each agent, and mechanisms for how to respond to events 

when read. 

• Facebook Model 

o This model pulls from the same base model as the Twitter Model and can run 

in parallel with the model. The two create their own independent social media 

structure environment including events and feeds. 
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• Twitter Follower Model 

o An expansion of the Twitter Model that adds additional ordering to a feed based 

on who the agent is following in the “twitter follower network”. Agents 

can update the network by following the author of read messages or 

unfollowing other agents based on unreciprocated relationship of significantly 

different follower bases. 

• Facebook Follower Model 

o An expansion of the Facebook Model that adds the same features as the Twitter 

Follower Model but uses the “facebook friend network” to affect agent’s 

feeds. 

• Twitter Emotion Model 

o An expansion of the Twitter Model that modifies the probability to perform 

various actions based on the emotional state of the agent as determined by the 

Emotion Model. 

• Facebook Emotion Model 

o An expansion of the Facebook Model that modifies the probability to perform 

various actions based on the emotional state of the agent as determined by the 

Emotion Model. 

• Twitter Emotion Follower Model 

o Combines both the Twitter Emotion Model and the Twitter Follower Model to 

both modify the probabilities based on emotion and modifies each agent’s feeds 

based on their follower network. 

• Facebook Emotion Follower Model 

o Combines both the Facebook Emotion Model and the Facebook Follower 

Model to both modify the probabilities based on emotion and modifies each 

agent’s feeds based on their friend network. 

 

Below is an example of including a Construct model. Note that some models have required or 

optional parameters. See each model for a list of such parameters. 

<model name="Standard Interaction Model"> 

 <param name=”my param 1” value=”my value 1”/> 

 <param name=”my param 2” value=”my value 2”/> 

 <!—Insert additional parameters here  --> 

</model> 

Thoughts on Experimentation 

In this guide, we have discussed how to create nodes, networks that connect those nodes, 

models that dictate how nodes interact with each other, and output for networks. Combining all of 

these aspects we get the example input deck for a basic simulation in Construct. 

<construct> 
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 <models> 

  <model name=”Standard Interaction Model”/> 

 </models> 

 

  <nodesets>   

 

    <nodeset name="medium"> 

      <node name="face to face"> 

        <attribute name=“maximum message complexity" value="1"/> 

        <attribute name=“maximum percent learnable" value="1.0"/> 

        <attribute name=“time to send" value="1"/> 

      </node> 

    </nodeset> 

 

    <nodeset name="agent"> 

      <generator type=”constant”> 

     <count value="50"/> 

     <attribute name="can send knowledge" value="true"/> 

     <attribute name="can receive knowledge" value="true"/> 

      </generator> 

    </nodeset> 

 

    <nodeset name="knowledge"> 

      <generator type=”constant”> 

     <count value=”20”> 

      </generator> 

    </nodeset> 

 

    <nodeset name="time"> 

      <generator type=”constant”> 

         <count value=”10”/> 

      </generator> 

    </nodeset> 

 

   </nodesets> 

 

  <networks> 

  <network name="interaction sphere network" edge_type="int" default="1"> 

   <source nodeset="agent" representation="sparse"/> 

   <target nodeset="agent" representation="sparse"/> 

  </network> 

     

  <network name="knowledge network" edge_type="int" default="0"> 

   <source nodeset="agent" representation="dense"/> 

   <target nodeset="knowledge" representation="sparse"/> 

   <generator type="random binary"> 

    <param name="density" value="0.2"/> 

   </generator> 

  </network> 

 

  </networks> 

 

  <outputs> 

 

   <output type="dynetml"> 

   <param name="network names" value="interaction network,knowledge network"/> 

   <param name="output file" value="output.xml"/> 

   <param name="time periods" value="all"/> 

  </output> 

 

     </outputs> 

</construct> 



21 

 

This example brings together many of the concepts already discussed and presents a few new 

concepts that will be elaborated upon in the following section. From here many modifications can 

be made. Many default networks can be explicitly declared to give the simulation additional depth. 

An example might be to create a super spreader of information that can interact with many people 

each time step rather than the default of one. Another might be to include additional 

communication mediums and restrict agent’s access to certain mediums. These are all parameters 

that can easily be modified by the user. 

The development team use a complementary tool called ORA to analyze results of Construct 

simulations. ORA is a network analysis tool capable of creating and analyzing meta-networks, a 

collection of nodes and networks, and dynamic meta-networks, a collection of nodes and networks 

that can vary over time. Naturally, this tool can be used to analyze the time dependent networks 

that Construct produces. Construct thus supports output in the DyNetML XML file format that 

ORA uses to import dynamic meta-networks. Usage of this method can be seen in the section on 

creating DyNetML output. 

In addition, ORA can be used to create and manipulate nodes and networks which can be 

imported into Construct. This is expanded upon in the section on the DyNetML Network 

Generator. In addition, many models expect attributes in a node set. In ORA, this can be done by 

importing attributes from a text file, or by adding attributes to existing node sets and editing the 

attribute values with tools such as Transform Attribute Values to manipulate attribute values. See 

the ORA manual for additional details regarding how to create nodes, node attributes, and complex 

network structure. 

 

 

  

http://www.casos.cs.cmu.edu/projects/ora/index.php
http://www.casos.cs.cmu.edu/projects/dynetml/
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PART TWO: Construct GUI 

This section of the report gives a quick overview of the Construct GUI which can be found in 

the Construct downloads page. The Construct GUI’s primary function is to allow for a graphical 

interface for inputting information for the Construct simulation rather than relying on an input xml 

file. The GUI is intended to aid those less familiar with Construct in getting their first simulations 

up and running. Large scale simulations are possible using the GUI, but it is recommended that 

input for nodesets, networks, or any other complex input be stored in hard drive files to avoid 

excessive memory usage. 

Quick Start Tutorial 

To begin, open the Construct GUI jar file from the Construct downloads page. Opening the jar 

file requires that java be installed on your computer. Construct comes as a part of other software 

like ORA. In that case, ORA has already installed a java runtime environment and can be launched 

directly from ORA. 

Once the Construct GUI is open you should see a page similar to the following image. 

 

On the left you’ll see a list of items that should be familiar from PART ONE: Quick-Start Guide. 

The Construct GUI can assist you getting started by clicking on the Models item, which will take 

you to the model loading screen. When selecting a model on this screen, nodesets and networks 

required by that model are automatically added to Construct. The introductory model shown in 

this example will be the Standard Interaction Model. 



23 

 

 

After the GUI has populated the MetaNetwork, you are now ready to run the simulation. Click 

on the Run tab at the top of the screen to the simulation status screen. Here you can click on the 

Run button to begin the simulation. All output indicating what’s happening in the simulation will 

appear in the text box below. The simulation can also be canceled at any time by pressing the 

cancel button. When the simulation is complete, you should see a screen similar to the following 

picture. 
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This starting example lacks a method for saving information for later analysis. The primary 

method for outputting information is exporting the state of a network at each time step. This can 

be done by adding an output routine. In the Config tab under the Outputs selection, an output can 

be added. The two primary methods of output are output to csv and output to dynetml. These 

methods will save the specified network(s) to files of their respective types. 

 

Adding Complexity 

Additional customization can be found in the Parameters selection. Here you can choose how 

much information is being displayed during the simulation, choose where files are saved, and 

import a custom Construct library (discussed in further detail in PART FOUR: Construct API). 

Nodesets can be added using the menu option from the top of the screen “Nodesets→add 

nodeset”. To edit a nodeset, select an existing nodeset denoted by the icon from the left pane. 

Using the drop-down menu at the top, the nodeset name can be changed. This operation clears all 

attributes values set for that nodeset. Using the input selection drop-down you can select whether 

to use a manual input, import from csv, or import from dynetml. In manual input you can add or 

remove nodes, add or remove attributes, and modify attribute values for any node. For csv and 

dynetml import, the nodes and their attribute values are imported from a file of the respective 

format. Only one input method can be selected at a time. 

Similarly, to editing a nodeset, a network can be added using the menu option from the top of 

the screen “Networks→add network”. A network can be edited by selecting an existing network 

denoted by the icon from the left pane. The network name can be changed using the drop-

down menu at the top which resets all input for that network. A default value and dimension 

representation can also be selected. For more information on these settings see PART THREE: 

Construct in Detail. The same three input methods can be chosen as with nodeset input. For manual 

import, a generator can be selected that gives a network a random configuration. Additionally, 

individual links can be specified for fine tuning. 

A summary page (example below) is given by selecting the MetaNetwork from the left pane. 

The Construct GUI will attempt to best describe the nodesets and networks present in meta-

network. These nodesets and networks are only created in Construct when the simulation is started, 

and only approximate estimates can be made regarding a network’s density and average link value. 

While changes to nodesets and networks are attempted to be tracked as closely as possible, it can 

happen that the summary does not reflect all changes in the meta-network. To rectify this 

discontinuity the refresh button in the top left will do a full recalculation of all statistics. 
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After setting all desired customizations, the configuration can be saved to an xml file by either 

selecting from the drop-down menu at the top of the screen “File→Save” or pressing the save 

button above the navigation pane in the Config tab. Additionally any properly formed Construct 

xml file can be imported by either using “File→Load” or the open file button above the navigation 

pane. A clear button/menu option is also available to reset the parameters, clear the MetaNetwork, 

and remove all models and outputs. 

For each type, model, nodeset, network, and output, a custom entity can be created. These can 

be generated in two ways. The first is by selecting the drop-down name/type selection and selecting 

add custom (model/nodeset/network/output). The second is contained in each of the “Nodeset”, 

“Network”, “Model”, or “Output” menu options. When selected, a popup will appear asking for 

information on your custom entity. These options can be changed by going to the corresponding 

menu option and selecting “edit custom (nodeset/network/model/output)”. Then an entity can be 

edited by right clicking on the desired entity. Custom entities are stored locally and information 

about custom entities are not removed when selecting the clear button/menu option, only the 

instances currently contained in the GUI. 

PART THREE: Construct in Detail 

This section of the report, to some degree, repeats information provided in Part 1: Construct 

Essentials. This is a deliberate choice by the authors. Part 3 provides in-depth details of the 

workings of Construct. In this section, a more in-depth discussion will be held on nodes, networks, 

models, and output. 
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Parameters 

Parameters are global values that control how construct operates and are used to modify the 

experiment. All parameters should be set within the parameters tag of the input deck, and using 

the following syntax:  

<construct_parameters> 

 <param name=“[name 1]” value=“[value 1]”/> 

 <param name=“[name 2]” value=“[value 2]”/> 

</construct_parameters> 

Parameter names are limited to those predefined by Construct and are all optional parameters. 

Seed  

Seed is a parameter used to control the random seed for the simulation. For a time dependent 

seed, set this parameter value to 0, otherwise set it to an integer value to get a fixed sequence of 

random values if the experiment is to be run multiple times. 

<param name="seed" value="[seed value]"/> 

Verbose Initialization 

Verbose initialization provides additional details when loading construct entities (nodes, 

networks, models, output). 

<param name="verbose initialization" value="[true | false]"/>     

Verbose Runtime 

Verbose runtime provides additional details about the process of models performing their 

functions. 

<param name="verbose runtime" value="[true | false]"/>    

Working Directory 

The working directory specifies the path to which output should be saved. This will obviously 

be dependent on the operating systems one is using. 

<param name="working directory" value="[path to dir]"/>    

Custom Library 

Specifies the file that contains a custom model, output, and media user library. 

<param name="custom library " value="[path to dir]"/> 

Nodes 

Nodes are the entities that Construct simulates. Nodes are grouped into groups of like nodes, 

called node sets, and are related to each other using networks. This section describes some of the 

nodes and node sets in Construct: specifically, the nodes and node sets in the demo input deck.  
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The Construct simulation system uses the idea of “nodes” and “networks”, as opposed to the 

more common formulation of “agents” in the agent-based modeling community. This is because 

Construct grew out of the social and dynamic network analysis tradition (Carley, 1991; Carley & 

Reminga, 2004) and PCANS framework (Krackhardt & Carley 1998). Groups of similar nodes are 

grouped by node sets. Thus, all agent nodes are in the agent node set. Node set names in Construct 

are unique and any repeated node set name will end the program and return an error. Sets of nodes 

can be associated with other sets of nodes to create networks. Links in these networks are then 

manipulated when Construct is running. New links in the network can be added or modified: for 

instance, if the agent learns knowledge, a new link between the specific agent node and the relevant 

knowledge node can be created. Thus, as a Construct simulation runs, the relationship among 

different nodes will be modified.  

Node sets specify the node’s behavior in the simulation. For instance, agent nodes are the nodes 

that interact and learn. While all agent nodes are alike in the sense that they are members of the 

same node set, each agent node can be associated with (have links to) different knowledge or have 

different preferences. Agents in Construct are just one set of nodes. Another example node set is 

the knowledge node set. As with the agent node set, different nodes in the knowledge node set are 

alike in the sense that they represent knowledge from the simulation’s perspective but are different 

in the way that they represent different knowledge bits. Other node sets include time, groups, and 

other entities.  

The general XML code segment for creating a node set in Construct is shown below. Each 

node set has a name element associated with it. This gives the nodeset its identifier as well as a 

root for the names of nodes where a name is not explicitly given (e.g., agent_1, agent_2, agent_43). 

There are two methods to create nodes, individually or with a generator. In either case, an 

individual node or generator may have required node attributes. Each individual node may have 

unique values for attributes, however all nodes created using a single generator gain all same 

attributes from that generator.  

Below is an example for creating a node set. 

<nodeset name=”agent”> 

 <generator type=”constant”> 

  <count value=”20”/> 

  <attribute name= “can send knowledge” value= “true”/> 

  <attribute name= “can receive knowledge” value= “true”/> 

 </generator> 

 <node name= “Sam”> 

  <attribute name= “can send knowledge” value= “false”/> 

  <attribute name= “can receive knowledge” value= “true”/> 

 </node> 

</nodeset> 

In this example, twenty-one agents are created with the agent at index 20 being named “Sam”. 

The first twenty agents can send and receive knowledge whereas Sam can only receive knowledge. 
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In this way, many nodes can be created without having to individually specify each node’s 

attributes. Required attributes are determined by the models included in the XML input. 

Additionally, if there exists a “[your node set name]” in a DyNetML file, you can import 

that node set using the “dynetml” generator seen below. 

<nodeset name=”[your node set name]”> 

 <generator type=”dynetml”> 

  <param name=”file name” value=”[your file name].xml”/> 

 </generator> 

</nodeset> 

This will import the node set in the DyNetML file that matches the name of the node set defined 

in the input deck. The imported node’s id is used for its name and the list of “property” elements 

are imported as attributes with “id” being the attribute name and “value” being the attribute 

value. 

Finally, a CSV file can be used to import nodeset information using the following example. 

<nodeset name=”[your node set name]”> 

 <generator type=”csv”> 

  <param name=”file name” value=”[your file name].csv”/> 

 </generator> 

</nodeset> 

The format for the csv should resemble the following table. 

(blank space) node attribute 1 node attribute 2 node attribute 3 

node name 1 true 4 red 

node name 2 false 3.2 green 

node name 3 true 0.9876 blue 

 

Agent Node set 

The “agent” node set represents the actors in the simulation. Agents interact with each other, 

exchange messages that contain information, and make decisions based on interactions. This node 

set is used most often in Construct’s library of models.  

Knowledge Node set 

The “knowledge” node set represents knowledge that can be exchanged between agents. Each 

knowledge bit is represented by one node. In this example, ten knowledge nodes are created. 
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Medium Node set 

Just like light or sound, communication requires a medium, and different mediums have 

different properties which affect the entity that moves through it. The “medium” node set has the 

following set of required node attributes: 

1. “maximum message complexity” is an integer that gives an upper limit on the 

information content of a message. In practice, this means that when the number of items 

attached to a message is larger than the “maximum message complexity”, items are 

removed randomly until the number returns to the upper bound. Additionally, adding an 

item after a message has been created will cause the message to randomly remove an 

existing item to make room for the new item. 

2. “maximum percent learnable” is a float that sets an upper bound on the link strength 

between an agent and knowledge node in the knowledge network. The stronger that link 

strength, the more difficult it is to be broken in models like the Forget model. This attribute 

has the range [0,1]. 

3. “time to send” is an integer that dictates how many time periods a message must wait 

before being delivered. 

Time Node set 

Nodes in the “time” node set represent an instantaneous point in time that all events during a 

time period occur. The length of the simulation is represented by the number of nodes in this node 

set. If no time node set is given, the simulation completes one cycle and exits. 

Other Node sets 

The nodesets listed above is not an exhaustive list and additional nodesets exist in Construct. 

These nodesets primarily exist as a dimension with the nodeset’s size being the only tunable 

feature. Developers may create additional node sets for any custom models they wish to create in 

PART FOUR: Construct API. 

Node attributes 

Some models may require node attributes. Note: Construct models do put restrictions on the 

number of node attributes a node can have. These attributes act as static properties of a node such 

as gender, age, or other characteristics. Non-static properties such as activity are instead stored in 

networks with the time node set as the target dimension. As indicated in the example above to add 

an attribute to a node, the <attribute> element must be present. These attributes are all unique 

and repeating the same attribute name more than once will return a runtime error. Below is a list 

of node attributes (which are case sensitive) for node sets, which models directly require these 

attributes, what C++ data type these attributes are converted to, and the expected range for these 

attributes. 

Table 1. Node attributes used in Construct. 
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Attribute Name Node set Data Type Range Models Used In 
can receive beliefs agent bool {true,false} Grand Interaction Model 

can receive beliefTM agent bool {true,false} Grand Interaction Model 

can receive 

knowledge 
agent bool {true,false} 

Standard Interaction Model, Twitter 

Interaction Model, Facebook Interaction 

Model, Location Interaction Model 

can receive 

knowledge trust 
agent bool {true,false} 

Twitter Interaction Model, Facebook 

Interaction Model, Knowledge Trust 

Model 

can receive 

knowledgeTM 
agent bool {true,false} 

Knowledge Transactive Memory 

Interaction Model 

can send beliefs agent bool {true,false} Grand Interaction Model 

can send beliefTM agent bool {true,false} Grand Interaction Model 

can send knowledge agent bool {true,false} 

Standard Interaction Model, Twitter 

Interaction Model, Facebook Interaction 

Model, Location Interaction Model 

can send knowledge 

trust 
agent bool {true,false} 

Twitter Interaction Model, Facebook 

Interaction Model, Knowledge Trust 

Model 

can send 

knowledgeTM 
agent bool {true,false} 

Knowledge Transactive Memory 

Interaction Model 

Facebook add 

follower scale factor 
agent float [0,∞) Facebook Interaction Model 

Facebook auto follow agent bool {true,false} Facebook Interaction Model 

Facebook charisma agent float [0,1] Facebook Interaction Model 

Facebook post 

density 
agent float [0,∞) Facebook Interaction Model 

Facebook quote 

probability 
agent float [0,1] Facebook Interaction Model 

Facebook reading 

density 
agent float [0,∞) Facebook Interaction Model 

Facebook remove 

follower scale factor 
agent float [0,∞) Facebook Interaction Model 

Facebook reply 

probability 
agent float [0,1] Facebook Interaction Model 

Facebook repost 

probability 
agent float [0,1] Facebook Interaction Model 

influence agent float [0,∞) Grand Interaction Model 

learning rate agent float [0,1] Forget Model 

maximum message 

complexity 
medium unsigned int [0,∞) 

Standard Interaction Model, Location 

Interaction Model 

maximum percent 

learnable 
medium float [0,1] 

Standard Interaction Model, Location 

Interaction Model 

susceptibility agent float [0,1] Grand Interaction Model 

time to send medium unsigned int [0,∞) 
Standard Interaction Model, Location 

Interaction Model 

Twitter add follower 

density 
agent float [0,∞) Twitter Interaction Model 

Twitter auto follow agent bool {true,false} Twitter Interaction Model 

Twitter charisma agent float [0,1] Twitter Interaction Model 

Twitter post density agent float [0,∞) Twitter Interaction Model 

Twitter reading 

density 
agent float [0,∞) Twitter Interaction Model 
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Twitter quote 

probability 
agent float [0,1] Twitter Interaction Model 

Twitter remove 

follower scale factor 
agent float [0,∞) Twitter Interaction Model 

Twitter reply 

probability 
agent float [0,1] Twitter Interaction Model 

Twitter repost 

probability 
agent float [0,1] Twitter Interaction Model 

 

Networks  

Networks are the primary data structures for input and output in Construct. Like node sets, 

networks must also be uniquely named. Table 2 shows all Construct networks (case sensitive), the 

associated node sets for that network, the data type for links, and all models that use that network. 

Descriptions of how a network is used are available in the corresponding models. 

Table 2. Network relations to node sets. 

Network Name 
Source, Target, (and 

Slice) Node sets 
Data 
Type 

Models Used In 

agent active time 

network 
agent x time bool 

Location Interaction Model, Standard 

Interaction Model, Twitter Interaction 

Model, Facebook Interaction Model 

agent current 

location network 
agent x location bool Location Interaction Model 

agent group belief 

network 
agent group x belief float Grand Interaction Model 

agent group 

knowledge network 
agent group x knowledge float 

Knowledge Transactive Memory 

Interaction Model, Grand Interaction 

Model 

agent group 

membership 

network 

agent x agent group bool 

Knowledge Transactive Memory 

Interaction Model, Grand Interaction 

Model 

agent initiation 

count network 
agent x time unsigned int Standard Interaction Model 

agent location 

preference network 
agent x location float Location Interaction Model 

agent mail usage by 

medium network 
agent x medium float Mail Model 

agent reception 

count network 
agent x time unsigned int Standard Interaction Model 

belief knowledge 

weight network 
belief x knowledge float Belief Interaction Model 

belief message 

complexity network 
agent x time unsigned int Grand Interaction Model 

belief network agent x belief float Belief Interaction Model 

belief similarity 

weight network 
agent x time float Belief Interaction Model 

belief transactive 

memory network 
agent x agent x belief float Grand Interaction Model 
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Network Name 
Source, Target, (and 

Slice) Node sets 
Data 
Type 

Models Used In 

communication 

medium access 

network 

agent x medium bool Standard Interaction Model 

communication 

medium preferences 

network 

agent x medium float Standard Interaction Model 

emotion broadcast 

bias network 
agent x emotion float 

Emotion Model, Facebook Emotion 

Follower Model, Facebook Emotion 

Model, Twitter Emotion Follower Model, 

Twitter Emotion Model 

emotion network agent x emotion float 

Emotion Model, Facebook Emotion 

Follower Model, Facebook Emotion 

Model, Twitter Emotion Follower Model, 

Twitter Emotion Model 

emotion regulation 

bias network 
agent x emotion float Emotion Model 

facebook friend 

network 
agent x agent bool Facebook Interaction Model 

first order emotion 

broadcast network 
emotion x emotion float 

Emotion Model, Facebook Emotion 

Follower Model, Facebook Emotion 

Model, Twitter Emotion Follower Model, 

Twitter Emotion Model 

first order emotion 

reading network 
emotion x emotion float Emotion Model 

first order emotion 

regulation network 
emotion x emotion float Emotion Model 

first order post 

density emotion 

network 

agent x emotion float  

Facebook Emotion Follower Model, 

Facebook Emotion Model, Twitter 

Emotion Follower Model, Twitter 

Emotion Model 

first order quote 

probability emotion 

network 

agent x emotion float 

Facebook Emotion Follower Model, 

Facebook Emotion Model, Twitter 

Emotion Follower Model, Twitter 

Emotion Model 

first order read 

density emotion 

network 

agent x emotion float  

Facebook Emotion Follower Model, 

Facebook Emotion Model, Twitter 

Emotion Follower Model, Twitter 

Emotion Model 

first order reply 

probability emotion 

network 

agent x emotion float 

Facebook Emotion Follower Model, 

Facebook Emotion Model, Twitter 

Emotion Follower Model, Twitter 

Emotion Model 

first order repost 

probability emotion 

network 

agent x emotion float 

Facebook Emotion Follower Model, 

Facebook Emotion Model, Twitter 

Emotion Follower Model, Twitter 

Emotion Model 

interaction 

knowledge weight 

network 

agent x knowledge float 
Standard Interaction Model, Location 

Interaction Model 

interaction network agent x agent bool Standard Interaction Model 

interaction 

probability weight 

network 

agent x agent float Standard Interaction Model 
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Network Name 
Source, Target, (and 

Slice) Node sets 
Data 
Type 

Models Used In 

interaction sphere 

network 
agent x agent bool Standard Interaction Model 

knowledge expertise 

weight network 
agent x time float Standard Interaction Model 

knowledge 

forgetting prob 

network 

agent x knowledge float Forget Model 

knowledge 

forgetting rate 

network 

agent x knowledge float Forget Model 

knowledge learning 

difficulty network 
agent x knowledge float Knowledge Learning Difficulty Model 

knowledge message 

complexity network 
agent x time unsigned int Standard Interaction Model 

knowledge network agent x knowledge bool 

Standard Interaction Model, Forget 

Model, Location Interaction Model, 

Twitter Interaction Model, Facebook 

Interaction Model, Knowledge Trust 

Model 

knowledge priority 

network 
agent x knowledge float Standard Interaction Model 

knowledge select 

bias network 
agent x knowledge float 

Facebook Emotion Follower Model, 

Facebook Emotion Model, Twitter 

Emotion Follower Model, Twitter 

Emotion Model 

knowledge select 

emotion network 
knowledge x emotion float 

Facebook Emotion Follower Model, 

Facebook Emotion Model, Twitter 

Emotion Follower Model, Twitter 

Emotion Model 

knowledge select 

trust network 
agent x knowledge float 

Facebook Emotion Follower Model, 

Facebook Emotion Model, Twitter 

Emotion Follower Model, Twitter 

Emotion Model 

knowledge 

similarity weight 

network 

agent x time float Standard Interaction Model 

knowledge strength 

network 
agent x knowledge float Forget Model 

knowledge 

transactive memory 

network 

agent x agent x knowledge bool 
Knowledge Transactive Memory 

Interaction Model 

knowledge trust 

network 
agent x knowledge float 

Twitter Interaction Model, Facebook 

Interaction Model, Knowledge Trust 

Model 

knowledge trust 

transactive memory 

network 

agent x agent x knowledge bool 

Twitter Interaction Model, Facebook 

Interaction Model, Knowledge Trust 

Model 

learnable knowledge 

network 
agent x knowledge bool Standard Interaction Model 

location knowledge 

network 
location x knowledge bool Location Interaction Model 

location learning 

limit network 
agent x location unsigned int Location Interaction Model 
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Network Name 
Source, Target, (and 

Slice) Node sets 
Data 
Type 

Models Used In 

location medium 

access network 
location x medium bool Location Interaction Model 

location network agent x location bool Location Interaction Model 

mail check 

probability network 
agent x time float Mail Model 

medium knowledge 

access network 
medium x knowledge bool Standard Interaction Model 

physical proximity 

network 
agent x agent float Standard Interaction Model 

physical proximity 

weight network 
agent x time float Standard Interaction Model 

public propensity 

network 
agent x time float Subscriber Model 

second order 

emotion broadcast 

network 

emotion x emotion x emotion float 

Emotion Model, Facebook Emotion 

Follower Model, Facebook Emotion 

Model, Twitter Emotion Follower Model, 

Twitter Emotion Model 

second order 

emotion reading 

network 

emotion x emotion x emotion float Emotion Model 

second order 

emotion regulation 

network 

emotion x emotion x emotion float Emotion Model 

second order post 

density emotion 

network 

emotion x emotion float 

Facebook Emotion Follower Model, 

Facebook Emotion Model, Twitter 

Emotion Follower Model, Twitter 

Emotion Model 

second order quote 

probability emotion 

network 

emotion x emotion float 

Facebook Emotion Follower Model, 

Facebook Emotion Model, Twitter 

Emotion Follower Model, Twitter 

Emotion Model 

second order read 

density emotion 

network 

emotion x emotion float 

Facebook Emotion Follower Model, 

Facebook Emotion Model, Twitter 

Emotion Follower Model, Twitter 

Emotion Model 

second order reply 

probability emotion 

network 

emotion x emotion float 

Facebook Emotion Follower Model, 

Facebook Emotion Model, Twitter 

Emotion Follower Model, Twitter 

Emotion Model 

second order repost 

probability emotion 

network 

emotion x emotion float 

Facebook Emotion Follower Model, 

Facebook Emotion Model, Twitter 

Emotion Follower Model, Twitter 

Emotion Model 

social proximity 

network 
agent x agent float Standard Interaction Model 

social proximity 

weight network 
agent x time float Standard Interaction Model 

sociodemographic 

proximity network 
agent x agent float Standard Interaction Model 

sociodemographic 

proximity weight 

network 

agent x time float Standard Interaction Model 
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Network Name 
Source, Target, (and 

Slice) Node sets 
Data 
Type 

Models Used In 

subscription 

network 
agent x agent bool Subscriber Model 

subscription 

probability network 
agent x agent float Subscriber Model 

task assignment 

network 
agent x task bool Task Interaction Model 

task availability 

network 
task x time bool Task Interaction Model 

task completion 

network 
agent x task unsigned int Task Interaction Model 

task guess 

probability network 
task x knowledge float Task Interaction Model 

task knowledge 

importance network 
task x knowledge  float Task Interaction Model 

task knowledge 

requirement 

network 

task x knowledge bool Task Interaction Model 

transactive belief 

message complexity 

network 

agent x time unsigned int Grand Interaction Model 

transactive 

knowledge message 

complexity network 

agent x time unsigned int 
Knowledge Transactive Memory 

Interaction Model 

twitter follower 

network 
agent x agent bool Twitter Interaction Model 

unused knowledge 

network 
agent x knowledge bool Forget Model 

 

To add network to the input deck, the appropriate sub-elements should be added to the 

<networks> element. An example networks can be seen below. 

<networks> 

<network name="[your network name]" edge_type="[bool | int | unsigned 

int | float | string]" default="[your chosen default value]"> 

 

 <source nodeset="[source node set]" representation="[dense | 

sparse]"/> 

 

 <target nodeset="[target node set]" representation="[dense | 

sparse]"/> 

 

 <!-- Insert links here --> 

 <!-- Insert generators here --> 

</network> 

 

<network name="[your network name]" edge_type="[bool | int | unsigned 

int | float | string]" default="[your chosen default value]"> 

 

 <source nodeset="[source node set]" representation="[dense | 

sparse]"/> 
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 <target nodeset="[target node set]" representation="[dense | 

sparse]"/> 

 

 <slice nodeset="[slice node set]" representation="[dense | 

sparse]"/> 

 

 <!-- Insert links here --> 

 <!-- Insert generators here --> 

</network> 

</networks> 

The top example is a two-dimensional (2d) network while the bottom is an example of a three-

dimensional (3d) network. A 3d network is identified solely by the existence of the <slice> sub-

element. The representation is a free parameter for the source and target, but the slice 

representation is required to match the expected representation given by a specific model. In a 

dense representation, indexes are stored in an array which has a constant look up time. The sparse 

representation stores indexes in a binary tree, which saves memory, but increases the look up time 

for a link. 

Choosing a representation can drastically change the demands on a simulation. If speed is a 

concern, making all networks dense will provide the fastest results. While this does seem 

advantageous, it is a waste of memory if the network is a trivial one with all values being the same. 

In a sparse representation, links are only stored in memory if their value differs from the default 

value. If a link is queried and it is not stored in memory, the network assumes that link has the 

default value. If all values in a network are the same, the network can be initialized with a sparse 

representation for the source and target dimensions, the default value is then set to the homogenous 

value, and no links need to be included. In this way, we can represent a trivial network with 

minimal resources. In addition, if only a few links differ, they can be explicitly defined, while 

having minimal impact on computation time. 

Three dimensional networks typically represent transactive memory. Due to how models 

handle three dimensional networks the slice dimension representation is required to match the 

model’s specification. These specifications are: 

• “knowledge transactive memory network” – dense slice dimension representation 

• “knowledge trust transactive memory network” – sparse slice dimension 

representation 

• “belief transactive memory network” – sparse slice dimension representation 

Links can be defined in one of the following examples. 

<link src_name=”[src node name]” trg_name=”[trg node name]” value=”[your 

value]”/> 

 

<link src_index=”[src node index]” trg_index=”[trg node index]” 

value=”[your value]”/> 

 

<link src_name=”[src node name]” trg_name=”[trg node name]” slc_name=”[slc 

node name]”value=”[your value]”/> 
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<link src_index=”[src node index]” trg_index=”[trg node index]” 

slc_name=”[slc node index]”value=”[your value]”/> 

Here, the first two examples are for 2d networks, while the latter two examples are for 3d 

networks. In these examples, either the name or the index is required to identify the corresponding 

node. Names and indexes cannot be mixed in a link. Node indexes begin at zero and the last node 

in that node set has an index equal to the size of the node set minus one. Using a node’s index 

produces faster results as finding a node by its name takes logarithmic time with the size of the 

node set. 

Network Generators 

Generators allow non-trivial networks to be generated either through importing from another 

file or using stochastic methods to create links. Generators are applied successively based on their 

ordering in the input deck and can overwrite links created by previous generators. Below are 

examples of a generator.  

<generator type="[type]"> 

 <param name=”row start” value=”first”/> 

 <param name=”row end” value=”node name 3”/> 

 <param name=”col start” value=”4”/> 

 <param name=”col end” value=”last”/> 

 <param name=”param 1” value=”value 1”/> 

</generator> 

<generator type="[type]"> 

 <param name=”col end” value=”last”/> 

 <param name=”param 1” value=”value 1”/> 

 <param name=”param 2” value=”value 2”/> 

</generator> 

Generators are applied on each dimension in accordance with the parameters “row start”, 

“row end”, “col start”, “col end”, “slc start”, “slc end”. If a start parameter is not 

present, it is assumed to have a value of “first”. If an end parameter is not present, it is assumed to 

have a value of “last”. “first” and “last” correspond to a dimension’s first and last node, 

respectively. If the value is instead a number less than the size of the corresponding dimension, 

the generator will that node index. Otherwise, nodeset names are compared with the parameters 

value and an exception is thrown if a node by the given name could not be found. The generator 

will then iterator starting at the specified node and continuing up to and including the end node. 

CSV Generator 

This generator imports the network from a CSV file. It is expected that the only contents of the 

file are link values for each corresponding index. Files should not have row or column headers. 

Traditional CSV files are used for 2d networks. 3d networks are imported based on their slice 

representation. If the slice representation is dense, each element should contain a comma separated 

array enclosed by curly brackets (ex. {0,1,0,1,1,0}). If the slice representation is sparse, a 

dictionary is instead used with the index first and link value second (ex. {4:1,5:-2,9:7}). This 
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difference in implementation is a small technical difference between a dense and sparse slice 

representation. Row, column, slice sizes in the CSV file must match the corresponding node set 

sizes for the network. This generator does not use any bounding boxes. Below is an example of 

calling this generator followed by a 2d example and 3d example. 

<generator type="csv">     

 <param name=”file” value=”[your csv file].csv”> 

</generator> 

 

Table 3: Example of a 3x4 sized float network in CSV format. 

0.0 0.1 0.2 0.3 

1.0 11.0 1.2 13.13 

20.20 2.1 2.2 2.3 

 

Table 4: Example of a 3x4x2 sized integer network in CSV format. 

{0,0} {0,1} {0,2} {0,3} 

{1,0} {10,10} {1,2} {0,31} 

{20,0} {2,1} {2,2} {2,3} 

 

Perception Generator 

Transactive memory is built upon many previous interactions, however the initialization of this 

memory by definition has no previous interactions to rely on. Instead, the memory is initialized by 

copying elements in another network and adding noise to ensure the transactive memory is similar, 

but not equivalent. For more information on transactive memory and its usage, see the example 

used in the Knowledge Transactive Memory Interaction Model. Adding noise is slightly 

ambiguous when lacking context on what type of variable the noise is being added to. For this 

reason, there exists different implementations based on the data type of links as well as multiple 

choices for noise production based on the type of link value. Below are two examples for using 

this generator. 

<network name="[your network name]" edge_type="bool" default="[your default 

value]"> 

 <source nodeset="[source node set name]" representation="[dense | 

sparse]"/> 

 <target nodeset="[target node set name]" representation="[dense | 

sparse]"/> 

 <slice nodeset="[slice node set name]" representation="[dense | 

sparse]"/> 

 

 <generator type="perception"> 

  <param name="perception network" value="[your perception network]"/> 

  <param name="influence network" value="[your influence network]"/> 
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  <param name="density" value="[your value]"/> 

  <param name="false positive rate" value="[your value]"/> 

  <param name="false negative rate" value="[your value]"/> 

 </generator> 

 

</network> 

In this example, a network is created with an edge type of “bool”. The network that the 

generator is basing the memory off of is the perception network and must have matching 

“edge_type”. The perception network’s source and target node set must match the example’s 

target and slice nodeset respectively. Transactive memory is typically limited to only a small 

portion of the population even if those nodes interact with other nodes outside of their influence 

network. The influence network dictates which target nodes are known by the source nodes with 

its “edge_type” always being “bool”, regardless of the perception network “edge_type”. The 

influence network’s source and target node set must match with the example’s source and target 

node set, respectively.  

The “density” parameter which is required to be in range [0,1] determines what fraction of 

the “perception network” is copied in the transactive memory. The density parameter is optional 

and defaults to one if the XML element isn’t present. The parameters “false positive rate” 

and “false negative rate” indicate how error prone the copying process is. A high false 

positive rate will create more connections than actually exist in the perception network, while a 

high false positive rate will create fewer. Both parameters are in the range [0,1] with zero creating 

a perfect copy and one creating an exactly opposite copy of the perception network.  

<network name="[your network name]" edge_type="float" default="[your default 

value]"> 

 <source nodeset="[source node set name]" representation="[dense | 

sparse]"/> 

 <target nodeset="[target node set name]" representation="[dense | 

sparse]"/> 

 <slice nodeset="[slice node set name]" representation="[dense | 

sparse]"/> 

 

 <generator type="perception"> 

  <param name="perception network" value="[your perception network]"/> 

  <param name="influence network" value="[your influence network]"/> 

  <param name="density" value="[your value]"/> 

  <param name="noise implementation" value="[normal | unit normal]"/> 

  <param name="variance" value="[your value]"/> 

 </generator> 

 

</network> 

Similar to the previous example, this generator is instead applied to a network with an edge 

type of float. The perception and influence network perform similar roles as previously and also 

follow the same rules regarding dimension node sets and edge types. The critical difference is how 

noise is introduced as a simple negating of a float does not produce the same effect in this instance. 

Here, the parameter “noise implementation” determines how the noise is applied to the values 
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found in the perception network. “unit normal” adds noise such that the resulting values stay in 

the range [0,1]. This requires that the initial range for the values are in [0,1] to begin with. “normal” 

does not have any restrictions on range and both initial values and values after adding noise are in 

the range (-∞,∞). The initial value is used as the mean for a normal distribution along with the 

parameter “variance” as the variance of the distribution. The resulting value is then sampled from 

this normal distribution. 

The unit normal implementation takes the corresponding perception network value which are 

in the range [0,1] and transforms them to the range (-∞,∞). This transformation is 𝜇 = −ln(
𝑥

1+𝑥
), 

where 𝑥 is the perception network value. This value is then used as a mean in order to sample from 

a normal distribution with the variance coming from the parameter “variance”. The sampled 

value is then transformed back to the original range of [0,1] by 𝑥′ = (1 + 𝑒−𝜓)
−1

. The normal 

implementation does not require a range transformation, so the copied value is sampled from 

normal distribution with the mean equal to the corresponding value in the perception network and 

the variance again coming from the variance parameter. 

This generator can only be added to 3d networks. 

 

Random Binary Generator 

For each link in the bounding box, a one is entered as its value with probability equal to the 

“density” parameter and zero otherwise. 

<generator type="random binary"> 

 <param density=”your value”/> 

</generator> 

Random Uniform Generator 

For each link in the bounding box, a random uniform value is assigned with a lower bound 

dictated by the “min” parameter, and an upper bound by the “max” parameter. Both bounds are 

inclusive bounds. Only a percentage of the links are assigned a value if the “density” parameter 

is present and assigned to a value less than one. Any link not assigned a value will continue to be 

its default value. 

<generator type="random uniform"> 

 <param name=”min” value=”[your min value]”/> 

 <param name=”max” value=”[your max value]”/> 

</generator> 

DyNetML Network Generator 

Links are created based on the “file” parameter which is expected to be of the DyNetML 

format. This coincides with the format that ORA uses to save its networks. This generator begins 

at the element “DynamicMetaNetwork” → “MetaNetwork” → “networks” and searches for a 

http://www.casos.cs.cmu.edu/projects/dynetml/
http://www.casos.cs.cmu.edu/projects/ora/
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network with name from the parameter “network name”. This search only takes place in the first 

dynamic meta network’s first meta network. For each link in the file’s network “source”, “target”, 

and “value” attributes are parsed to create links. The source and target attributes indicate the names 

of the nodes in their respective node sets. Each link value is assigned based on the value attribute. 

If no value attribute is found, the link value is assigned to be 1 converted to the network’s C++ 

data type. 

<generator type="dynetml"> 

 <param name="file" value="[your file name].xml”/> 

 <param name=”network name” value=”[network name in your xml file]”/> 

</generator> 

This generator can only be added to 2d networks with default value 0. 

Interaction Models 

Interaction Models are the backbone of Construct models. They provide the rules in the 

simulation for who interacts with whom, and what happens when said interaction occurs. While it 

is not strictly required that one of these models be included in the input deck, a lack of an 

interaction model produces a trivial simulation as no interactions occur and all outputs are equal 

to inputs. Some models inherit other models in order to modify a particular behavior of the base 

model. This inheritance makes a model mutually exclusive with the inherited model. The figure 

below shows the inheritance web of Construct’s models. Only the models displayed are mutually 

exclusive with each other. 
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Figure 4: The inheritance of various Construct models. Models with a common source are 

mutually exclusive and cannot both be present in the input deck. 

Models are added to the <models> element with the only required attribute being the model’s 

name. Some models may have optional or required parameters. The below example shows how to 

add a model to the input deck. 

<model name=”[your model’s name]”> 

 <param name=”parameter 1” value=”value 1”/> 

 <param name=”parameter 2” value=”value 2”/> 

</model> 

Each model description begins with the list of networks that are used by the model. Networks 

can be required or optional. Required networks must be explicitly declared in the input deck. 

Optional networks do not need to be declared, are still created by the model, and can be used in an 

output element. In addition, some networks are only intended as output only. These networks are 

not expected to be included in the input deck, are reset at the beginning of each time step, and are 

meant only to output intermediate calculations a researcher may be interested in. For optional 

networks, the default value for the network is also displayed. The “Range” column indicates the 

range link values that the model expects. If a link is outside this range, an error may occur or result 

in undefined behavior. Finally, the access type refers to the methods that are used to access a link 

value. Iterative access iterates over a dimension with the dimension representation having minimal 

effect on performance. Random access will access random elements during the simulation 

applying a computation time penalty for the usage of a sparse representation. Note that this penalty 
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is avoided if links are not held in memory with the network being homogenous. Note that which 

node sets are required are defined by each model’s set of networks. 

Standard Interaction Model 

Table 5: Networks used by the Standard Interaction Model 

Network Name Required/Optional 
Default 
value 

Range Access Type 

agent active time network Optional 1 {true,false} 
iterative access, 

random access 

agent initiation count network Optional 1 [0,∞) iterative access 

agent reception count network Optional 1 [0,∞) 
iterative access, 

random access 

communication medium access network Optional 1 {true,false} random access 

communication medium preferences 

network 
Optional 1 [0,∞) random access 

interaction knowledge weight network Optional 1 [0,∞) iterative access 

interaction network Output Only 0 {true,false} random access 

interaction probability weight network Output Only 0 [0,∞) random access 

interaction sphere network Optional 1 {true,false} 
iterative access, 

random access 

knowledge expertise weight network Optional 1 [0,∞) random access 

knowledge message complexity Optional 1 [0,∞) random access 

knowledge network Required  {true,false} iterative access 

knowledge priority network Optional 1 [0,∞) iterative access 

knowledge similarity weight network Optional 1 [0,∞) random access 

learnable knowledge Optional 1 {true,false} random access 

medium knowledge access network Optional 1 {true,false} random access 

physical proximity network Optional 1 [0,∞) random access 

physical proximity weight network Optional 1 [0,∞) random access 

social proximity network Optional 1 [0,∞) random access 

social proximity weight network Optional 1 [0,∞) random access 

sociodemographic proximity network Optional 1 [0,∞) random access 

sociodemographic proximity weight 

network 
Optional 1 [0,∞) random access 

 

The “Standard Interaction Model” forms interaction pairs and sends messages between 

those in the pair containing knowledge for the receipt to learn. This begins in the Think functions 

of the model where it assigns interaction pairs based on perfectly known homophily, expertise, 

proximity, and interaction access. Agents simultaneously seek other agents that have similar 

knowledge to themselves while also seeking agents that know knowledge that the interaction 

seeker does not. Interaction pair formation is further impacted by how proximal agents are to 

another either by physical distance, social status, or demographic state. Finally, certain agents may 

not be able to interact with another if the agent is unaware that an agent exists or if there is no 

medium with which communication can occur. First, we will discuss probability weights that 

determines who an agent attempts to interact with. Then we will discuss how messages are formed 

and the result of an empty message. Finally, we will discuss message parsing and what happens 

when the message is received. 
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The Standard Interaction Model requires two networks: the “knowledge network” and the 

“interaction sphere network”. The knowledge network represents which knowledge a given 

knows through the links in the network. The interaction sphere network dictates which agents are 

known to an agent and is not strictly symmetric. An agent can only initiate interactions with agents 

connected in the interaction sphere with the initiating agent being the source. This does not 

preclude agents from receiving an interaction initiation from another agent. Next, we’ll discuss the 

various factors impacting the calculation of probability weights which are stored in the 

“interaction probability weight network”. 

Proximity between two agents (𝑃𝑋𝑖,𝑗) is comprised of three factors, the “physical proximity 

network” (𝑃𝑃𝑖,𝑗), “social proximity network” (𝑆𝑃𝑖,𝑗), and “sociodemographic proximity 

network” (𝐷𝑃𝑖,𝑗). Each factor has an associated weight to determine importance in calculating 

proximity, “physical proximity weight network”(𝑃𝑃𝑊𝑖(𝑡)), “social proximity weight 

network” (𝑆𝑃𝑊𝑖(𝑡)), and “sociodemographic proximity weight network” (𝐷𝑃𝑊𝑖(𝑡)). The 

overall proximity is then, 

𝑃𝑋𝑖,𝑗 = 𝑃𝑃𝑊𝑖(𝑡)𝑃𝑃𝑖,𝑗 + 𝑆𝑃𝑊𝑖(𝑡)𝑆𝑃𝑖,𝑗 + 𝐷𝑃𝑊𝑖(𝑡)𝐷𝑃𝑖,𝑗. 

The other two factors for determining probability weights are knowledge similarity (𝐾𝑆𝑖,𝑗) 

and knowledge expertise (𝐾𝐸𝑖,𝑗) . Using 𝐾𝑖
∗  as the set of knowledge that agent 𝑖  knows we 

calculate knowledge similarity and expertise as, 

𝐾𝑆𝑖,𝑗 = ∑ 𝐾𝑊𝑖,𝑘

𝑘∈𝐾𝑖
∗∩𝐾𝑗

∗

, 𝐾𝐸𝑖,𝑗 = ∑ 𝐾𝑊𝑖,𝑘

𝑘∈𝐾𝑖
∗̅̅ ̅̅ ∩𝐾𝑗

∗

, 

where 𝐾𝑊𝑖,𝑘 is the “knowledge weight network” which is the importance for agent 𝑖 on agent 

𝑗  being connected to knowledge node 𝑘 . These two factors are weighted by the “knowledge 

similarity weight network” (𝐾𝑆𝑊𝑖(𝑡)), and the “knowledge expertise weight network” 

(𝐾𝐸𝑊𝑖(𝑡)). 

Combining these factors yields an overall probability weight (𝑃𝑖,𝑗)which is stored in the 

“interaction probability weight network”, 

𝑃𝑖,𝑗 = 𝑃𝑋𝑖,𝑗 +
𝐾𝑆𝑊𝑖(𝑡)𝐾𝑆𝑖,𝑗
1
𝑁
∑ 𝐾𝑆𝑖,𝑗′𝑗′

+
𝐾𝐸𝑊𝑖(𝑡)𝐾𝐸𝑖,𝑗
1
𝑁
∑ 𝐾𝐸𝑖,𝑗′𝑗′

. 

These probability weights are not calculated for all agents. The “agent active time network” 

defines the time steps an agent is active and, when not active, the agent cannot interact, and the 

associated probability weights are set to zero. Additionally, 𝑃𝑖,𝑗 = 0 if the corresponding link in 

the interaction sphere network is also zero. Agents also only have so many times they can both 

initiate and be initiated upon in each time step which set by the “agent initiation count 

network” and “agent reception count network”, respectively. 𝑃𝑖,𝑗 = 0 if either agent 𝑖’s 

initiation count is zero or agent 𝑗’s reception count is zero. Finally, both agents require a link to a 
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common communication medium node through the “communication medium access network”. 

Under these rules agents can interact with themselves. This would be equivalent to a person 

refreshing their memory on a topic. 

As mentioned earlier, interaction pair formation is dynamic and as pairs form the interaction 

probabilities within a set of agents can change. First, an agent with remaining available initiations 

is chosen randomly with equal probability of selection. The initiator’s number of available 

initiations is then decremented if a receiver is found, and pair formed. Using the probability 

weights discussed above, an agent is chosen with remaining available receptions, which as with 

initiations, is then decremented if the pair is formed. Agents can self-interact, in which case 

reception count is not decremented. Agents can only interact with another agent once and which 

agents interact with whom is recorded in the “interaction network” with the initiators in the 

source dimension. This process continues until no more initiators are available. 

A number of potential cases can cause the loop to become infinite. A couple examples are an 

agent with remaining initiation available, but no other agents with remaining receptions available, 

or an agent that does not have access to a common medium with agents with remaining receptions. 

An internal counter keeps track of how many times an attempt was made to create an interaction 

pair. If the counter goes beyond the threshold, the pair formation process prematurely exits, and 

the simulation continues as normal. This threshold can be set via the optional model parameter 

“rejection limit” and its default value is the number of agents squared. 

Once a potential interaction pair is selected, it is not formally formed until at least one 

interaction message is created. Both the initiator and initiated create interaction messages that they 

send to the other. Interaction messages are transmitted by a communication medium represented 

by the communication medium nodeset. The communication medium node is selected by the 

initiator via the “communication medium preference network”. These network elements act 

as probabilities, but because not all communication mediums may be common between the 

initiator and receiver, probabilities are always normalized after excluding invalid combinations. It 

is expected that if an agent has access to a communication medium node, that the agent’s 

preference for that medium is greater than zero. 

From here, the content of a message is constructed. A message minimally contains information 

about the sender, receiver, and communication medium, but additional information, knowledge in 

this case, is contained in a set of items attached to the message. First, a check is done on the sending 

agent for the node attribute “can send knowledge”, on the receiving agent for the node attribute 

“can receive knowledge”, and on the “knowledge message complexity network” link for 

the sending agent and current time step. If the values are “true”, “true”, and non-zero 

respectively, knowledge items are added based on the “knowledge priority network” with 

higher link value increasing the chance a particular knowledge bit is added first. Agents can only 

add knowledge bits to a knowledge item if they possess that knowledge in the knowledge network. 

Lastly, knowledge is restricted by the “medium knowledge network” and “learnable 

knowledge network”. A link is required from the message medium to the knowledge bit and a 
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link is required from the receiving agent to that knowledge bit. Once the set of knowledge items 

are selected are added to a message in a randomized order. When a message is created if the number 

of items is larger than the medium’s “maximum message complexity” node attribute, items are 

removed to ensure the maximum message complexity is enforced. 

Finally, both messages are checked to see if they contain a non-zero number of items. If either 

message count is non-zero, the interaction pair is formally created. Due to the large amount of 

complexity that can arise from heterogenous initial conditions, this step is the only step in the 

model in which progression is not deterministic. If the interaction pair is not created, the process 

continues with no change to simulation state. Once the interaction pair has been formed its message 

is added to Construct’s central message queue. 

Knowledge is parsed by the model “Knowledge Parsing Model”. This model is not callable 

via the input XML file and is automatically created by the Standard Interaction Model and its 

various variants. Its purpose is to ensure that the knowledge in messages are only parsed once.  

Knowledge Transactive Memory Interaction Model 

Table 6: Networks used by the Knowledge Transactive Memory Interaction Model. 

Network Name Required/Optional 
Default 
value 

Range Access Type 

agent group knowledge network Output Only 0 [0,1] iterative access 

agent group membership network Optional  {true,false} iterative access 

knowledge transactive memory network Optional 0 {true,false} random access 

transactive knowledge message complexity 

network 
Optional 1 [0,∞) random access 

 

The “Knowledge Transactive Memory Interaction Model” model is an expansion of the 

“Standard Interaction Model” and inherits and modifies some or all of the model’s functions. 

As this model is executing a modified version of its functions it is mutually exclusive with the 

“Standard Interaction Model”. The primary modification is the addition of a transactive 

memory (Wegner, 1987) for the knowledge of each agent. Knowledge Transactive Memory 

(KTM) is a data storage in the “knowledge transactive memory network” for each ego agent 

on what knowledge an alter agents know. This memory is incomplete and error prone as it relies 

on recording previous interactions to populate what agents know about each other. This model 

builds upon the “Standard Interaction Model” and adopts many of the functions used therein. 

Because of this, the Knowledge Transactive Memory Interaction Model is mutually exclusive with 

the “Standard Interaction Model”. All required networks in the “Standard Interaction 

Model” are also required for the Knowledge Transactive Memory Interaction Model and similarly 

for optional networks. 

The primary differences are a modification for how similarities and expertise are calculated, 

an additional type of item that can be added to a message called a KTM item, and additional parsing 

to handle this additional type of message item. For this new type of message item, rather than being 
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the sender sharing a piece of knowledge to the receiver, the sender instead shares the information 

that another alter agent knows a piece of knowledge, which we will refer to as a KTM item. When 

an ego agent receives either this type of item or a knowledge item, that agent adds that information 

to their transactive memory only if the alter agent is in the ego agent’s interaction sphere. Each 

agent then has a memory about what other agents knows. This memory is then used instead of the 

“knowledge network” to calculate the similarity and expertise values for the “Standard 

Interaction Model” probability weights. 

This memory is not perfect however, as any secondhand information is not guaranteed to still 

be true. One can imagine a game of telephone (AKA Chinese whispers) where a chain of 

individuals secretly communicates a message to the next person in the chain in hopes of preserving 

the message. In a perfect system, this would be achievable, but it is almost a certainty that in a real 

setting an ego agent will eventually send an item about an alter agent, that the ego believes to be 

true, but is not. The existence of this divide between reality and perception allows Construct agents 

to better match social theory and real-world behaviors. For example, Ren et al. (2006) used 

Construct’s transactive memory mechanisms to show evidence that people trained on a task in a 

group setting are better able to solve a problem than those trained individually and then forced into 

a group setting.   

If an alter is not in an ego agent’s transactive memory, a generalized other can be used. By 

default, this generalized other is the entire population of agents. The probability that the ego agent 

believes an alter outside of the interaction sphere knows a knowledge bit is equal to the percentage 

of agents in the node set that know that knowledge bit. This can further be divided into generalized 

other groups. The creation of these groups is optional and is done so by the inclusion of the “agent 

group” node set. The “agent group membership network” is required if and only if the agent 

group node set is present. This generalized group is then used if an agent is a member of a group 

in a similar way to the generalized other. If an agent belongs to multiple groups, a group is chosen 

at random. The percentage of agents in a group that know a knowledge bit is stored in the “agent 

group knowledge network” and is used as the probability an agent in that group knows a 

knowledge bit.  

In addition to adding knowledge items to a message in the exact same way as the Standard 

Interaction Model, KTM items are added in a similar way using “can send knowledgeTM” and 

“can receive knowledgeTM” from a node’s attributes. KTM items, however, have no knowledge 

priority. The number of KTM items that can be added to a message is restricted by the 

“transactive knowledge message complexity network”. These items are then combined 

and randomly shuffled with the knowledge items and added to the message. As before if the 

medium’s “maximum message complexity” node attribute is less than the number of items added, 

items are removed from the message to meet this requirement. 

Knowledge items are parsed in the same way except it is also added to the receiver’s transactive 

memory with the alter agent being the sender of the message if the sender is in the ego agent’s 

interaction sphere. KTM items are added to the receiver’s transactive memory with the alter agent 
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coming from the item the sender attached rather than the sender being the alter agent. As an 

example, Agent A may send a message to Agent B that Agent C knows knowledge K. Agent A 

will then add that Agent C knows knowledge K into their transactive memory. Some obvious 

situations are avoided when sending a KTM item. An agent cannot send a KTM item about 

themselves or the intended receiver as both would have perfect memory about what knowledge 

they know. 

Belief Interaction Model 

Table 7: Networks used by the Belief Interaction Model. 

Network Name Required/Optional 
Default 
value 

Range 
Access 

Type 

belief knowledge weight network Required  (-∞,∞) iterative access 

belief network Optional 0 (-∞,∞) iterative access 

belief similarity weight network Optional 1 [0,∞) random access 

 

The “Belief Interaction Model” is an expansion of the Standard Interaction Model and 

inherits and modifies some or all of the model’s functions. As this model is executing a modified 

version of its functions, it is mutually exclusive to the Standard Interaction Model. This model 

uses the belief network which uses the belief node set to describe how strongly agents believe or 

disbelieve a belief node. A belief is determined by the knowledge bits an agent knows weighted 

by the “belief knowledge weight network” and is calculated during the Clean Up function. 

This model then directly modifies the Standard Interaction Model by applying an additive 

factor 𝐵𝑆𝑊𝑖(𝑡)exp(Σ𝑏𝐵𝑖,𝑏𝐵𝑗,𝑏) to 𝑃𝑖,𝑗, with 𝐵 being the “belief network” and 𝐵𝑆𝑊𝑖(𝑡) being 

the “belief similarity weight network”. Those with beliefs that strongly align create very 

large additions while those with beliefs that conflict create small additions with the exponential 

ensure all values remain positive. 

Task Interaction Model 

Table 8: Networks used by the Task Interaction Model. 

Network Name Required/Optional 
Default 
value 

Range Access Type 

task assignment network Optional 1 {true,false} iterative access 

task availability network Optional 1 {true,false} iterative access 

task completion network Output Only 0 [0,∞) random access 

task guess probability network Optional 0 [0,1] random access 

task knowledge importance network Optional 1 [0,∞) random access 

task knowledge requirement network Required  {true,false} iterative access 

 

The “Task Interaction Model” is an expansion of the Standard Interaction Model and 

inherits and modifies some or all of the model’s functions. As this model is executing a modified 

version of its functions it is mutually exclusive with the Standard Interaction Model. In this model 
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agents, in addition to performing interactions as described in the Standard Interaction Model, 

attempt to complete tasks which are represented as task nodes. 

Agents attempt to complete tasks during the Clean Up function and can only attempt to 

complete a task is the task is available and if the task is assigned to them, which comes from the 

“task availability network” and the “task assignment network”, respectively. 

Connections to one or many knowledge nodes may be required which comes from the “task 

knowledge requirement network”. If an agent does not possess a required knowledge node 

connection, the agents can make a guess for each missing connection. The probability that a guess 

is correct comes from the “task guess probability network” and if the agent successfully 

guesses each missing connection, the task is completed. Each task that is completed by each agent 

is recorded in the “task completion network”. 

During interactions, ego agents will prioritize interacting with alter agents that have knowledge 

the ego agent is lacking that they require to complete their assigned tasks for that time step. The 

“task knowledge importance network” is used in place of the “interaction knowledge 

weight network” for calculating knowledge expertise. If an agent has no available tasks that they 

are assigned to, the knowledge expertise portion of the interaction probability weights is calculated 

as normal by the Standard Interaction Model. 

Grand Interaction Model 

Table 9: Networks used by the Grand Interaction Model. 

Network Name Required/Optional 
Default 
value 

Range Access Type 

agent group belief network Output Only 0 (-∞,∞) random access 

agent group membership network Optional  {true,false} iterative access 

belief message complexity network Optional 1 [0,∞) random access 

belief transactive memory network Optional  (-∞,∞) random access 

transactive belief message complexity 

network 
Optional 1 [0,∞) random access 

 

The “Grand Interaction Model” is an expansion of the Standard Interaction Model, 

Knowledge Transactive Memory Interaction Model, Belief Interaction Model, and Task 

Interaction Model and inherits and modifies some or all of the models’ functions. As this model is 

executing a modified version of its functions it is mutually exclusive the indicated models. Each 

model except for the Standard Interaction Model has to be specifically enabled by setting model 

parameters to “true”:  

• “beliefs enabled” to enable the Belief Interaction Model  

• “tasks enabled” to enable the Task Interaction Model 

• “knowledge transactive memory enabled” to enable the Knowledge Transactive 

Memory Interaction Model.  
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All network and node requirements for only enabled models are also required for this model. 

An additional model parameter “belief transactive memory enabled” enables a transactive 

memory for beliefs when set to “true” in a similar way knowledge transactive memory is utilized. 

The parameter “belief rate of change” is required if “belief transactive memory 

enabled” is enabled. This parameter is required to be in the range [0,1] and is saved in the variable 

𝛼. 

Because this model is hybridization of many models, each component of calculating the 

interaction probability weights can be modified based on which models are currently active. If 

beliefs are enabled, the additive factor described in the Belief Interaction Model is still applied, 

however if belief transactive memory (BTM) is enabled, the transactive memory of the ego agent 

is instead used to calculate belief similarity. The other two models still apply their modifications 

to how interaction probabilities weights are calculated. The only overlap between the two exists 

when calculating expertise based on assigned tasks. Here, knowledge transactive memory is used 

instead of directly observing the knowledge links of alter agents. 

Each model also applies their specific modifications to how interaction messages are created. 

If BTM is enabled, beliefs and BTM’s can be sent in as items in messages with the maximum 

number of items for each determined by the belief message complexity network and the transactive 

belief message complexity network, respectively. Beliefs can only be sent by and received by 

agents if their node attributes “can send beliefs” and “can receive beliefs” are “true”, 

respectively. Similarly, agents require the node attributes “can send beliefTM” and “can 

receive beliefTM” to be set to “true” in order to send or receive BTM items. Which beliefs 

and BTM’s that are included in a message is chosen uniformly randomly. Each message must still 

respect the overall message complexity of a medium. If the number of items to be added is larger 

than this message complexity, items are chosen uniformly randomly to be removed.  

When parsing messages in the Communicate function, each model that is enabled parses the 

same message with their own Communicate function. If BTM is enabled, belief and BTM items 

are also parsed and added to the ego agent’s BTM. The belief network does not become modified 

when parsing a belief item, unlike when parsing knowledge. Beliefs continue to be updated in the 

Clean Up function. 

The Clean Up function performs similar actions depending on which components are enabled 

such as updating group knowledge and group beliefs. The notable exception is when BTM is 

enabled. Beliefs changes become impacted by the belief of others. Agents weigh how important 

others’ beliefs are based on how much the agent wants to interact with them. However, not all 

agents with equal interaction probability weights with will necessarily influence the ego agent 

equally. Finally, beliefs should not erratically change over time and the agent’s feeling of what the 

belief should be should also impact this calculation. Beliefs are then updated in the following 

manner, 
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𝐵𝑖,𝑏(𝑡 + 1) = (1 − 𝑆𝑖) ((1 − 𝛼)𝐵𝑖,𝑏(𝑡) + 𝛼 ∑ 𝑉𝑏,𝑘
𝑘∈𝐾𝑖

∗

) + 𝑆𝑖
∑ 𝑃𝑖,𝑗𝐼𝑗𝐵𝑇𝑀𝑖,𝑗,𝑏𝑗

∑ 𝑃𝑖,𝑗𝐼𝑗𝑗
, 

where 𝐵 is the “belief network”, 𝑉 is the “belief knowledge weight network”, 𝑃 is the 

“interaction probability network”, 𝐵𝑇𝑀 is the “belief transactive memory network”, 

𝑆 is the agent’s node attribute “susceptibility” which is in the range [0,1] that determines how 

important other’s beliefs are, 𝐼 is the agent’s node attribute “influence” which is in the range 

[0,∞) that weights how important an agent’s beliefs are when the interaction probabilities are 

similar, and 𝛼 is the model parameter “belief rate of change” and affects the rate at which 

beliefs change based on the knowledge the ego agent knows. 

Location Interaction Model 

Table 10: Networks used by the Location Interaction Model. 

Network Name Required/Optional 
Default 
value 

Range Access Type 

agent active time network Optional 1 {true,false} iterative access 

agent current location network Required  {true,false} 
iterative access, 

random access 

agent location preference network Optional 1 [0,1] iterative access 

communication medium access network Optional 1 {true,false} random access 

communication medium preferences 

network 
Optional 1 [0,∞) random access 

interaction knowledge weight network Optional 1 [0,∞) iterative access 

knowledge network Required  {true,false} 
iterative access, 

random access 

knowledge priority network Optional 1 [0,∞) iterative access 

location knowledge network Optional 1 {true,false} iterative access 

location learning limit network Optional 1 [0,∞) random access 

location medium access network Optional 1 {true,false} random access 

location network Optional 0 [0,1] 
iterative access, 

random access 

 

The “Location Interaction Model” creates an environment where agents can learn 

knowledge based on their current location and without interacting with others. Examples might be 

an archaeologist at a dig site, a child at a playground, or a scientist simulating agent-based models. 

In each case, agents are learning information from the environment rather than from another agent.  

Each agent begins at exactly one location given by the “agent current location network”. 

Each location has a set of knowledge available to be learned given by the “location knowledge 

network”. The “location learning limit network” puts a cap on how many knowledge bits 

can be learned in one time step. During the Think function, agents create messages that are sent 

to themselves if they are active given by the “agent active time network”. While the transfer 

of information could be self-contained, it is important to pass the knowledge through a message to 

ensure other models can observe and interact with the process of learning the knowledge. 
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A medium is required to be used for creating this message. The “communication medium 

access network” provides for which communication medium an agent can use to create a 

message. The “communication medium preference network” dictates the probability weight 

the agent will use that medium. In addition, the “location medium access network” further 

restricts which mediums can be used at a location. Knowledge items will then be added to the 

message based on the available knowledge at that location. Knowledge is prioritized based on the 

“knowledge priority network”. Because messages are restricted by the location’s learning 

limit and the medium’s “maximum message complexity” node attribute, knowledge with large 

priority are more likely to be added to a message if either of these restrictions are met. If the Task 

Interaction Model is enabled, instead of attempting to learn all possible knowledge at a location, 

only the knowledge required for completing assigned tasks are learned. These messages are then 

parsed in the Communicate function and knowledge links are created appropriately. 

The model ends in the Clean Up function with agents deciding on their next location. Agents 

are capable of moving locations stochastically with the probability to move to a specific location 

coming from the “location preference network”. The “location network” determines 

which locations are accessible based on an agent’s current location. 

Modification Models 

These models do not inherently generate new messages. Rather a modification model aims at 

manipulating, removing, or in some cases generating new messages in response to existing 

messages. An example is the Subscription Model, which can copy messages and forward them 

different agents. Some models parse messages to record statistics or modify networks and even 

have Clean Up function usage. As with the interaction models, all networks associated with the 

model are presented at the beginning of the model description. 

Forgetting Model 

Table 11: Networks used by the Forgetting Model. 

Network Name Required/Optional 
Default 
value 

Range Access Type 

knowledge forgetting prob network Optional 0.1 [0,1] random access 

knowledge forgetting rate network Optional 1 [0,1] random access 

knowledge network Optional  {true,false} iterative access 

knowledge strength network Optional 0 [0,1] iterative access 

unused knowledge network Output Only 1 {true,false} random access 

 

When messages are parsed during the Communicate function, the “Forgetting Model” can 

cause links in the “knowledge network” to be removed if the associated knowledge hasn’t been  

used in a time period. This process only happens if the “knowledge network” is already loaded 

as a network. The function also increases the corresponding link for that knowledge bit in the 

“knowledge strength network” by the receiving agent’s “learning rate” node attribute. 

Then during the Clean Up function, if an agent has neither sent nor received a piece of knowledge, 
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the corresponding value in the “knowledge strength network” is decremented with probability 

from the “knowledge forgetting prob network”. The amount that is decreased comes from 

the “knowledge forgetting rate network”. If the knowledge strength between an agent node 

and knowledge node reaches the lower bound of zero, the corresponding link is removed from the 

“knowledge network”. The knowledge strength is initially checked to ensure that all links in the 

“knowledge network” correspond to non-zero values in the “knowledge strength network” 

as well as lack of links corresponding to zeros. Note that the knowledge network is unaffected by 

this initialization; only the “knowledge strength network” is modified if a discrepancy occurs. 

Emotion Model 

Table 12: Networks used by the Emotion Model. 

Network Name Required/Optional 
Default 
value 

Range Access Type 

emotion broadcast bias network Optional 1 (-∞,∞) random access 

emotion broadcast first order network Optional 0 (-∞,∞) random access 

emotion broadcast second order network Optional 0 (-∞,∞) random access 

emotion network Required  [0,1] random access 

emotion reading first order network Required  (-∞,∞) random access 

emotion reading second order network Optional 0 (-∞,∞) random access 

emotion regulation bias network Required  Special iterative access 

emotion regulation first order network Required  Special iterative access 

emotion regulation second order network Optional 0 Special iterative access 

 

The “Emotion Model” creates and manages each agent’s emotions which take the form of the 

emotion nodeset. Each emotion has an emotional valence which is in the range [0,1]. In the Update 

function, emotions can be included by the sender in a message. In the Communicate function, the 

receiver of a message containing emotions can parse that message’s emotions. Finally, the Clean 

Up function updates each agents’ emotions through self-regulation. 

Emotions are added to a message with the probability shown in the following equation, 

𝑃𝑖,𝑚
(𝑎𝑡)

= 𝑆(𝐴𝑖,𝑚
(𝑎𝑡) +∑𝐸𝑖,𝑛𝐵𝑛,𝑚

(𝑎𝑡)

𝑛

+∑𝐸𝑖,𝑛𝐶𝑛,𝑚,𝑔
(𝑎𝑡) 𝐸𝑖,𝑔

𝑛,𝑔

), 

where 𝑖 is the message sender’s index, 𝑃𝑖,𝑚
(𝑎𝑡)

 is the probability that agent 𝑖 attaches emotion 𝑚, 𝑆 

is the sigmoid function ( 𝑆(𝑥) = 1/(1 + 𝑒−𝑥) ), 𝐴(𝑎𝑡)  is the “emotion broadcast bias 

network”, 𝐵(𝑎𝑡) is the “emotion broadcast first order network”, 𝐶(𝑎𝑡) is the “emotion 

broadcast second order network”, and 𝐸  is the “emotion network”. If an emotion is 

successfully added, the emotion index and corresponding link value in the “emotion network” 

are added to the message. A message may contain zero, one or more, or all emotions, but each 

emotion can only be included once in a message. 
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When a message that contains emotions are read in the Communicate function, those emotions 

are placed into a vector 𝜏. For each emotional index not contained in the message, a value of zero 

is entered for that index in the vector 𝜏. The updated emotions for the receiver of the message can 

be seen in the following equations, 

𝑥𝑚 =∑𝜏𝑛𝐵𝑛,𝑚
(𝑖𝑟)

𝑛

+∑𝜏𝑛𝐶𝑛,𝑚,𝑔
(𝑖𝑟)

𝜏𝑔
𝑛,𝑔

, 

𝐸𝑖,𝑚
′ = {

𝐸𝑖,𝑚 + (1 − 𝐸𝑖,𝑚)(1 − 𝑒−𝑥𝑚) 𝑥 ≥ 0

𝑆 (− ln(𝐸𝑖,𝑚
−1 − 1) +

𝑥𝑚
𝐸𝑖,𝑚

) 𝑥 < 0
 

where 𝐵(𝑖𝑟) is the “emotion reading first order network”, 𝐶(𝑖𝑟) is the “emotion reading 

second order network”, and 𝐸′ is the updated “emotion network”. 

Finally, agents regulate their emotions in the Clean Up function. The updated emotions for 

each agent can be seen in the following equation, 

𝐸𝑖,𝑚
′ = 𝐴𝑖,𝑚

(𝑠𝑟) +∑𝐸𝑖,𝑛𝐵𝑛,𝑚
(𝑠𝑟)

𝑛

+∑𝐸𝑖,𝑛𝐶𝑛,𝑚,𝑔
(𝑠𝑟) 𝐸𝑖,𝑔

𝑛,𝑔

, 

where 𝐴(𝑠𝑟) is the “emotion regulation bias network”, 𝐵(𝑠𝑟) is the “emotion regulation 

first order network”, and 𝐶(𝑠𝑟) is the “emotion regulation second order network”. To 

ensure that, when in the extreme of an agent’s emotions all being zero, an emotion go outside the 

range [0,1], 0 ≤ 𝐴𝑖,𝑚
(𝑠𝑟) ≤ 1  must hold. In the opposite extreme when all emotions are 1, 0 ≤

𝐴𝑖,𝑚
(𝑠𝑟) +∑ |𝐵𝑛,𝑚

(𝑠𝑟)| + ∑ |𝐶𝑛,𝑚,𝑔
(𝑠𝑟) |𝑛,𝑔𝑛 ≤ 1 must hold. These inequalities are checked when the model 

is loaded. 

Knowledge Learning Difficulty Model 

Table 13: Networks used by the Knowledge Learning Difficulty Model. 

Network Name Required/Optional 
Default 
value 

Range Access Type 

knowledge learning difficulty network Required  [0,1] random access 

 

The “Knowledge Learning Difficulty Model” scans Construct’s central message queue 

during the Update function for any message items that are about knowledge. For each knowledge 

item, the receiver has a probability from “knowledge learning difficulty network” to not 

receive that knowledge item. In the case that a message has no more items, it is removed from the 

message queue. 
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Mail Model 

Table 14: Networks used by the Mail Model. 

Network Name Required/Optional 
Default 
value 

Range Access Type 

agent mail usage by medium network Optional 1 [0,1] random access 

mail check probability network Optional 0.5 [0,1] iterative access 

 

The “Mail Model” constructs mailboxes for each user. Messages will be placed into mailboxes 

with a probability from the “agent mail usage by medium network”. If this happens, that 

message is removed from Construct’s central message queue. Agents may then check their inbox 

each time step using the probability from the “mail check probability network”. If this 

happens, all messages in that agent’s inbox return to Construct’s central message queue. When 

implemented in this way, messages can enter a mailbox and subsequently leave when the mailbox 

is checked in the same time step. 

Subscription Model 

Table 15: Networks used by the Subscription Model. 

Network Name Required/Optional 
Default 
value 

Range Access Type 

public propensity network Optional 0.01 [0,1] random access 

subscription network Optional 0 [0,1] iterative access 

subscription probability network Optional 0.01 {true,false} random access 

 

When a message is parsed by the “Subscription Model” during the Communicate function, 

that message is added to an internal public queue with probability from the sender’s link in the 

public propensity network. This public queue is only accessible by the Subscription model. In the 

Clean Up function, agents will subscribe to the sender of a message in the public queue with 

probability from the “subscription probability network”. Finally, during the Think function, 

public messages from the previous time step are copied and forwarded to all subscribing agents. 

Trust Model 

Table 16: Networks used by the Knowledge Trust Model. 

Network Name Required/Optional 
Default 
value 

Range Access Type 

agent trust network Optional 0.0 [0,1] 
iterative access, 

random access 

knowledge network Required  {true,false} 
iterative access, 

random access 

knowledge trust network Optional 0.5 [0,1] random access 

knowledge trust resistance network Optional 1.0 [0,∞) iterative access 

knowledge trust transactive memory network Optional 0.5 [0,1] random access 
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The “Trust Model” adds the ability for agents to have trust in agents and knowledge. In this 

model, a knowledge bit can be viewed as factually true or false, such as a person saying an arbitrary 

statement, or an event that had a specific cause. Agents have a level of confidence that a knowledge 

bit is true called knowledge trust  which is represented in the “knowledge trust network” and 

has a value on the range [0,1]. Agents can also agree or disagree on a knowledge bit’s factuality 

based on how similar or dissimilar their trust in the knowledge bit is. Agents that frequently agree 

build trust with each other and the opposite degrading that trust. The greater an agent trusts another 

agent, the more that agent values their input in updating their trust of a knowledge bit. 

Any message item that is created with a knowledge bit and does not already have a knowledge 

trust value added to it, has the sender’s knowledge trust for the contained knowledge bit during 

the Update function. When the message item is parsed by the receiver, the contained trust for the 

corresponding knowledge bit index is added to the receiver’s transactive memory which is stored 

in the “knowledge trust transactive memory network”. If the knowledge bit is newly 

learned, the receiving agent initially has no perception as to whether it is true or false and their 

trust in that knowledge bit is set to 0.5. Finally, the trust the receiver has in the sender is updated 

by the following equation, 

𝐴𝑖,𝑗
′ = 𝑎𝑖𝐴𝑖,𝑗 + (1 − 𝑎𝑖)(1 − |𝑇𝑖,𝑘 − 𝜏|), 

where 𝑖  is the receiver, 𝑗 is the sender, 𝑘  is the knowledge bit index, 𝐴 is the “agent trust 

network”, 𝐴′ is the updated “agent trust network”, 𝑇 is the “knowledge trust network” 

and 𝑎𝑖 is the node attribute “agent trust resistance” which is a value in the range [0,1]. 

Knowledge trust is updated during the Clean Up function based on the trust of the agent’s 

alters in their transactive memory and how much they trust each of those agents. This update can 

be seen in the following equation, 

𝑇𝑖,𝑘
′ = (1 − Ω𝑖,𝑘)𝑇𝑖,𝑘 + Ω𝑖,𝑘

∑ A𝑖,𝑗
𝛽𝑖 𝑅𝑖,𝑗,𝑘𝑗

∑ 𝐴𝑖,𝑗
𝛽𝑖

𝑗

 

where Ω  is the “knowledge trust resistance network”, 𝑅  is the “knowledge trust transactive 

memory network, 𝑇′  is the updated “knowledge trust network” and 𝛽𝑖  is agent 𝑖’s “alter trust 

weight” node attribute. 

Social Media Models 

Social media models are built upon agents adding content to a social media environment and 

then reading content created by other agents. Critically, agents do not decide which content to read 

directly. Instead, content is given to an agent by the social media environment. This is dictated by 

a feed mechanism that orders content based on what the environment believes the agent should 

absorb. 

The basics of the social media environments created for Construct start with events. Events 

can be created by any agent and represents content in the environment. Agents can have those 
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events be in reply to another event as well as a repost, or a quote. Events that do not respond to 

another event and that are spontaneously created by agents are called post events. Agents may also 

mention another agent in an event. How agents create events, how many are created, how feeds 

are structured, and how many events are read from the feed is dictated by each individual model. 

For the base model, node attributes are used to indicate these values. 

• post density – A number in the range [0,∞) that describes the mean number of post events 

created each simulation cycle by the corresponding agent with the actual number being 

sampled from a Poisson distribution. 

• reply probability – The probability that when an agent reads an event that they create a 

reply event. 

• repost probability – The probability that when an agent reads an event that they create a 

repost event. 

• quote probability – The probability that when an agent reads an event that they create a 

quote event. 

• reading density – A number greater than zero and less than the size of the agent’s feed 

that describes the mean number of events read by that agent each simulation cycle with the 

actual number being sampled from a Poisson distribution. 

In addition, each event can contain a set of information. While many models add to amount of 

information, every model attaches one knowledge bit to an event. The knowledge bit that is 

attached to a post event is chosen at random from among knowledge bits that the agents knows. 

Each subsequent event in the response thread contains the same knowledge bit. Social media 

models then require the agent node attributes “can send knowledge” and “can receive 

knowledge”.  If the “Trust Model” has been included, then the agent’s trust in that knowledge 

bit is also added to their event if it is not a repost event. In the case of a repost event, the same 

knowledge trust that the reposted event has is also added to the repost and the probability of 

creating the repost gets multiplied by one minus the absolute value of the difference between the 

reader’s trust and the author’s trust in the corresponding knowledge bit. 

Agents’ feeds in the base social media model are structured by splitting all new events into two 

categories for each agent, events that respond to that agent’s event and events that mention the 

agent, and all other events. These two categories are then sorted by multiplying how many events 

belong to its subtree of responses and the time stamp of the event. This prioritizes events that have 

lots of responses and activity around it while also weighing how long the event has had time to 

gather this activity. The category of events that contain responses and mentions are placed first in 

the feed followed by the events in the other category. 

Twitter Model 

Table 17: Networks used by the Twitter Model. 

Network Name Required/Optional 
Default 
value 

Range Access Type 
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agent active time network Optional 1 {true,false} iterative access 

knowledge network Required  {true,false} iterative access 

 

Table 18. Node attributes used by the Twitter Model. 

Attribute Name Node set Data Type Range 
can receive knowledge agent bool {true,false} 

can send knowledge agent bool {true,false} 

Twitter post density agent float [0,∞) 

Twitter quote probability agent float [0,1] 

Twitter reading density agent float [0,∞) 

Twitter reply probability agent float [0,1] 

Twitter repost probability agent float [0,1] 

 

The “Twitter Model” uses the unmodified social media model and adds “Twitter” to the 

beginning of the social media specific node attributes.  

Facebook Model 

Table 19: Networks used by the Facebook Model. 

Network Name Required/Optional 
Default 
value 

Range Access Type 

agent active time network Optional 1 {true,false} iterative access 

knowledge network Required  {true,false} iterative access 

 

Table 20. Node attributes used by the Facebook Model. 

Attribute Name Node set Data Type Range 
can receive knowledge agent bool {true,false} 

can send knowledge agent bool {true,false} 

Facebook post density agent float [0,∞) 

Facebook quote probability agent float [0,1] 

Facebook reading density agent float [0,∞) 

Facebook reply probability agent float [0,1] 

Facebook repost probability agent float [0,1] 

 

The “Facebook Model” uses the unmodified social media model and adds “Facebook” to the 

beginning of the social media specific node attributes. 

Social Media Models with Followers 

Built upon the base social media model, this branch incorporates a follower network. The 

model uses this network to prioritize certain events in an agent’s feed based on who they follow. 

While reading events and during the Clean Up function, agents can choose to follow or unfollow 

another agent. 
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This model uses four media specific node attributes. 

• add follower density – A number in the range [0,∞) that describes the mean number 

of follower recommendations considered during the Clean Up function with the actual 

number being sampled from a Poisson distribution. 

• remove follower scale factor – A scale factor that when increased decrease the 

probability an agent will unfollow another agent during the Clean Up function. 

• auto follow – A boolean value that when true will cause the agent to follow any other 

agent that follows them. If this value is false, nothing happens.  

• charisma – A value in the range [0,1] that is directly proportional to the probability 

that another agent will follow this agent. 

When reading an event during the Communicate function, agents may choose to follow the 

author of the event. The probability that agent 𝑖 follows the event’s author agent 𝑗 is based on both 

charisma and the relative similarity between the two agents. 

𝑃𝑖 = 𝑐𝑗
𝑛|𝐾𝑖

∗ ∩ 𝐾𝑗
∗|

1 + ∑ |𝐾𝑖
∗ ∩ 𝐾𝑘

∗|𝑘≠𝑖
 

where 𝐾𝑖
∗  is the set of knowledge bits that agent 𝑖 knows. This probability is also used when 

considering each of the follower recommendations provided during the Clean Up function. When 

the “Trust Model” (detailed below) is loaded, agents compare their trust in all their known 

knowledge bits with the transactive memory of the agent being considered. The probability is then, 

𝑃𝑖 = 𝑐𝑗 (1 −
1

|𝐾𝑖
∗ ∩ 𝑅𝑖,𝑗

∗ |
∑ |𝑇𝑖,𝑘 − 𝑅𝑖,𝑗,𝑘|

𝑘∈|𝐾𝑖
∗∩𝑅𝑖,𝑗

∗ |

) 

where 𝑇 is the “trust network” and 𝑅 is the “trust transactive memory network”. 

During the Clean Up function, the following processes happen in the following order. First, 

the feeds are created with the process being modified by the inclusion of the follower network. 

Second, agents examine each other agent they’re following and evaluate whether to unfollow that 

agent. Next, agents are given a set of agents that they aren’t following, ranked by how similar they 

are to agents they are following and decides whether or not to follow these agents. Changes in the 

follower network created by these two steps are not implemented into the network until after both 

steps are complete. i.e., Agents cannot decide to follow an agent that they have unfollowed in the 

previous step because changes to follower network have been delayed until after follower 

recommendations have been given. Finally, after agents get the opportunity to unfollow and follow 

various agents, the follower network is updated to reflect all changes queued by the previous two 

steps. 



60 

 

In the base social media model, the feeds are broken into two groups. An additional group is 

added in between the two groups. Events can still only be added to one of the three groups. Events 

are still first added to the group containing mentions of the feed’s agent or direct responses (replies, 

reposts, quotes). Then events are added to the second group if the event’s author is an agent the 

feed’s agent is currently following. Finally, if the event is not added to either of those two groups, 

they are added to the third group. The events are then ordered by their group and the process 

outlined in the base social media model continues. 

In the next step each agent examines each agent they follow and decide whether to unfollow. 

The base probability that an ego agent will unfollow any alter agent is the time between time steps 

divided by the ego agent’s remove follower scale factor. This probability is then decreased for 

each response the alter agent has made to the ego agent’s events such that ten responses decreases 

the probability by 50%. A unidirectional relationship increases the probability of unfollowing by 

86.9%. Finally, the Jaccard similarity is measured between the followers of the ego agent and the 

followers of the alter agent. As the Jaccard similarity decrease the probability to unfollow increases 

such that a reduction in 0.1 in the similarity results in a 33% increase in the unfollow probability. 

If the ego agent chooses to unfollow an alter agent, this change is not implemented until after all 

agents decide on which agents to unfollow and after all agents have resolved their follower 

recommendations. 

After deciding who to unfollow, recommendations are given to agents to follow. These 

recommendations are ordered based on their best follower Jaccard similarity with those the ego 

agent is currently following. The ego agent then considers the first 𝑚 alter agents, where 𝑚 is 

sampled from a Poisson distribution with mean equal to the ego agent’s add follower density node 

attribute. For each consideration, the agent chooses to follow the agent with the same probability 

used during the Communicate function. Choices to follow are then queued until after this process 

has been completed. This process can be expensive as there are between 𝑛2 and 𝑛3/4number of 

Jaccard similarities to calculate each time step where 𝑛 is the total number of agents. For this 

reason, a model parameter “disable follower recommendations” is added which when set to 

false, skips this step. 

Twitter Follower Model 

Table 21: Networks used by the Twitter Follower Model. 

Network Name Required/Optional 
Default 
value 

Range Access Type 

agent active time network Optional 1 {true,false} iterative access 

knowledge network Required  {true,false} iterative access 

twitter follower network Required  {true,false} random access 

 

Table 22. Node attributes used by the Twitter Follower Model. 

Attribute Name Node set Data Type Range 
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can receive knowledge agent bool {true,false} 

can send knowledge agent bool {true,false} 

Twitter post density agent float [0,∞) 

Twitter quote probability agent float [0,1] 

Twitter reading density agent float [0,∞) 

Twitter reply probability agent float [0,1] 

Twitter repost probability agent float [0,1] 

Twitter add follower density agent float [0,∞) 

Twitter remove follower scale factor agent float [0,∞) 

Twitter auto follow agent bool {true,false} 

Twitter charisma agent float [0,1] 

 

The “Twitter Follower Model” specializes the social media with followers models by 

defining the follower network as the “twitter follower network” and adding “Twitter” to the 

various social media specific agent node attributes. 

Facebook Follower Model 

Table 23: Networks used by the Facebook Follower Model. 

Network Name Required/Optional 
Default 
value 

Range Access Type 

agent active time network Optional 1 {true,false} iterative access 

facebook friend network Required  {true,false} iterative access 

knowledge network Required  {true,false} iterative access 

 

Table 24. Node attributes used by the Facebook Follower Model. 

Attribute Name Node set Data Type Range 
can receive knowledge agent bool {true,false} 

can send knowledge agent bool {true,false} 

Facebook post density agent float [0,∞) 

Facebook quote probability agent float [0,1] 

Facebook reading density agent float [0,∞) 

Facebook reply probability agent float [0,1] 

Facebook repost probability agent float [0,1] 

Facebook add follower density agent float [0,∞) 

Facebook remove follower scale factor agent float [0,∞) 

Facebook auto follow agent bool {true,false} 

Facebook charisma agent  float [0,1] 

 

The “Facebook Follower Model” specializes the social media with followers models by 

defining the follower network as the “facebook friend network” and adding “Facebook” to the 

various social media specific agent node attributes. 
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Social Media Models with Emotions 

Built upon the base social media model, this branch incorporates an emotion network. Each 

agent will possess an emotional valence within the emotion network for each node in the emotion 

nodeset. This emotional valence is a value in the range [0,1] that represents how strongly an agent 

is currently experiencing the corresponding emotion. These emotions affect the probabilities and 

probability densities associated with the actions agents can take in the social media model. For 

more information on how emotions change over time, see the Emotion Model below. 

Because most functional definitions that describe the dependence on emotions is not known, 

we can approximate the function with a series expansion up to second order. 

𝐹(𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑚) = 𝐴 +∑𝐵𝑖𝑒𝑖

𝑚

𝑖=1

+∑∑𝑒𝑖𝐶𝑖,𝑗𝑒𝑗

𝑚

𝑗=1

𝑚

𝑖=1

+ 𝑂(𝑒3) 

where 𝐴, 𝐵, and 𝐶 are constants and represented in their lowest allowable dimensionality. As will 

be seen shortly, these constants can be elevated to higher dimensions with the highest dimension 

allowable by Construct is 3 dimensions. 

This is first applied to the post probability density which must be in the range [0,∞). To 

maintain this range an exponential is used to allow all constants to be any real number. The 

equation is then, 

𝑝𝑑𝑝𝑖 = exp(𝐴𝑖
(𝑝𝑑𝑝)

+∑𝐵𝑖,𝑚
(𝑝𝑑𝑝)

𝐸𝑖,𝑚
𝑚

+∑𝐸𝑖,𝑚𝐶𝑖,𝑚,𝑛
(𝑝𝑑𝑝)

𝐸𝑖,𝑛
𝑚,𝑛

), 

where 𝐹 = ln(𝑝𝑑𝑝𝑖), 𝑝𝑑𝑝𝑖 is the probability density to post, 𝑒𝐴𝑖
(𝑝𝑑𝑝)

corresponds to the probability 

density to post node attribute for agent 𝑖, 𝐵(𝑝𝑑𝑝) corresponds to the “first order post density 

emotion network”, and 𝐶(𝑝𝑑𝑝) corresponds to the “second order post density emotion 

network”. A similar equation is used the probability density for reading where 𝑒𝐴𝑖
(𝑝𝑑𝑟)

 corresponds 

to the probability density to read node attribute for agent 𝑖, 𝐵(𝑝𝑑𝑟)  corresponds to the “first 

order read density emotion network”, and 𝐶(𝑝𝑑𝑟) corresponds to the “second order read 

density emotion network”. 

For probabilities, a similar equation form is used but instead 𝐹 = 𝑆−1(𝑃) used where 𝑆(𝑥) is 

the sigmoid function and 𝑃  represent the various probabilities contained in the model. The 

probability that an agent will reply to an event when reading it is then, 

𝑝𝑟𝑖 = 𝑆(𝐴𝑖
(𝑝𝑟) +∑𝐵𝑖,𝑚

(𝑝𝑑𝑝)𝐸𝑖,𝑚
𝑚

+∑𝐸𝑖,𝑚𝐶𝑖,𝑚,𝑛
(𝑝𝑑𝑝)𝐸𝑖,𝑛

𝑚,𝑛

), 

where 𝑆 (𝐴𝑖
(𝑝𝑟)) corresponds to the reply probability node attribute for agent 𝑖, 𝐵(𝑝𝑟) corresponds 

to the “first order reply probability emotion network”, and 𝐶(𝑝𝑟) corresponds to the 
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“second order reply probability emotion network”. A similar equation is used for quote 

and repost probabilities using 𝐵(𝑝𝑞)  as the “first order quote probability emotion 

network”, 𝐶(𝑝𝑞) as the “second order quote probability emotion network”, 𝐵(𝑝𝑝) as the 

“first order repost probability emotion network”, and 𝐶(𝑝𝑝) as the “second order 

repost probability emotion network”. Finally, the probability to add an agent’s emotional 

valence is the same as seen in the Emotion Model seen below. 

Finally, the probability an agent chooses a knowledge bit when creating a post is also affected 

by their emotional state. The probability weight is, 

𝑃𝑖,𝑘 = 𝐴𝑖,𝑘 + 𝑆𝑖,𝑘|𝑇𝑖,𝑘 − 0.5| +∑𝐿𝑘,𝑚𝐸𝑖,𝑚
𝑚

, 

where 𝐴 corresponds to the “knowledge select bias network”, 𝑆 is the “knowledge select trust 

network”, 𝑇 is the “knowledge trust network”, 𝐿 is the “knowledge select emotion network”, and 

𝐸 is the “emotion network”. These weights are then normalized, and the knowledge bit is selected 

via this distribution. 

Twitter Emotion Model 

Table 25: Networks used by the Twitter Emotion Model. 

Network Name Required/Optional 
Default 
value 

Range Access Type 

agent active time network Optional true {true,false} iterative access 

emotion broadcast bias network Optional 1.0 (-∞,∞) random access 

emotion network Required  [0,1] random access 

first order emotion broadcast network Optional 0.0 (-∞,∞) random access 

first order post density emotion network Optional 0.0 (-∞,∞) random access 

first order quote probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

first order read density emotion network Optional 0.0 (-∞,∞) random access 

first order reply probability emotion network Optional 0.0 (-∞,∞) random access 

first order repost probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

knowledge network Required  {true,false} iterative access 

knowledge select bias network Optional 1.0 (-∞,∞) random access 

knowledge select emotion network Optional 0.0 (-∞,∞) random access 

knowledge select trust network Optional 0.0 (-∞,∞) random access 

second order emotion broadcast network Optional 0.0 (-∞,∞) random access 

second order post density emotion network Optional 0.0 (-∞,∞) random access 

second order quote probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

second order read density emotion network Optional 0.0 (-∞,∞) random access 

second order reply probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

second order repost probability emotion 

network 
Optional 0.0 (-∞,∞) random access 
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Table 26. Node attributes used by the Twitter Emotion Model. 

Attribute Name Node set Data Type Range 
can receive knowledge agent bool {true,false} 

can send knowledge agent bool {true,false} 

Twitter post density agent float [0,∞) 

Twitter quote probability agent float [0,1] 

Twitter reading density agent float [0,∞) 

Twitter reply probability agent float [0,1] 

Twitter repost probability agent float [0,1] 

 

The “Twitter Emotion Model” uses the unmodified social media model with emotions and 

adds “Twitter” to the beginning of the social media specific node attributes.  

 

Twitter Emotion Follower Model 

Table 27: Networks used by the Twitter Emotion Follower Model. 

Network Name Required/Optional 
Default 
value 

Range Access Type 

agent active time network Optional true {true,false} iterative access 

emotion broadcast bias network Optional 1.0 (-∞,∞) random access 

emotion network Required  [0,1] random access 

first order emotion broadcast network Optional 0.0 (-∞,∞) random access 

first order post density emotion network Optional 0.0 (-∞,∞) random access 

first order quote probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

first order read density emotion network Optional 0.0 (-∞,∞) random access 

first order reply probability emotion network Optional 0.0 (-∞,∞) random access 

first order repost probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

knowledge network Required  {true,false} iterative access 

knowledge select bias network Optional 1.0 (-∞,∞) random access 

knowledge select emotion network Optional 0.0 (-∞,∞) random access 

knowledge select trust network Optional 0.0 (-∞,∞) random access 

second order emotion broadcast network Optional 0.0 (-∞,∞) random access 

second order post density emotion network Optional 0.0 (-∞,∞) random access 

second order quote probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

second order read density emotion network Optional 0.0 (-∞,∞) random access 

second order reply probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

second order repost probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

twitter follower network Required  {true,false} random access 

 

Table 28. Node attributes used by the Twitter Emotion Follower Model. 

Attribute Name Node set Data Type Range 
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can receive knowledge agent bool {true,false} 

can send knowledge agent bool {true,false} 

Twitter add follower density agent float [0,∞) 

Twitter auto follow agent bool {true,false} 

Twitter charisma agent float [0,1] 

Twitter post density agent float [0,∞) 

Twitter quote probability agent float [0,1] 

Twitter reading density agent float [0,∞) 

Twitter remove follower scale factor agent float [0,∞) 

Twitter reply probability agent float [0,1] 

Twitter repost probability agent float [0,1] 

 

The “Twitter Emotion Follower Model” combines the social media model with followers 

and the social media model with emotions. Emotion dynamics and follower dynamics happen 

independently. Feed generation for each user uses the social media model with followers 

implementation. 

Facebook Emotion Model 

Table 29: Networks used by the Facebook Emotion Model. 

Network Name Required/Optional 
Default 
value 

Range Access Type 

agent active time network Optional true {true,false} iterative access 

emotion broadcast bias network Optional 1.0 (-∞,∞) random access 

emotion network Required  [0,1] random access 

first order emotion broadcast network Optional 0.0 (-∞,∞) random access 

first order post density emotion network Optional 0.0 (-∞,∞) random access 

first order quote probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

first order read density emotion network Optional 0.0 (-∞,∞) random access 

first order reply probability emotion network Optional 0.0 (-∞,∞) random access 

first order repost probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

knowledge network Required  {true,false} iterative access 

knowledge select bias network Optional 1.0 (-∞,∞) random access 

knowledge select emotion network Optional 0.0 (-∞,∞) random access 

knowledge select trust network Optional 0.0 (-∞,∞) random access 

second order emotion broadcast network Optional 0.0 (-∞,∞) random access 

second order post density emotion network Optional 0.0 (-∞,∞) random access 

second order quote probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

second order read density emotion network Optional 0.0 (-∞,∞) random access 

second order reply probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

second order repost probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

 

Table 30. Node attributes used by the Facebook Emotion Model. 
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Attribute Name Node set Data Type Range 
can receive knowledge agent bool {true,false} 

can send knowledge agent bool {true,false} 

Facebook post density agent float [0,∞) 

Facebook quote probability agent float [0,1] 

Facebook reading density agent float [0,∞) 

Facebook reply probability agent float [0,1] 

Facebook repost probability agent float [0,1] 

 

The “Facebook Emotion Model” uses the unmodified social media model with emotions and 

adds “Facebook” to the beginning of the social media specific node attributes.  

Facebook Emotion Follower Model 

Table 31: Networks used by the Facebook Emotion Follower Model. 

Network Name Required/Optional 
Default 
value 

Range Access Type 

agent active time network Optional true {true,false} iterative access 

emotion broadcast bias network Optional 1.0 (-∞,∞) random access 

emotion network Required  [0,1] random access 

first order emotion broadcast network Optional 0.0 (-∞,∞) random access 

first order post density emotion network Optional 0.0 (-∞,∞) random access 

first order quote probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

first order read density emotion network Optional 0.0 (-∞,∞) random access 

first order reply probability emotion network Optional 0.0 (-∞,∞) random access 

first order repost probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

knowledge network Required  {true,false} iterative access 

knowledge select bias network Optional 1.0 (-∞,∞) random access 

knowledge select emotion network Optional 0.0 (-∞,∞) random access 

knowledge select trust network Optional 0.0 (-∞,∞) random access 

second order emotion broadcast network Optional 0.0 (-∞,∞) random access 

second order post density emotion network Optional 0.0 (-∞,∞) random access 

second order quote probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

second order read density emotion network Optional 0.0 (-∞,∞) random access 

second order reply probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

second order repost probability emotion 

network 
Optional 0.0 (-∞,∞) random access 

facebook friend network Required  {true,false} random access 

 

Table 32. Node attributes used by the Facebook Emotion Follower Model. 

Attribute Name Node set Data Type Range 
can receive knowledge agent bool {true,false} 

can send knowledge agent bool {true,false} 

Facebook add follower density agent float [0,∞) 

Facebook auto follow agent bool {true,false} 
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Facebook charisma agent float [0,1] 

Facebook post density agent float [0,∞) 

Facebook quote probability agent float [0,1] 

Facebook reading density agent float [0,∞) 

Facebook remove follower scale factor agent float [0,∞) 

Facebook reply probability agent float [0,1] 

Facebook repost probability agent float [0,1] 

 

The “Facebook Emotion Follower Model” combines the social media model with followers 

and the social media model with emotions. Emotion dynamics and follower dynamics happen 

independently. Feed generation for each user uses the social media model with followers 

implementation. 

Output 

There are three output methods currently provided by Construct, each of which uses a different 

file format. Each output routine follows a similar structure of a the <output> XML element with 

a list of <parameter> sub-elements. The type of output is determined by the “type” attribute in the 

output element. Below is an example. 

 <output type="[your output type]"> 

  <parameter name="[your parameter 1]" value="[value 1]"/> 

  <parameter name="[your parameter 2]" value="[value 2]"/> 

 </output> 

CSV 

The CSV output routine uses “csv” for the type attribute. This output requires three 

parameters.  

• “network name” specifies the name of the network to be recorded. 

• “output file” indicates the name of the output file. 

• “time periods” designates whether all or just the last time step is recorded.  

Any network that is created during the network loading process, or during model construction 

(before a model’s Initialization function) can be used as output. Any file or file path can be used 

to designate the output file with the only requirement being the “.csv” extension at the end of the 

string. The allowed inputs for the “time periods” parameter are: 

• “initial” will output only the initial state of the network before the simulation begins. 

• “last” will output the final state of the network at the end of the simulation as well as 

the initial state of the network. 

• “all” will output the initial network and the network at the end of each time period in 

the simulation. 
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• A comma separated list of time period indexes. I.e., “1,3,5,7”. Each index indicates 

which time period index should a network’s state be captured. An index of -1 indicates 

the network’s state should be captured before any simulation takes place. 

The structure of the CSV file contains the source node set on the rows and target node set for 

the columns. Node names are not included to reduce file size; rather the row number corresponds 

to the source node index and the column number corresponds to the target node index. In the CSV 

file, an empty line indicates the transition from one time step to the next. The row number is then 

reset at the empty line for determining which row corresponds to which node index. When a 3d 

network is used as output, at each element braces contain data for the slice dimension. For a dense 

representation, the elements appear as comma separated values such as {v0,v1,v2,…,vN}. For a 

sparse representation, the elements appear in a dictionary format such as 
{i0:v0,i3:v3,…,iN:vN}. 

DyNetML 

The DyNetML output routine uses “dynetml” for the type attribute. This output requires three 

parameters:  

• “network names” is a comma separated list (“net_name1, net_name2, 

net_name3”) of the names of all networks to be recorded. 

• “output file” indicates the name of the output file.  

• “time periods” designates whether all or just the last time step is recorded.  

Networks can be any network that is created during the network loading process, or during 

model construction (before a model’s Initialization function). Any file or file path can be used to 

designate the output file with the only requirement being the “.xml” extension at the end of the 

string. The output XML file is consistent with the DyNetML format (DyNetML is an XML 

derivative language for exchanging rich social network data) and can be directly loaded in XML 

parsing software such as ORA. The allowed inputs for the “time periods” parameter are: 

• “initial” will output only the initial state of the network before the simulation begins. 

• “last” will output the final state of the network at the end of the simulation as well as 

the initial state of the network. 

• “all” will output the initial network and the network at the end of each time period in 

the simulation. 

• A comma separated list of time period indexes. I.e., “1,3,5,7”. Each index indicates 

which time period index should a network’s state be captured. An index of -1 indicates 

the network’s state should be captured before any simulation takes place. 

http://www.casos.cs.cmu.edu/projects/dynetml/
http://www.casos.cs.cmu.edu/projects/ora/
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Messages 

The Messages output routine uses “messages” for the type attribute and has only one 

parameter “output file”. Any file or file path can be used to designate the output file with the 

only requirement being the “.json” extension be at the end of the string. The JSON representation 

in the output file contains all messages sent each time step. Messages contain the sending agent 

index, receiving agent index, the name of the communication medium used, and a list of message 

items. Each message item contains a set of attributes, indexes, and values. Below is an example of 

a message in JSON format. 

{ 

 "sender" : 93, 

 "receiver" : 0, 

 "medium name" : "CommunicationMedium_0", 

 "Items" : [ 

  { 

   "attributes" : {"belief"], 

   "indexes" : { 

    "belief" : 3 

   }, 

   "values" : { 

    “belief” : 4 

   } 

  } 

 ] 

} 

In the above example, agent 93 sent a message to agent 0 using 

“CommunicationMedium_0”. The message contains only one item. The “belief” attribute 

indicates this item contains a belief that is to be sent to the receiver. The belief in indexes indicates 

the belief node index being communicated is 3. The belief in values indicates the value of the 

sender’s corresponding belief link value. This gives a complete list of all messages sent using 

Construct’s central messaging system. 

Media Events 

The  Media Events output routines uses “media events” for the type attribute. This output has 

4 parameters.  

• “output file” specifies the full name of the file that the output should write to.  

• “model name” specifies which model contains a media event container, which is any 

model in the Social Media Model family.  

• “start time” indicates the date the that the simulation is starting at using the 

following format "YYYY-mm-ddTHH:MM:SS.000Z".   

• “time conversion to seconds” provides the conversion from the datetime format 

to a unit time such that the Social Media Model’s time duration of each time period 

multiplies by the conversion equals the duration in seconds of each time period. 
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The output routine will then create a Json formatted file and save information regarding all 

events generated. The Twitter V2 Json Format is used and information on indexes such as 

knowledge or values such as trust are saved in the “entities” property of an event.
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PART FOUR: Construct API 

The Construct Application Programming Interface (API) exists in the Consturct-API 

repository on the CASOS GitHub. The API consists of an executable for each operating system 

that can call the API functions, a header and statically linked library to allow the use of Construct’s 

classes, functions, and namespaces, and the source files for the Construct API which produces a 

dynamically linked library (DLL). The executables seen in this repository differ from the 

introductory executable used as they require the file Construct_DLL.dll in order to execute. This 

section is geared towards those wishing to develop their own model. The implementation and 

example language used is C++. How this API can be used to create custom models, output, and 

unique users for social media models is discussed below. This section focuses on overall concepts 

and the detailed API documentation can be found on the CASOS Construct main page as well as 

through the GitHub repository. 

Creating Custom Models 

Construct has, throughout its history, constantly evolved as development continues to improve 

the underlying code base. Rather than develop for every possible case a modeler may require, the 

ability to create custom models was implemented. Models can be created that are completely stand 

alone and do not interact with any other part of Construct. Models can also be created to interact 

with the shared content between models. Finally, through class inheritance, models can copy 

components of an existing model and apply alterations to those components. This section will go 

over all the requirements a Construct model must meet to eliminate undefined behavior. 

To create a custom model, a new class or struct must be created that inherits from the Model 

class. This can be seen in the Template class in the Template.h file. In addition, Template.cpp also 

contains many examples of using various Construct functions and classes. Classes that inherit from 

the Model class can reimplement five virtual functions that correspond to the steps of Construct 

simulation cycle detailed in Models and Construct Program Flow. If the base virtual functions are 

not replaced, they do not have any effect on the Construct simulation but will output warnings 

when Construct parameter “verbose runtime” is set to true and when using the DEBUG 

executable version. Finally, all Construct model constructors require as input the pointer to the 

Construct class which is which is subsequently passed to the Model constructor. This will 

initialize many of a model’s member variables including the now saved Construct pointer 

(Model::construct) and pointers to the Node (Model::ns_manager), Graph 

(Model::graph_manager), and Random (Model::random) managers. A Construct model’s 

constructor can also accept a dynet::ParameterMap as input and allows for model parameters to 

be passed to a model. 

Simply creating the class however is insufficient to allow Construct to create the model when 

requested via the input deck. The entry point for a custom model is in the function  

dynet::create_model, which is defined in Supp_Library.h and Supp_Library.cpp This function 

https://github.com/CASOS-IDeaS-CMU/Construct-API
http://casos.cs.cmu.edu/projects/construct/API/index.html
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is called by the Model Manager class and passes the Construct pointer (construct), the model’s 

parameters (parameters), and the name of the model the manager is trying to load (model_name). 

In the function is a series of if-else statements used to select appropriate model constructor. To 

allow a custom model to be created, the if-else statement checks if the model_name is equivalent 

to each model’s name. The string conditioned on in this statement should match the string 

submitted to the Model constructor, otherwise an assertion will be raised. The contents of this 

statement should allocate the custom model’s pointer using new. The created pointer should then 

be immediately returned by the function. Once a Model pointer is returned from the function, the 

Model Manager takes ownership (the model pointer will be deallocated by the Model Manager 

and should not be deallocated by any other entity). Once the pointer ownership has been transferred 

and no exceptions have been raised, Construct will automatically call the appropriate functions of 

the custom model during the simulation cycle. 

Construct throws dynet::construct_exception as exceptions which is derived from 

std::exception as well as other exceptions derived from dynet::construct_exception. 

Construct’s exceptions protects for the many possible ways the end user can include potentially 

problematic input such as setting a float parameter to “duck”. Exceptions that are not Construct 

exceptions indicate possible bugs and should be reported to the ORA google group. Additionally, 

when using the DEBUG compilation flag and the corresponding executable in the Debug folder, 

Construct will check various conditions and raise assertions upon failure. These assertions contain 

only the assertion message, which begin with the phrase “Construct has raised an assertion”. 

Creating Custom Output 

As with models, the API allows for the creation of custom output routines. A custom output 

may be more advantageous than coding an output into a model as the logging of output is 

guaranteed to happen after all models have completed their clean up function. There are many 

similarities between Models and Output in terms of their injection in Construct. All outputs inherit 

from the Output class and the Output Manager calls the function dynet::create_output which 

takes as input a similar set as dynet::create_model. Similarly, a series of if-else statements are 

used to select the correct constructor but using the input output_name instead of model_name. The 

classes and return statement also follow a similar structure except the Output Manager takes 

ownership of Output pointers. Classes that inherit from the Output class have no strict 

requirements on the form of its constructor and should reimplement Output::process which is 

called by the Output Manager after models have completed their clean up functions. 

Creating Custom Social Media Users 

For all models in the Social Media family of models, an associated dynet::load_users exists 

to allow developers to add and create their own custom media users without having to rebuild any 

of the existing Social Media models as a custom model. This function is enabled only if the 

preprocessor definition CUSTOM_MEDIA_USERS is defined. In this function, each entry in the 

Social_Media_no_followers::users data structure should be populated with an example of 

https://groups.google.com/g/ORA-google-group
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population being shown in the default definition. See the API documentation to determine what 

methods can be modified and the possible effects of those modifications. 

GUI Integration 

Custom nodesets, networks, models, and output can be loaded into the Construct GUI. In the 

parameters tab under Custom Library, select the dynamic library file containing your 

customizations. To set your custom objects in the GUI, select the type of object 

(nodeset/network/output/model) from the menu option at the top of the screen. From there you can 

add a custom object by selecting the menu option “create custom 

(nodeset/network/output/model)”. Once you’ve specified all of the required options and selected 

ok, you can select the custom object from a corresponding drop-down option. Alternatively, you 

can select the “add custom (nodeset/network/model/output)” in any corresponding drop-down 

menu. The latter option in addition to creating the custom entity will also cause the newly created 

entity to be selected in the drop-down menu. 

Nodesets require only a name, while networks require a name, edge type bool, int, unsigned 

int, float, string), a source nodeset, and a target nodeset. If a slice nodeset is given, the network 

becomes a 3d network. Models only require a name and can have any number of parameters. The 

type of parameters allowed are a true/false option, a file selection, or a general text field. Outputs 

are similar to models in terms of inputs, but the types of parameters are instead, model selection, 

network selection, multi-network selection, and general text field. 

Full Control of a Custom Construct Construction 

Developers confident in their knowledge of C++ and of Construct can create an instance of 

Construct using its constructor. This constructor only initializes empty managers and sets the 

random seed based on the submitted seed value. All Construct parameters, nodesets, 

networks/graphs, models, and outputs require manual creation. This obviously allows for 

significantly increased customization, but also allows for pointers outside of Construct to be added 

to models or outputs as they can be constructed outside of Construct. Once all the components are 

loaded, the simulation can be started by calling “Construct::run”, which initializes all models 

and begins the simulation cycle. A try statement should surround the section of code that loads all 

the Construct components to catch any string exceptions thrown. The “Construct::run” function 

is already wrapped internally with the appropriate try and catch statements and returns false if any 

exceptions is thrown. “Construct::run” can only be called once otherwise, an assertion is raised. 
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Appendices 

Appendix A A History of Construct 

Construct is the embodiment of constructuralism, a mega-theory which states that the socio-

cultural environment is continually being constructed and reconstructed through individual cycles 

of action, adaptation, and motivation. Many social science theories and findings are part of the 

constructural theoretical approach including structuration theory (Giddens, 1986), social 

information processing theory (Salancik & Pfeffer, 1978), symbolic interactionism (Manis and 

Meltzer, 1978; Stryker, 1980), social influence theory (Friedkin, 1998), cognitive dissonance 

(Festinger, 1957), social constructivism (Kim, 2001), and social comparison (Festinger, 1954).  In 

addition, several cognitive processes are embedded such as transactive memory (Wegner, 1987). 

In 1990, research done by Kathleen M. Carley on group stability initiated early model designs 

for Construct. In her paper, Group Stability: A socio-cognitive approach, she created a socio-

cognitive model based on nonstructural theory to predict changes in interaction patterns among 

workers in a tailor shop in Zambia (Carley, 1990). The model tested behaviors that occurred on 

individuals, such as social change or stability changes that were derived from interaction, as well 

as the exchange of information between the workers. The resulting observation and analysis of 

these behaviors provided an explanation for why the workers were able to go on strike successfully 

after an aborted first strike. The first basic principle of the model is that in every social group, there 

are facts within the group that have the potential to be learned by members in the group. 

Information can be broken down into individual facts, which can then be measured quantitatively 

for a social group. The second basic principle of the model states that there is a probability that 

certain individuals will interact with one another and exchange facts, which then leads to shared 

knowledge. The third basic principle states that similar individuals who share common knowledge 

are more likely to interact. This implies that individuals consider how much in common they have 

with others before they choose to interact and communicate information. The combination of these 

three principles leads to the interaction/knowledge cycle, which is what Construct is designed to 

simulate. This model initially takes a description of a particular society in terms of culture and 

structure and predicts the ways in which the society can evolve. With these concepts in place, the 

Construct model continued to evolve.  

With advances in computing throughout the 1990’s, the Construct model gained more 

opportunities and capabilities for real world application. The ability to process large amounts of 

data to predict outcomes on large, scaled populations was critical in construct’s development. One 

of the key developments for the Construct model computationally was research done on knowledge 

transfer, and its effect on an organization or social group. In 2003, Schreiber and Carley explored 

database technology and its support of knowledge transfer. Virtual experiments using the construct 

model were run using two group conditions, task complexity and experience, to examine how task 

and referential data types differ when simulating knowledge transfer (Schreiber & Carley, 2003). 

Transactive memory is also represented by the model to incorporate perception of other’s 
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knowledge in the social group. Each agent in the model is assigned task and transactive knowledge, 

which are then represented by task databases and referential databases (Schreiber & Carley, 2003). 

The virtual experiment showed that these databases influence task complexity as well as 

experience, and that knowledge transfer can be represented in different forms to effectively 

simulate transfer within an organization. Task data was shown to be most useful for knowledge 

transfer of simple to moderate level tasks, while referential data was shown to be more useful for 

complex tasks.    

In 2004 Schreiber, Singh, and Carley, described a more complex version of the original 

Construct-TM model. In addition to having the ability to interact with other human agents, in this 

model agents could interact with objects that contain information, such as a book or an 

advertisement. Agents were given several types of capabilities and limitations; examples included 

control over the ability to communicate and receive information (Schreiber et al., 2004). The 

number of agent groups was limited to 3 and the number of agents limited to 101 (Schreiber 2004). 

The interaction mechanism allowed agents to interact based on proximity, perception of others, 

referrals, access to information, and the ability of forgetting. Knowledge was represented as binary 

strings, which determined an agent’s decision as well as perception of other agents’ knowledge. 

Knowledge was limited to 500 facts and up to 25 tasks were assigned for each particular knowledge 

bit.   

New mechanisms for belief were abandoned, several different approaches for adding in 

different communication logics were added, and new telecommunication technologies. The ability 

to specify event histories in external scripts and new communication regimes supported the ability 

to model taxpayer behavior (Carley & Maxwell, 2006). Geo-proximity modeling was added to 

support assessment of terror groups (Moon & Carley, 2007). Collectively these changes and others 

made the entire system more robust and more powerful at modeling the human condition. At this 

point, the entire system was refactored, thereby increasing maintainability and speed. The modern 

system is more extensive and can support many more agents and types of communication 

technologies such as email, books, news, phone, call-centers, lectures, billboards, web pages and 

so on. This system was then used to assess social change (Carley et al., 2009) and non-compliance 

(Carley et al, 2010). 

The next major innovation was the incorporation of social intelligence. The agents now 

perceived their social network, constrained behavior based on socio-cognitive constraints on 

network formation, thus focusing on their local sphere of influence (Joseph, Morgan et al., 2014). 

This made it possible to increase the size of the populations that could be modeled, increased the 

speed of processing, and increased the realism of the results. Memory usage was now 

approximately linear with the number of agents. 

Meanwhile Construct was more tightly integrated with ORA. The toolchain, linking AutoMap 

(later NetMapper), ORA and Construct, meant that the user could go from text mining to the 

extraction of networks, to simulation. This process supports model reuse and reduces time to model 

large populations. It also means that models could be more easily instantiated with real world data. 
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This was used to assess revolutionary activity during the Arab Spring, and so to predict 

revolutionary behavior given changes in what was covered in the news (Joseph, Carley, et al., 

2014). 

In 2020, Construct-TM returned to its original name of Construct with many of the components 

that were tied into one model, compartmentalized into separate models. Along with utilizing 

default values, the overall complexity for new users was drastically reduced. Many of the plethora 

of input options including an in-string scripting language and output routines were removed in 

place of an Application Programming Interface (API). The increase in popular and accessible 

scripting languages like Python for data analysis, removes the necessity this extra complexity. This 

decrease in complexity allows for a lower barrier of entry for those wishing to use the software. 

Another critical advance is the utilization of a network data structure that can be dense or sparse 

along a dimension depending on the user’s needs. The ability to freely decide whether to sacrifice 

memory space to increase speed, or sacrifice speed in exchange for less memory space used allows 

users far more control and thus access to much larger simulations than previous possible. 

These modifications allowed for the addition of a social media model to model medias such as 

Facebook and Facebook. These models simulate the actual media structure using events and feeds 

rather than using a proxy for transmitting the contents of tweets and posts. In addition, a 

mechanism was added to allow others to display their trust in a piece of knowledge. For example, 

I trust the statement “The earth is round” or I mostly distrust the statement “This person is 

innocent”. Finally, the capability was implemented using the Construct API to allow custom social 

medias to be created as well as customization of how the participating agents function in the 

existing or custom social media models.

Appendix B Construct in High Performance Computing (HPC) 

Environments 

In many ways, the resource we are concerned when we do simulation shifts from the person-

hours necessary to complete surveys and in-depth interviews to computational complexity in both 

time and space. In particular, the goal is to be able to complete a large-scale simulation project 

with the idea of “single-click” from starting the simulation through result generation, and with an 

implementation that allows us to quickly tweak simulation parameters and rerun all simulations. 

To understand the difficulties associated with simulation in a large-scale project, we now 

present the scenario we faced in a previous experiment, described in more detail in Carley and 

Maxwell (2006). In this project, we were faced with approximately 2,000 runs, each of a 

population of 4,000 agents, along with their attributes, their initial knowledge, and the associated 

social network. This model, perhaps one of the most complex social simulation models run in 

Construct, took nearly five hours per run. Thus, the sequential cost of running these simulations 

for a single researcher on a single processor is just about enough time for a research grant to expire. 

As technology has advanced though this limitation has been relieved. In this section, we detail 
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such innovations for the interested user, and then give examples of how to utilize the tools for HPC 

environments employed at CASOS. 

The first innovation, of course, is the ability for computers to talk to each other. This allows us 

to use a single terminal to run simulations on other computers at our disposal and have them return 

the results. The second innovation was the development of multi-core processors and computers 

with multiple processors. Because Construct, by default, runs on a single core of a processor, we 

can not only run our simulations on other computers, but run multiple simulations on each of them 

at the same time, independently of each other. The computing power of our center is likely better 

than most settings, but by no means ideal. Upon the running of simulations for Carley and Maxwell 

(2006), our center possessed 234 processor cores upon which simulation runs could be done, 

though many of these cores were being intermittently used by other members of our research 

center. 

The final innovation of computer science, the MapReduce framework (Apache Software 

Foundation, 2019; MapReduce, 2020; ), answers the question of how we can “black box” both the 

distribution of simulations and the coalition of their output to various machines that can be 

potentially interrupted at any time. In its most basic definition, the MapReduce framework “maps” 

out simulations to different machines, ensuring in some way that we will receive output from each 

machine, and “reduces” all our output to a single format which we can specify.  

Several open-source packages exist to implement the MapReduce framework on computers 

that researchers have available to them. Importantly, such a framework allows the researcher to be 

ignorant of the number of processors he or she has available – the MapReduce concept works in 

the same way (though with obvious time increases) on a single core as it does on the millions of 

cores used by companies such as Google. We use the HTCondor (formerly Condor) High 

Throughput Computing (HTC) software (https://research.cs.wisc.edu/htcondor/) to connect 

machines in our center, and their DAGMan (Directed Acyclic Graph Manager) 

(https://research.cs.wisc.edu/htcondor/dagman/dagman.html) application, along with some 

straightforward scripting, to implement the MapReduce framework.  

The MapReduce framework, along with some well-known interventions, allow our workflow 

to have two vital properties. First, the given workflow maximizes the resources available to the 

researcher. A problem which could have naively taken, even under ideal computing circumstances 

on a single machine, months to complete, has been reduced to a few days at most. Indeed, a 

researcher need not even obtain more machines, as with the advent of cloud computing, they can 

access technologies that hide all implementation details of the MapReduce framework and give 

cheap access to an unlimited supply of machines, such as Amazon’s EC2 cluster. Indeed, workflow 

technologies like SORASCS (Schmerl 2011) are rapidly evolving to allow full workflow to be 

completed without a researcher having access to anything other than a single computer and the 

Internet. If the researcher does have a large supply of machines available, such speedup has been 

achieved with free, open-source, easy-to-install technologies. 

https://research.cs.wisc.edu/htcondor/
https://research.cs.wisc.edu/htcondor/dagman/dagman.html
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Having explained, at a high level, the concepts incorporated in running Construct in parallel 

on multiple machines, it is now useful to describe in more detail how such tools can be utilized. 

The first objective, of course, is to obtain some way of submitting Construct runs to multiple 

machines. Here, we will discuss the HTCondor cluster framework implemented at CASOS. The 

first step, of course, is to install HTCondor onto machines in your cluster- this step is not covered 

here but is described in detail in the HTCondor setup manual, located at 

https://htcondor.readthedocs.io/en/latest/index.html. 

Once installed properly, a machine with HTCondor installed on it and a user with submission 

privileges from that machine can submit jobs from that machine onto the cluster in a series of 

simple steps. First, the user should set up a CSV file with the parameters indicating the conditions 

of the experiment they would like to have changed. From here on out, we will refer to this file as 

the conditions file, to represent the fact that it holds all the conditions necessary for the entire 

experiment. We will differentiate this later with a parameter file, which holds the conditions 

necessary to run a single cell of the experiment. In a trivial experiment, where the goal is to test 

an effect on different population sizes, the conditions file would look something like this: 

 AgentSize,10,100,100 

The first column of the file simply labels the condition being changed - though this is not 

necessary (we will never tell Construct to look at this value), it is naturally useful in keeping track 

of which lines of your parameters file refer to which condition. Once this parameter file has been 

specified, we need some way to submit (in this case) three different runs to multiple machines via 

HTCondor. To do so, we need to complete three further steps. 

The first step is to create three different parameter files - one for each of the different 

conditions. This can be done using your favorite scripting language. Below, we give a simple 

example, in Python, which reads a conditions file and generates a parameter file (recall that a 

parameter file is simply a set of conditions necessary to run a single experiment) in a directory 

whose name specifies the conditions for that directory. (Note that if you are not comfortable doing 

such programming, for small experiments, it is quite easy to do this step manually). 

import csv, itertools, os 

with open("conditions_file.csv", "r") as condFile: 

 reader = csv.reader(condFile) 

 values = [] 

 conditionTitles = [] 

 for line in reader: 

  conditionTitles.append(line[0]) 

  values.append([val for val in line[1:] if val != ""]) 

 experimentalSet = list(itertools.product(*values)) 

 numVals = len(conditionTitles) 

 for experiment in experimentalSet: 

  condsString = '_'.join(str(i) for i in experiment)  

  os.mkdir(condsString); 

  with open(os.path.join(condsString,"params.csv"), "w") as paramFile: 

   for i in range(numVals): 

 paramFile.write(conditionTitles[i]+ "," + experiment[i] + '\n') 

https://htcondor.readthedocs.io/en/latest/index.html
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To run this script, place it in the same directory as your conditions file, name the conditions 

file “conditions_file.csv”, and use Python (this example was written for Python version 2.7) to run 

the script. For information on how to download Python and run a script, consult the Python 

documentation at https://www.python.org/. 

Assuming you use the same methodology suggested in the script above, you will now have the 

following in the directory in which you placed your conditions file and ran the script: your 

conditions file (conditions_file.csv), the Python script (your_naming_of_python_script_above.py) 

and three Folders 10, 100, and 100, each with one file called params.csv. The second step to submit 

to HTCondor is to develop your model (i.e., the XML file described above) and to allow the model 

to read in as a parameter from a CSV file the conditions you are interested in. In this case, we 

would change the “agent_count” variable to be instantiated as follows: 

<var name="agent_count" value="readFromCSVFile[“params.csv”,0,1]/> 

As we know from the above sections, this tells Construct to read the agent_count variable from 

the first (zeroth) row and the second (zero-indexed) column of the csv file “params.csv”. Once we 

have done this, we can add our XML file to the directory we are working in (i.e., at the same level 

as conditions_file.csv). Note that this implementation will only require us to have a single model 

file, which is desirable with respect to person-hours required to change the model and the amount 

of space needed to store results. 

The final step is to create a submission file that HTCondor will use. Though we do not detail 

in depth the details of HTCondor submission, below is a file that, placed at the same level of the 

directory as your XML model file, will allow you to run the simple experiment described here. 

Note that you should replace YOUR_MODEL_FILE_NAME.xml with the name of your XML file 

and include a construct executable with the name “Construct.exe” in your directory as well. 

universe   = vanilla  

requirements  = ((ARCH == "INTEL" || ARCH=="X86_64") &&  

((OPSYS == "WINNT51") ||(OPSYS == "WINNT52") || (OPSYS == "WINNT61") || 

(OPSYS == "WINDOWS")) 

should_transfer_files  = YES  

when_to_transfer_output = ON_EXIT  

executable    = Construct.exe  

transfer_executable  = true  

notification   = Never 

arguments    = YOUR_MODEL_FILE_NAME.xml 

output    = out_setup_to_construct.txt 

error    = err_setup_to_construct.txt 

log  = condor.log 

transfer_input_files  = params.csv 

initialdir    = 10 

queue 

initialdir    = 100 

queue 

initialdir    = 1000 

queue 

https://www.python.org/
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The file, generally, tells HTCondor where to find your executable and model file, and then to 

run three times in each of your experimental directories, using the parameter file within that 

directory. This file also contains requirements for what operating system to run on and specifies 

that all files written out by Construct (e.g., in ReadGraph operations) should be transferred back 

to your machine after they are run. Putting the text above into a file called 

“condor_submission.sub” and assuming the PATH variable on your machine includes the 

HTCondor executables, opening a command prompt, changing to the directory we have discussed 

here, and typing in the following will run the given experiment. 

THIS_DIRECTORY> condor_submit condor_submission.sub 

You can use other HTCondor programs, such as condor_q to check the status of your runs 

- for full details, see the Condor manual (https://htcondor.readthedocs.io/en/latest/man-

pages/condor_q.html) and (Knoeller, 2013). 

 

 

Appendix C Construct in Research Literature 

Below are some brief descriptions of projects that used Construct. Links to the full publications 

and project sites are available in the References section. 

Predicting Intentional and Inadvertent Non-compliance  

By: Kathleen M. Carley, Dawn C. Robertson, Michael K. Martin, Ju-Sung Lee, Jesse L. St. 

Charles, Brian R. Hirshman (Carley et al., 2010) 

Models for predicting intentional and inadvertent errors on tax returns were developed using 

two approaches: the first was metamodeling using literature on errors, and the second was using 

statistical machine learning to derive a model from tax audits. The reliability of the models is 

dependent on the amount of data, the quality of the data, and whether the learning techniques are 

supervised or unsupervised. IRS audit data does have some reliability issues; the taxpayer’s 

motives are unknown at the time of filing, and the standard is high for proving intentional 

misreporting. The models take these biases into account through an ensemble modeling approach. 

The methods shown in this study are useful in creating a predictive model of taxpayer behavior.  

Agent Interactions in Construct: An Empirical Validation using Calibrated Grounding 

By: Craig Schreiber, Kathleen M. Carley (Schreiber & Carley, 2007) 

Schreiber and Carley conducted a validation study for Construct. The focus of the study was 

on the ability of Construct to produce an initial state of agent interactions which resemble how a 

real-world network communicates. The calibrated grounding technique was used to validate the 

model. Construct was shown to produce a valid initial state of interactions. 

https://htcondor.readthedocs.io/en/latest/man-pages/condor_q.html
https://htcondor.readthedocs.io/en/latest/man-pages/condor_q.html
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Computational organization science: A new frontier 

By: Kathleen M. Carley (Carley, 2002) 

According to synthetic adaptation, any entity that is composed of intelligent, adaptive, and 

computational agents is also an intelligent, adaptive, and computational agent. Organizations are 

inherently computational because of synthetic adaptation. The behavior of groups and 

organizations can be explained by using multi agent computational models that are composed of 

intelligent adaptive agents. Construct is an example of such a model; by combining a network with 

a multi-agent approach, the model becomes more realistic. A series of virtual experiments use this 

model to show the power of this approach for analysis of societies and organizations. 

A Dynamic Network Approach to the Assessment of Terrorist Groups and the Impact of 

Alternative Courses of Action 

By: Kathleen M. Carley (Carley, 2006) 

Dynamic network analysis is based on the collection, analysis, understanding, and prediction 

of dynamic relations amongst various entities such as actors, events, and resources, and their 

impact on individual and group behavior. Using dynamic network analysis, terrorist groups were 

examined as complex dynamic networked systems that evolve over time. The use of dynamic 

network analysis tools to analyze a terrorist group is demonstrated. Techniques that are 

demonstrated include identifying spheres of influence amongst actors, determining emergent 

leaders in the network, and how using network metrics can assess the impacts of various actions 

within the group.  

Modeling Complex Socio-technical Systems using Multi-Agent Simulation Methods 

By: Maksim Tsvetovat, Kathleen M. Carley (Tsvetovat & Carley, 2004) 

To study complex social and technological systems, underlying psychological and sociological 

principles, as well as communication patterns and technologies within these systems must be 

measured and understood. The creation of high-fidelity models of these systems requires a 

combination of analytical models with empirically grounded simulation, to form multi agent 

systems. These multi agent systems incorporate learning algorithms as well as other social network 

phenomena. The power of these methods are demonstrated by creating a multi-agent network 

model of networks such as terrorist organizations. This ultimately creates a generalizable and 

valuable process for analyzing complex social systems, by using AI algorithms combined with an 

analytic approach. 

On the Coevolution of Stereotype, Culture, and Social Relationships: An Agent-Based 

Model 

By: Kenneth Joseph, Geoffrey P. Morgan, Michael K. Martin, Kathleen M. Carley (Joseph, 

Morgan, et al., 2014) 
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The theory of constructuralism describes how shared knowledge, representative of cultural forms, 

develops between individuals through social interaction. Constructuralism argues that through 

interaction and individual learning, the social network (who interacts with whom) and the 

knowledge network (who knows what) coevolve. In the present work, we extend the theory of 

constructuralism and implement this extension in an agent-based model (ABM). Our work focuses 

on the theory’s inability to describe how people form and utilize stereotypes of higher order social 

structures, in particular observable social groups and society as a whole. In our ABM, we formalize 

this theoretical extension by creating agents that construct, adapt, and utilize social stereotypes of 

individuals, social groups, and society. We then use this model to carry out a virtual experiment 

that explores how ethnocentric stereotypes and the underlying distribution of culture in an artificial 

society interact to produce varying levels of social relationships across social groups. In general, 

we find that neither stereotypes nor the form of underlying cultural structures alone are sufficient 

to explain the extent of social relationships across social groups. Rather, we provide evidence that 

shared culture, social relations, and group stereotypes all intermingle to produce macrosocial 

structure. 
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