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Abstract- Evolutionary pattern search algorithms (EP-
SAs) are a class of evolutionary algorithms (EAs) that
have stationary-point convergence guarantees on a broad
class of nonconvex continuous problems. We have ana-
lyzed the empirical performance of EPSAs. This paper re-
visits that analysis and extends it to a more general model
of mutation. We evaluate experimentally how the choice
of the set of mutation offsets affects optimization perfor-
mance for EPSAs. In addition, we compare EPSAs to self-
adaptive EAs with respect to robustness and rate of opti-
mization. All experiments employ a suite of test functions
representing a range of modality and number of multiple
minima.

1 Introduction

Evolutionary pattern search algorithms (EPSAs) are distin-
guished from other evolutionary algorithms (EAs) by the con-
vergence theory which proves that they almost surely con-
verge to a stationary point of any continuously differentiable
function [8, 6, 5]. Convergence proofs have been developed
for other evolutionary algorithms for convex functions [2, 1].
However, the convergence theory for evolutionary pattern
search provides the first assurance of a stationary-point con-
vergence for multimodal, nonconvex problems.

EPSAs are also distinguished from most other EAs ap-
plied to continuous search problems by the manner in which
mutation is applied. EPSAs perform mutation by adding a
scaled integer vector to an individual, and these mutation vec-
tors are selected from a finite set of possible mutation offsets.
By contrast, methods like evolutionary programming [4] and
evolution strategies [11] typically add a vector of offsets that
is normally distributed in each dimension.

The initial analysis of EPSAs [6, 5] considered a set of
mutation offsets defined by the unit vectors along each co-
ordinate axis, ei and �ei. More recently, we have extended
the analysis of EPSAs to allow a broader class of mutation
offsets [8]. Specifically, the set of mutation offsets is simply
required to form a positive basis of the search domain.

In addition to extending the class of EPSAs, this analysis
allows the step length parameter for mutation to be reduced
after n + 1 mutation steps instead of the 2n mutation steps
required by the former convergence theory. Since this analy-

sis is asymptotic, these new EPSAs may not necessarily con-
verge more quickly. However, our prior work with EPSAs [7]
suggests that the performance of EPSAs can be limited by the
rate at which they reduce the mutation step length.

This paper presents an experimental analysis that evalu-
ates the relative importance of several algorithmic factors for
EPSAs: the set of mutation offsets, the use of a crossover
operator, the expansion factor for the mutation step length,
and the manner in which mutation is selected stochastically.
Our experiments confirm that EPSAs converge more quickly
when fewer mutation steps need to be considered before re-
ducing the mutation step length. Using crossover uniformly
produced superior solutions at the cost of requiring substan-
tially more function evaluations to terminate. Finally, our ex-
periments compare the performance of EPSAs with EP, and
indicate that EPSAs are competitive with EPs.

2 Background

2.1 Self-Adaptive Evolutionary Algorithms

Evolutionary programming (EP) and evolution strategies (ES)
are standard paradigms for applying evolutionary methods to
continuous optimization problems [4, 11]. EP and ES are
similar in many respects. These EAs do not always rely on
recombination to perform a global search of the search do-
main. In both EAs, mutation is performed by adding nor-
mally distributed random variables to each dimension of an
individual. Furthermore, the standard deviation of these nor-
mal deviates is typically modified by a self-adaptive mecha-
nism. This mechanism can be viewed as a separate encoding
of the mutation standard deviation along with the search pa-
rameters.

Figure 1 shows pseudo-code for a canonical EP or ES
that uses self-adaptation. N(0; 1) is a normally distributed
variable with standard deviation 1, and N(0; �) is a vector
of normally distributed random variables with standard de-
viation �i. The function selection selects individuals from
the previous population (possibly creating a multiset) that are
used to perform additional search, and the function compose
forms the next population using the newly generated points
and the previous population. This code uses a log normal up-
date to �i; on a test set of six standard functions, Saravanan,



(1) Given initial step length vectors f�01 ; : : : ; �0Ng
(2) Uniformly select X0 = fx01; : : : ; x0Ng, x0i 2 Rn

(3) x�0 = argminff(x01); : : : ; f(x0N )g
(4) Repeat t = 0; 1; : : :

(5) X̂ = selection(Xt)

(6) For i = 1 : N

(7) � = N(0; 1)

(8) For j = 1 : n

(9) �
t+1
i (j) = �

t
i(j) � exp(�

0
� + �N(0; 1))

(10) x̂i(j) = x̂i(j) +N(0; �
t+1
i (j))

(11) Xt+1 = compose(Xt; X̂)

(12) x
�

t+1 = argminff(x�t ); f(x
t+1
1 ); : : : ; f(x

t+1
N )g

(13) Until some stopping criterion is satisfied
Figure 1: A canonical EP or ES using self-adaptation.

Fogel, and Nelson [10] find that this method is generally
preferable to the additive update that was initially proposed

for EP. This update uses the constants � =

�p
2
p
n

�
�1

and

�
0 =
�p

2n
��1

[10]. The stopping rules used for EP and ES
methods typically rely on measures of the rate of improve-
ment or population statistics that evaluate whether or not the
population has converged to a single point [4, 11].

2.2 Evolutionary Pattern Search Algorithms (EPSA)

Figure 2 shows pseudo-code for a class of simple EPSAs.
These methods share many of the common features of stan-
dard EAs like EP and ES. Mild conditions are placed upon
the selection and compose functions to ensure that (a) the
best point in the population has a nonzero chance of be-
ing selected in each generation and (b) the best point in the
population is always kept in subsequent populations. The
crossover function is also restricted to generate a point such
that crossover(x; y) 2 fx1; y1g�fx2; y2g� : : :�fxn; yng,
which is consistent with most standard crossover operators
(e.g. two-point crossover). The call to uint(j) uniformly gen-
erates an integer from 1 to j.

EPSAs differ from self-adaptive EAs like the EP in Fig-
ure 1 in that the step length parameter is controlled explicitly.
EPSAs use a single step length parameter for all dimensions.
The step length parameter may be expanded if an improving
step is generated from a mutation step off of the current best
point. Also, the step length may be contracted if all mutation
steps about the current best point have worse fitness than the
current best point.

This method of explicitly controlling the step length for
mutation enables a stationary point convergence theory for
EPSAs. This convergence theory guarantees that for a contin-
uously differentiable function the sequence of best solutions
in each generation, fx�kg, has the property that

P

�
lim inf
k!1

k 5 f(x�k)k = 0

�
= 1;

where 5f(x) is the gradient of f at x [6, 5]. Although this

is a stationary-point convergence theory, experience with di-
rect search methods suggests that EPSAs can be successfully
applied to a wide range of optimization problems [9, 13, 14].
Our previous empirical evaluation of EPSAs [7] indicates that
they can perform a nonlocal optimization of the search do-
main.

We can replace step 13 in Figure 2 with
(13.a) For i = 1 : N

(13.b) y = x̂i

(13.c) For j = 1 : k

(13.d) If (unif() < �) then
(13.e) x̂i = x̂i +�t � sj
(13.f) If (9j 2 1 : k s.t. x̂i == y + sj) �j = 1

This performs a random selection of the mutation steps, po-
tentially applying multiple mutation steps. This is roughly
equivalent to the binomial mutation [7] that is commonly
used in genetic algorithms (see Section 3). Suppose that
S = Sstd = fe1;�e1; : : : ; en;�eng, where ei is the unit
vector in the ith dimension. The method used to implement
mutation in Figure 2 is equivalent to the multinomial muta-
tion operator described by Hart [7], which mutates a single
dimension at a time.

3 EPSA Design

Although the definition of EPSAs is broad enough to encom-
pass a wide range of algorithmic options, the convergence
analysis for these methods provides little insight into what
types of algorithmic designs will provide the best empirical
performance. We have previously examined algorithmic fac-
tors likely to impact the empirical performance of EPSAs,
like the choice of the mutation operator and the effect of
crossover [7].

Here we address two additional factors. First we evalu-
ate the utility of allowing the step length to be expanded or
contracted. In our previous experimental analysis the step
length was only contracted, but the convergence theory al-
lows for step length expansion as well. We consider a simple
step length expansion policy: if a mutation step from the best
point yields an improvement then expand the step length. Ex-
pansion allows an EPSA to follow a descent direction more
rapidly. However, this may also limit the rate at which an
EPSA converges to a stationary point. Consequently, it is un-
clear whether this algorithmic factor is beneficial.

Secondly we reconsider the set of mutation steps used in
the EPSA. The generalized convergence theory requires that
the set of mutation offsets form a positive basis of the search
domain. The positive span of a set of vectors fa1; : : : ; arg is
the cone fa 2 Rn j a = c1a1 + : : : + crar; ci � 0 8ig.
The set fa1; : : : ; arg is positive independent if none of the
ai’s is a positive combination of the others. A positive basis
is a positive independent set whose positive span is Rn. A
positive basis has at least n+1 vectors and at most 2n vectors.

Figure 3 illustrates two sets of mutation offsets. Figure 3a
depicts the standard mutation offsets. This set of offsets uses



(1) Given �0 2 Q>0

(2) Given S = fs1; : : : ; smg, where si 2 Zn and S forms a positive basis.
(3) Let � = f0gm

(4) Uniformly select X0 = fx01; : : : ; x0Ng, x0i 2 Qn

(5) x�0 = argminff(x01); : : : ; f(x0N )g
(6) Repeat t = 0; 1; : : :

(7) X = selection(Xt)

(8) For i = 1 : N

(9) If (unif() < �) then
(10) x̂i = crossover(xuint(N); xuint(N))

(11) Else
(12) x̂i = xuint(N)

(13.a) For i = 1 : N

(13.b) If (unif() < �) then
(13.c) j = uint(m)

(13.d) If (x̂i == x
�

t�1) �j = 1

(13.e) x̂i = x̂i +�t � sj
(14) Xt+1 = compose(Xt; X̂)

(15) x
�

t+1 = argminff(xt+1
1 ); : : : ; f(x

t+1
N )g

(16) If (f(x�t+1) < f(x�t ))

(17) If (9s 2 S s.t. x�t+1 = x
�

t + s) �t+1 = �t � 2
(18) � = f0gm

(19) ElseIf (j�j == m)

(20) � = f0gm

(21) �t+1 = �t=2

(22) Else
(23) �t+1 = �t

(24) Until (�t+1 < �lb)

Figure 2: A simple EPSA using multinomial mutation.

S = Sstd = fe1;�e1; : : : ; en;�eng. Hence, the mutation
steps are parallel to coordinate axes. Sstd contains 2n muta-
tion offsets, so it forms a maximal positive basis. Figure 3b
depicts a set of mutation offsets that form a minimal positive
basis. The n+1 mutation offsets are defined by vectors from
the centroid of a regular simplex to each of its corners. This
set of mutation offsets consists of axes that are separated by
an angle of 120 degrees. The regular simplex is an equilateral
triangle in two dimensions, a tetrahedron in three dimensions,
and so on. In n dimensions regular simplex mutation offsets
can be derived using the method defined by Spendley, Hext,
and Himsworth [12].

Finally, we consider the impact of the manner in which
mutation offsets are chosen. We have previously identified
two different ways of randomly selecting mutation offsets.
The multinomial method selects a single mutation offset uni-
formly at random. For the standard set of mutation offsets,
this corresponds to mutating a single dimension. For the reg-
ular set of mutation offsets, this corresponds to adding a vec-
tor to the point.

The binomial method randomly selects each mutation off-
set with a fixed probability, and the final mutation offset is the
vector sum of these mutation offsets. For the standard set of
mutation offsets this requires checks to prevent the selection

(a) (b)

Figure 3: Illustrations of sets of mutation offsets: (a) standard
mutation offsets and (b) regular simplex mutation offsets.

of pairs of mutation offsets that add to zero. More generally,
a binomial mutation operator must avoid selecting a set of
mutation offsets that add to a zero vector. In the case of the
regular simplex mutation offsets, this can only happen if all
the offsets are selected.

The manner in which offsets are chosen may affect the
EPSA’s ability to follow a descent direction. Because the bi-
nomial method generates a larger number of mutation offsets,
using it will result in a less focused search. Because the multi-
nomial method facilitates a more focused search, it is reason-
able to expect that it leads to a more localized search. We



have previously shown that use of the multinomial method
increases the rate at which mutation steps are adapted, which
was confirmed by the faster convergence observed in prelim-
inary experiments [7]. We revisit the selection of mutated
components in this work in order to study the interaction be-
tween the set of mutation offsets employed and this factor.

4 Experimental Evaluation

4.1 Methods

Experiments were run with the EPSA varying 4 different al-
gorithmic factors. These factors were (1) a crossover rate of
0% or 80% for two-point crossover, (2) standard or regular
simplex mutation offsets, (3) step length expansion allowed
or not allowed, and (4) binomial or multinomial selection of
mutated components. For both EP and EPSA tests, we used a
population size of 50, and for each problem the number of tri-
als was 50. When the EPSAs used multinomial mutation, the
mutation operator was always applied, and when the EPSAs
used binomial mutation, the mutation operator was applied at
a rate of 10%. Thus the expected number of mutations was
the same for both methods. The initial step length for EPSAs
was set to 20, and they were terminated when the mutation
step length fell below a threshold of 10�8.

We set up the EP step length parameters to correspond to
the step lengths for the EPSA. Specifically, the initial vectors
�
0
j were selected so that the expected distance of mutation

was equal to 20. Consider the jth point in the initial pop-
ulation. An EP/ES performs mutation in each dimension by
adding the vector of offsets N(0; �), and in the initial popula-
tion the vector � is typically initialized to a vector of constant
values, so �0j (i) = ��.

The sum of the squares of n normally distributed random
variables is a chi-squared variate [3], so

nX
i=1

N(0; ��)
2 � ��

2

nX
i=1

N(0; 1)
2 � ��

2
�
2
(n):

The positive square root of the chi-squared variate �2(n) has
expectation 21=2�[(n+1)=2]=�[n=2], where � is the gamma
function [3]. Thus we have

E

0
@
vuut nX

i=1

N(0; ��)

1
A = ��21=2�[(n+ 1)=2]=�[n=2]:

For large n, this expectation approaches
p
n ��. For the value

n = 10, the expectation is approximately 3:084��.
Thus we set �� = 6:485 to make the expected initial step

length for EP equal to 20. For the EP we also bounded the �i
values below by 10�8=

p
10, which kept the step length above

10�8. This makes the comparison between EPSA and EP fair
by not allowing the EP to shrink its step length below the step
length of the EPSA. The EP was terminated after 700,000
function evaluations, and performance comparisons between

EPSA and EP were made based upon the termination point
for the EPSA.

We used five well-understood test functions in our experi-
ments: Griewank, Ackley, Rastrigin, and a simple quadratic.
These test functions were rescaled so their domain was
[�100; 100]10. Experiments were also run with a quadratic
function, F24, that was rescaled along each coordinate axis:
F24(x) = 10

Pn
i=1(i + 1)2x2i . This problem is also used

over the domain [�100; 100]10.
Our experimental analysis considers two performance

metrics for EPSA: the number of function evaluations until
they terminate and the value of the best solution found. To
provide a consistent method of comparison across different
test functions, we ranked these performance metrics for dif-
ferent combinations of algorithmic factors. For example: to
evaluate the impact of mutation offsets and mutation selec-
tion methods, we considered all combinations of the other al-
gorithmic factors. For each combination of factors we ranked
the results of all combinations of mutation offsets and muta-
tion selection methods. These relative ranks provide a metric
for evaluating the impact of only those factors that are being
compared.

4.2 Results

4.2.1 Effects of Crossover and Step Expansion

Figures 4 and 5 illustrate how the use of crossover uniformly
increased the number of function evaluations required for
convergence of the EPSA while providing better solutions.
We examined the data further to identify interactions between
crossover and mutation offsets. It seemed that crossover was
most successful when used in conjunction with the regular
simplex mutation offsets, typically producing the best-ranked
solutions overall. Among the worst ranked results over-
all were those that used the regular mutation offset without
crossover. However, neither of these interactions was consis-
tent in all cases.

Using expansion consistently resulted in more function
evaluations to convergence. However, there appeared to be
little correlation between expansion and relative ranking of
final solutions. Thus using expansion in EPSAs does appear
to be helpful.

4.2.2 Mutation Effects

Figures 7 and 8 illustrate the effect of varying the set of mu-
tation offsets with the method of selecting mutation offsets.
EPSAs generally terminated sooner when using multinomial
selection of mutated components with the regular simplex
mutation offsets. However, there is less of a distinct trend
when we consider the relative rank of the final solutions. For
the Rastrigin problem, using the regular mutation offsets was
better, probably reflecting the strong coordinate bias in this
problem. Also, the use of the regular simplex mutation off-
sets with binomial mutation seems to help the EPSA find the
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Figure 4: Number of function evaluations to convergence with and without crossover. Name of the test function appears above
the crossover rate for plot.
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Figure 5: Relative rank of final solutions with and without crossover. Name of the test function appears above the crossover
rate for plot.
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Figure 6: Relative rank of final solutions by mutation offsets with and without crossover. Name of the test function appears
above the crossover rate with 1 below for regular mutation offsets and 0 below for standard mutation offsets.

best solutions in three of the five test cases, although not nec-
essarily consistently so (e.g. see F24).

4.2.3 Comparison with EP

Figure 9 shows the relative quality of the final solutions
reached by EPSAs and EPs. We compare the final values
from the EPSA using the regular simplex mutation offsets,
no expansion, multinomial selection of mutation offsets, and
using both crossover and noncrossover. We compare these re-
sults with the best results obtained by an EP. We consider the
EP’s results at three stopping points: (a) at the median number
of function evaluations for the EPSA without crossover, (b)
at the median number of function evaluations for the EPSA
with crossover, and (c) at the maximum number of allowed
function evaluations (700,000). Thus we can make direct
comparisons between the EP to the EPSAs with and without
crossover, as well as consider whether running the EP longer
would ultimately find better solutions. In these results, the
EPSA consistently outperforms the EP, even when the EP is
allowed to run for substantially longer than the EPSA.

5 Conclusions

Our experiments confirm our previous observation that an
EPSA using crossover can find better solutions, but at the ex-
pense of slower convergence [7]. Further, it is clear from
these experiments that EPSAs converge more quickly if they
can reduce the mutation step length while considering fewer
mutation steps. These results suggest that EPSAs using the
regular set of mutation offsets and the multinomial selec-

tion of mutated components are the most effective design for
EPSA. These EPSA examine the fewest number of mutation
offsets before reducing the step length, and in most of our
problems this type of EPSA found solutions that are as good
as any of the other EPSAs. Finally, the comparison between
this EPSA and a canonical EP indicates that better solutions
can be obtained by EPSAs with fewer function evaluations.

This algorithmic analysis can be extended in several ways.
First, we need to consider other algorithmic factors, such as
the way in which competitive selection is performed, to eval-
uate their effect on EPSAs. Further, we need to perform a
broader comparison of EP and EPSAs on real applications to
evaluate whether the performance difference here is robust.
Similarly, these methods need to be compared on domains
for which the near optimal points are not centrally located to
evaluate the general effectiveness of crossover. We have also
begun to extend these results to include an analysis of the ro-
bustness of convergence for EP and EPSAs, as well as their
applicability to bound-constrained problems.
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Figure 7: Relative rank of the number of function evaluations by combination of mutation offsets and selection of mutated
components.

0
50

10
0

15
0

20
0

Ackley
C
B

Ackley
C
M

Ackley
R
B

Ackley
R
M

F24
C
B

F24
C
M

F24
R
B

F24
R
M

Griewank
C
B

Griewank
C
M

Griewank
R
B

Griewank
R
M

Quadratic
C
B

Quadratic
C
M

Quadratic
R
B

Quadratic
R
M

Rastrigin
C
B

Rastrigin
C
M

Rastrigin
R
B

Rastrigin
R
M

R
an

k 
of

 F
in

al
 S

ol
ut

io
n

Figure 8: Relative rank of final solutions by combination of mutation offset and selection of mutated components.
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