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Abstract

An assumption underlying all of the current models of learning in games is that
learning takes place only through repeated observation of and experience with outcomes
and payoffs. This paper experimentally tests this assumption using the competitive
guessing game first studied by Nagel (1995). The experiments in this paper consist
of several periods of repeated play of the game under alternative feedback conditions.
The main experimental treatment is a no-feedback condition, in which no information
is reported to the players until the end of the experiment. If learning takes place only
through observation of outcomes and reinforcement resulting from payoffs, choices in
the no-feedback condition should not converge towards the Nash equilibrium through
repeated play. While there is less learning under no feedback than when outcomes
are revealed, there is convergence towards the equilibrium prediction. Finally, the
no-feedback learning phenomenon is explored in two models. In the first model, the
learning process is assumed to take place as players observe their own actions, treat
these actions as an unbiased estimate of others’ actions, and then best respond to this
estimate. In the second model, learning is assumed to take place all at once, meaning
that the process by which players make their choices changes in only one period.

1 Introduction

The study of learning in games has recently received much attention. Since behavior in
experimental studies of games changes with experience, the goal (;f much of this research has
been to model this learning process. Several models have been proposed which map feedback
on outcomes and payoffs into subsequent choices. Learning in these models takes place only
when players receive feedback on prior performance before choosing again. However, much
economic activity takes place with delayed or poor feedbé,ck concerning performance.! This
paper explores the possibility that a different form of learning, inconsistent with the models

in the literature, may take place with repeated experience. This type of learning occurs

'Any activity in which a task has to be performed repeatedly prior to obtaining feedback satisfies this
description. An example is preparing several proposals (or papers, projects, etc.), one after another, which
each take some time for review. Another example is whenever accurate performance feedback can only be
obtained from a supervisor’s evaluation, which may occur infrequently.
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when individuals receive no feedback on prior performance before performing a task again,
yet still improve their I;erformance.

There are many different models of learning in games. Examples include: choice rein-
forcément learning (most recently studied by Erev and Roth, ‘1998), weighted fictitious play
(Cheung and Friedman, 1997), experience-weighted attraction (Camerer and Ho, 1999) and
rule learning (Stahl, 1997).2 In all of these models players’ choices are revised only through
their observation of previous outcomes. So, for example, in choice reinforcement learning
models such as Erev and Roth’s a player’s propensity to play a particular strategy is up-
dated by the payoff experienced when that strategy is played. In weighted fictitious play
and experience-weighted attraction, on the other hand, the propensities are also affected by
the fofegone payoffs of strategies that were not selected. In Stahl’s rule learning model, a
rule is a response to observed outcomes and rules ére updated using their expected payoff
given the actual distribution of other playérs’ choices.?

One method for testing the competing models is to vary the information received by
sﬁb jects concerning outcomes. For instance, choice reinforcement models assume that players
only use information about the payoffs to their chosen strategies in making subsequent
decisions. Therefore, according to these models, taking away information concernihg payoffs

to strategies not selected should have no effect on behavior in repeated play. In other

models, such as weighted fictitious play and experience-weighted attraction, players use the

2Experience-weighted attraction includes both choice reinforcement and weighted fictitious play as special
cases.
8For detailed discussion of these models and others, see Camerer (1998, chapter 6).



information on payoffs not received and therefore these models predict that eliminating it
will have an._effect. This test was performed by Mookherjee and Sopher (1994) and by Van
Huyck, Battalio and Rankin (1996) who found that reducing payoff information did have
an effect on observed learning paths, which contradicts an important assumption of choice
reinforcement learning. A similar study was conducted by Duffy and Feltovich (1998), who
found that giving players information on the actions and payoffs of other players as wéll on
as their own outcomes affected repeated play in the ultimatum game. This phenomenon of
”observational learning” also provides evidence against simple choice reinforcement models.
While the above models all show that learning can take place when subjects receive feed-
back on payoffs and the actions of other players, they ignore the possibility that learning
may take place in the absence of this information. Therefore, these models do not account
for the possibility that people may learn simply through repeated experience with an envi-
ronment. | Repetition and experience with a set of procedures could lead people to obtain
insights concerning how best to perform a task. This paper tests whether or not this type
of learning from repetition without feedback can take place in a strategic environment.
The experiments in this paper are similar to previous studies in that they examine an
extreme case of payoff information manipulation. This manipulation tests the assumption
in all of the above models that learning in games takes placg only through reinforcement by
the observation of actions and payoffs. Using Nagel’s (1995) competitive guessing game (see
also, Ho, Camerer, and Weigelt (1998)), experiments are conducted in which players receive

no information on the actions of other players or on their own payoff. In these no-feedback



) experiments, all of the above models predict that no predictable change in ’behavior should
take place with repeated play. Any convergence towards the Nash equilibrium would indiéate
that Iearniﬁg does not only take place through experienced péyoffs and observed outcomes,
- but is also affected by experience with an environment and procedures and by repeatedly
thinking about a game.

The next two sections discuss the game used in the experiments and the experimental
design. Section 4 presents the results and Section 5 develops and estimates two models of no-
feedback learning in this particular game. The paper ends with conclusions and a discussion

of possibilities for future research.

2 The Game

The game used in these experiments is oné first studied experimentally by Nagel (1995) to
determine the number of steps of iterative reasoning being satisfied by subjects. In the game,
each of N subjects simultaneously chooses a number in the interval [0,100]. The average
of all the players’ choices is then computed and multiplied by a parameter p to determine
a target number. The player whose number choice is closest to this target nu‘mber' wins ‘a
fixed amount X and all other players receive nothing. If more than one player chooses the
number closest to the target number, the amount X is divided equally among the winners.
While Nagel conducts experiments using several values of p (including values greater than
one), the experiments in this paper all use p = §, which is one of the values studied by Nagel.

It is easy to see that the unique equilibrium in the game where p = % is for everyone to



choose 0. For any average of all players’ choiées, p, the best response for all players is to

choose py, resulting in a new average, and this process has a unique fixed point at zero.*
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Nagel conducted four sessions with p = £ in each of which the game was repeated
four tﬁnes.5 At the end of each period, subjects were ipformed of the choices of all other
participants, the average, the target number, and the winﬁing choices. There were 15 to
18 subjects in‘ each'experiment. No subjects chose the equilibrium strategy of 0 in the first
period. The average in the first play of the game was 36.73 and several subjects chose
numbers greater than 66%, violating déminance.

With repeated play, the choices convérged towards the Nash equilibrium. The average
choice was 24.17, 16.14, and 9.52 in periods 2, 3, and 4 respectively. Thus, subjects in Nagel’s
experiments appeared to learn since their choices reflected a best response to the average in
the previous period. The question this study asks is whether similar convergence toward the

equilibrium prediction is observed when sub jécts receive no feedback on payoffs or outcomes.

If so, this points to a kind of learning not captured by the current models.

‘Furthermore, a player’s choice indicates the number of steps of iterative reasoning that the player is
satisfying and thinks others are satisfying. For instance, if a player chooses in the interval (66%, 100], then
this player is violating dominance since the target number can never be in this interval. If a player believes
that everyone else is obeying dominance, then she should expect no one else to choose in this interval and
should, therefore, not select any number in the interval (44%, 100]). This process can be applied repeatedly
to show that the only choice that subjects will make if common knowledge of rationality is satisfied is 0.

5Nagel’s results have been replicated by Ho, et al, using p = 0.7. For a detailed survey of existing research
using this game, with varying parameters and payofls, see Nagel (1998).



3 Experimental Design

In this study, Nagel’s game with p = % was used in experiménts under three information
conditions.b Ih each sessipn, the game was repeated ten times with 8 to 10 players.

In the control condition (C), the exberi’menter wrote the average, target number, and
participant numbers of the winners on a board at the front of the room at the end of each
period. This treatment serves to replicaté, with feedback, Nagel’s results.

In the no-feedback condition (NF)V, the game was played ten times, but subjects received
no feedback at the end of each period. After the experimenter reéorded eaéh subject’s choice,
he calculated the average and tafget number and determined who the winner br winners were.
The participants were informed that the expérimenter had done this (but were not told the
results) and were then asked to make a choice for the next period. At the conclusion of the
tenth period, subjects were informed of the average, target number, and participant number
of the winner or winners for all ten periods..

The final treatment was the same as the NF condition, with one exception. In this mean-
guess no-feedback condition (MG), subjects were also given no feedback until the end of the
experiment, but after the experimenter calculated the average in each period, participants
were instructed to write down their guess of the value of the average. While this guess did
not provide subjects with any new information and their earnings were not affected by the
accuracy of their guess, it was introduced to aid participants in thinking about the fact that

they wanted to best respond to their expectation of the average.

®Instructions are available in the Appendix. =
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The experiments were conducted during Septembé;' and ‘GétOber 1998 using g‘radilate 2
. and undergr&duafe students at the California Institute of Technology with little or no formal
training in game theory. At the end Qf the experiment, subjects were privately paid their
earnings in kalvl ten periods plus a $7 participation bonus. Three sessidns were conducted for
each treatment (n = 28 in both MG and NF, and n = 26 in C). Each session lasted 30 to 45
minutes. | |

Uﬁder the null hypothesis that learning does not take place witﬁout feedback, there
should be no change in su'bj.ects’ behavior across periods' in the NF and MG treatfnents, but
wé should see convergencé towards the equilibrium prediction in treatment C. On the other
hand, if learning does take place by subjects éimply gaining experience with the environment
and having to think repeatedly about the game, we should see convergence towards 0 in both
the NF and MG treatments. Finally, if prompting subjects to think about the value of the
mean leads them to perform better the iterative reasoning required for equilibrium behavior
to arise, convergence towards the equilibrium should be greater in ﬂ/the MG treatment than

in the NF' treatment.

4 Results

Table 1 presents the mean and median choice by 'perioc'l for each treatment. In period 1,
subjects’ choices are very similar in both the NF (mean = 31.0) and MG (mean = 31.6)

conditions and there is no significant difference in behavior between the two conditions v



(tss = 0.12).7 The period 1 choices in the control condition are lower than in the other
two treatments (mean = 24.6), but this difference is not significant in a t-test of the means
(ts2 =1.35 for both C-NF and C-MG comparisons).

Figure 1 displays the cumulative frequency of first period choices in all three conditions.
Again, there is no significant difference between the frequencies in all three conditions using
a two-tailed Kolmogorov-Smirnov test (C-NF: Dyg 95 = 0.28; C-MG: Dy 98 = 0.28; NF-MG:
Dqg 25 = 0.18). Thus, while initial choices in condition C are slightly lower than in the other
two treatments, this difference is not significant.?

In all three treatments, the mean and median choices decreased between periods 1 and 10.
As expected, the greatest decrease was in treatment C (decrease in mean = 18.1; decrease
in median = 20.2).° The decrease in the NF ti‘eatment (decrease in mean = 8.8; decrease in
median = 12.0) was less than the decrease in the MG treatment (decrease in mean = 17.2;
decrease ivn median = 17.9), although this difference is mainly due to the fact that mean
and median choices increased slightly in the final periods in the NF treatment, while they

continued to decrease in the MG condition.

"Note that these results are also similar to, but slightly lower than, Nagel’s first period results (mean =
36.7).

8The lower mean in treatment C is due mainly to behavior in one session in which several subjects made
low choices in the first period and the resulting mean was 15.2 (the mean initial choice in the other two
treatment C sessions was 32 and 29). The robustness of first period behavior in the population is further
reflected in the results from an informal class experiment conducted using 17 Caltech undergraduates in
which the mean choice was 29. .

9The failure of the mean and median to decrease monotonically in treatment C was due to strategic
behavior on the part of at least one subject in each session. Following a rapid initial convergence towards
zero, these subjects made high choices (usually 100) in an attempt to cause other subjects to respond with
choices that were too high in the following period. That this was the reasoning behind this behavior was
determined in informal debriefing at the end of the experiment. However, the success of this strategy is
questionable since no subject that chose 100 had the winning choice in the following period.



: C : NF o MG
~ Period ' Average Median | Average Median | Average Median
-1 24.6 22.9 31.0 30.0 31.6 31.1
16.4 10.0 27.2 24.0 28.8 24.4
6.7 5.0 24.4 21.0 28.3 24.0
6.2 1.2 196 205 | 224 180
12.1 2.2 22.5 23.0 22.1 20.5
5.4 5.0 184 175 174 16.5
9.6 2.0 18.2 17.0 | 17.1 14.6
11.2 2.8 18.0 185 17.3 13.0
8.4 6.0 19.0 20.0 | 15.7 12.0
6.5 2.7 22.2 18.0 14.4 13.3
dif. =P1-P10| 18.1 20.2 8.8 12.0 17.2 17.9
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Table 1. Summary of outcomes by treatment

Figures 2 through 4 present the cumulative frequency of choices in periods 1 and 10
'for conditions C, NF, and MG, respectively. In all three treatments, the frequency of lower
choices is greater in period 10 than in period 1. This difference is significant for all conditions
in a one—téiled Kolmogorov-Smirnov test (C: x2(2) = 30.77, p < 0.001; NF: X2(2) = 7.14,
p = 0.026; MG: x?(2) = 12.07, p = 0.002). Thus,' subjects are revising their choices towards
the equilibrium prediction even when they do not receive any feedback.

As an additional test of whether choices decreased with eXperience in all three sessions, a
regression of choice on period was conducted including both treatment dummy variables and
treatmentx*period interaction terms. The results are reported in Table 2.1 Not surprisingly,

choice decreases significantly with period in the control treatment.!! While choices in the

10The omitted treatment for both the dummy variables and interaction terms is C.
Y1f In(choice) rather than choice is used as the dependent variable the results are similar: the coefficient
on period is negative and significant for all three treatments.
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"vtwo no-feedback treatments (NF and MG) tend to be hxgher overall, they do not decrease

- at a s;gmﬁca.ntly lower rate emth repentwn In fact the magmtude of the permd coeﬂi—" |

cient 1s greater in treatment MG (cho;ce decreases 1. 948 per penod) than in trea.tment C 2

| (choxce decreases 1.166 per perlod) Though the magmtude of the ccwfﬁment for treatment

NF is smaller (choxce decreases 1.068 per period) tha;n in: | treatment C, tlns dlﬁerence is.

not mgmﬁcant and the negative relatlonshlp between choice and period in treatment NF is

| mgmﬁcant.

-Dependent variable:

Choice

Period [-1.166 (0.458)
" NF x Period 1 0.098 (0.658)

MG x Period -0.782 (0.588)
Treatment NF 10.792 (4.279) **
Treatment MG 15.004 (4.770) **
Intercept 17.130 (2.956) ***2
N 820

R? 0.128

Adjusted R? 0.123

White-corrected standard errors are-in parentheses.
*p < 0.1; **p < 0.05; **p < 0.01; one-tailed tests, except where noted.

2 Two-tailed test.

Table 2. Results of choice regression

Additional evidence that subjects’ choices are decreasing between periods 1 and 10 can

be seen in Table 3. Table 3 presents, for each condition, the number of subjects who changed

their choices between periods 1 and 10 in each direction. For instance, between periods 1 and

10, eight subjects in the NF condition increased their choices, 19 decreased their choices,
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‘and one subjéct chéSe the same number. Us:ng a sign test, the null hypothesm that the
underlymg dlstnbutmn of choices is unchanged can be rejected (p < 0. 026) The changesf
obse’rvedvkin'.the MG ,conditiqn are evenk more extreme: no subjects increased their choices
between periods 1 and .10 while 24 subjects decreased theirv choices. This is also significant
(p < 0.001). As expected, more subjects in treatmenﬁ C also lowered their choices (22) than

increased their choices (3) (p < 0.001).12

C NF MG
Choice increased | 3 11.5% | 8 286% | 0 0.0%
Choice unchanged | 1 38% | 1 36% | 4 14.3%
Choice decreased | 22 84.6% | 19 67.9% | 24 85.7%

Table 3. Direction of changes in subjects’ choices between periods 1 and 10

Figure 5 presents the cumulative choice frequencieskin period 10 for all three treatments.
Note that the frequency of lower choices is higher in treatmeﬁt C than in the other two
treatments. These differences are significant using a one-tailed Kolmogorov-Smirnov test
(C-NF: X?(2) = 27.30, p < 0.001; C-MG: X?(2) = 21.72, p < 0.001).

~ The ébove‘results indicate that convergence towﬁrds the equilibrium prediction takes
place in all three treatments. This convergence is greater in treatment C than in treatment
NF, indicating that while behavior resembling learning does take place without feedback,

the process is stronger when outcomes are revealed. The comparison between treatments

12While it is surprising that any subjects increased their choices in treatment C, two of the three increases
were by subjects who initially chose zero. The other increase was by a subject who chose 100 in the final
period, possibly out of frustration at not having won in previous periods.
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MG and C is less clear and in some tests the decrease in choices between the two conditions
does not appear to be signiﬁcantly different.

The second question these experiments address is whether or not having subjects write
down a guess of the value of the mean in each period increases the convergence towards the
equilibrium. Tables 1 and 2 provide some evidence in favor of this hypothesis. The changes
in the mean énd median choices between periods 1 and 10 is greater in the MG treatment
than in the NF condition. However, as caxi be seen in Table 1, this mainly results from
the fact that choices increase in the final rounds of the NF condition, rather than from any
consistent difference across periods. Additional support can be seen in Table 3, where the
number of subjects who lowered their choice is higher in the MG condition (24) than in fhe
NF condition (19). The difference between the NF and MG treatments in the number of
subjects who either increased, decreased, or did not change their choices is significant at the
p < 0.01 level using a chi-square test.

The graph in Figufe 5 shows that the frequency of lower chdices in period 1 is higher
in the MG condition than in the NF condition, but this difference is not signiﬁéant using
a Kolmogorov-Smirnov test. However, combined with the results from Table 3, there is
support for the hypothesis that requiring subjects to write down the mean leads to increased
convergence toward the equilibrium. This conclusion finds further support in the next section

where two simple models of no-feedback learning in this game are developed and tested.
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5 Modelling the learning phenomenon

This section presents and tests two simple models of how subjects may be learning in the no-
feedback treétments. Thc models are similar to the adaptive models discussed previously in
that subjects are assumed to respond adaptively to beliefs about prior behavior. Therefcre,
in control treatment C they are assumed to respond to the previous mean choice. In the
other treatments, however, they are assumed to respond to an estimate of the mean in the
previous period. Given that the only new information subjects had the end of each period in
these treatments was their own choice, they are assumed to treat their choice in each period
as an unbiased estimate of the group mean and then (partially) respond to this estimate.
The difference between the two models lies in whether players are assumed to constantly
respond to their previous choice in every period or whether they do so only once.

This type of reasoning on the part of players is consistent with the ”false- consensus bias”
ih social psychology in which individualsf estimates of group characteristics and propensities.
are biased in the direction of their own characteristics and propensities.!® Therefore, to the
extent that subjects "learn” this way, their learning could be viewed as biased and incorrect.
However, as Dawes (1990) has argued, the false-consensus is not a bias if an individual’s
behavior or characteristics are an unbiased estimate of those of the population and if there
is no other relevant information. According to this argument, since a Bayesién obsecver
viewing the behavior of another individual should revise her belief about the likelihood of

observing that behavior in the population from which the individual was drawn, the same

13See, for instance, Ross, Greene and House (1977).

14



Bayesian obser\fer should similarly use her own beha\?iér as useful 'ixylforn"riation‘ COnce@ing ‘
how the population shé is drawn from is likely to behaire. Therefore, subjgcts in the two ﬁo— '
 feedback conditions in thevexperiment ’may be correct in treating their chdiée in the previoﬁs
period as an unbiased estimate of the grdup mean. However, since subjects may be unsure
, whéther fheir'previous éhoice is such an unbiased esﬁmate, the model allows subjects to }only
partially best respond to this previous ch\diée.' |

The first model assumes that players make their choice in every period by suclll a partialv'
best response to their own previous choice. In the no-feedback ca,se,k this ” rﬁyopic consensus”
model assumes that individuals realiz’e‘at the end of each period — only after choosing — that
their choice can be used as an estimate of the popu’lat’ionk mean. The second model of no-
feedback learning simﬂarly assumes that playérs best respond to their own previous éhoice,
| but instead of assuming that they do so in every period, assu‘mes that this learning takes
place only at one moment in which subjects become aware of the information contained in
their previous choices. 14

As mentioned above, the first model this section is concerned with is a simple adaptive
model in which players partially best respond to what they believe the{ mean was in the
previous period. In the model, the choice of a player i € N = {1,...,n} in period t € T =
{1,...,10} is represented by ;. The mean choice in period t is y; = —‘:4"&1—3 and playef i's
estimate of this meén is 9;z. In treatment C §v‘here the mean is announced at the end of each

period ¥;; = y;.

14This model of no-feedback learning can be thought of as sudden inspiration or serendipity.
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In every period after the first, subjects respond to their estimate of the previous period’s

mean:1®

Ti = Bli- = (1)

This model assumes a very simple adjustment rule in which players form a belief concerning
the value of ¥, only at the end of period ¢ (in tfeatment C, this corresponds to when they
find out the value of ;) and then partially best respond to this belief in the next period. The
response parameter, 3, is determined by how players believe the optimal response will change
in the next period as a function of the previous period’s average choice and their beliefs about
how the choices of others will change. Each player knows the value of 8 but is unsure of
whether the other players are using the same value for their adjustment.!® Players have
beliefs over the value of 3 other players are using, denoted j, aﬁd these beliefs are captured
by the actual value of 8. For instance, if players all believe that other players’ behavior will
not change in the next period, then they will simply best respond to the choices of others
in the previous period and will assume that the only difference between y; and y,_; will be

due to the difference between z;; and z;;. Therefore, since z;; = B89;;_1, players with

15 Assume that in the first period players best respond to a prior belief of the distribution of choices, k.
16]f B were commonly known, then the learning process would converge to the equilibrium in one period
for any £ less than 1.
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b= ("—P)( Jit—1 ) L @

will be best responding td the beiiefs formed at the end of the .previous period. Refer to this
value of B as 85 (fu-1, Tu-1)- |

As mentioned abové, one pbssible explanation of the observed ‘learvning phenomenon in
the two no-feedback conditions is that in each period players are estimating ¢;; = z;, which
is correct as long as their choice is an unbiased estimaj:e of the population mean. Under
this myopic consensus model, in which players believe that their choices are representative
of the choices of others but fail to take into account that this process implies that others are
updating similarly, BBR(§;y_1, ir_1) reduces to 2P Since p is always 2 in the experiments,
BBE is equal to 0.636 when n = 8 and 0.643 when n = 10. Therefore, 0.64 provides a
- reasonable approximation of SZ% for both group sizes. |

If B is equal to 1, then players’ beliefs are stationary and players are constantly best
responding to the initial belief k, corresponding to a situation where no learning is taking
place across periods ahd players are treating z;; as entirely uninformative. This corresponds
to the prediction for the no—feedback treatments of current adaptive learning models. If 8 <
BBE, then players believe that other players will also lower their choices (i-e., XjgiTj1 >
Y Zjt). If 1> B> BB, then players are lowering their choices between periods, but are
not best responding to their estimates of the previous mean. This sticky best response could

result from players being uncertain about whether or not §;; = z; is an unbiased estimate

17



of Yt-

Assume player #’s choice in each period ¢ > 1 is determined by:

ZTig = Pli-1+ € (3)

with the error term ¢;; representing the idiosyncratic component of player 7’s choice in period
t. Further assume that the ¢; are uncorrelated across both 7 and ¢t. Then the model in
Equation 3 can be estimated using least squares.

In treatment C, §;;—; is equal to y;;—; for all ¢ since the mean is announced at the end of

each period. Therefore, Equation 3 can be rewritten as:
Tig = PYit-1 + € (4)
and estimated using OLS. Under the myopic consensus model, g;;—; is equal to z;_; in

treatments NF and MG. For these two treatments, Equation 3 can be rewritten as:

Tig = PBTi—1 + € (5)

18



and Similarly estimated. Table 4 reports the results of these regressions.!?

" Dependent Variable: | z;; ,
| T ¢ NF MG
B 0576 (0.091)]0.859 (0.031)]0.821 (0.024)
Obs. (#ofsubjects) | 234  (26) | 252 (28) 252 (28)
VMSE 20.36 - 112.28 - 12.05

White-corrected standard errors are in parentheses.

Table 4. Parameter estimates for myopic conéensus model

As Table 4 indicates, is signiﬁcantly smaller than 1 for all three treatments. The
coefficients for treatments MG and NF are not significantly different from each other.!®
Note that o < BBR = 0.64, indicating that in Treatment C players adjusted more’quickly
than simply best reéponding to the previous choices of other players.!® In the other two
treatments, f3 is greater than SBR but less than 1 indicating that, according to the model,
players are adjusting their choices but not treating their own previous choices entirely as
unbiased estimates of the mean.?°

As menﬁoned above, a second model of learning in the no-feedback conditions is one
in which all the learning takes place at once. This model, referred to as the ” one-period”
learning model, suggests that players do not revise the process by which they generate their

choices for several periods until, in one period (¢*), they realize that other players might be

17Table 4 reports vVMSE instead of R-squared since the omission of a constant term in OLS creates
problems with the latter.

18In a pooled regression, both Bnr and Buyg are significantly different from B¢ at the p < 0.05 level.

19However, this difference is not significant.

20The values 3R and 1 lie outside the 95% confidence intervals for both Anr and Bug.
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choosing similarly. In this period players partially best respond to their own previous actions.
However, in subsequent periods players’ choices remain unchanged, since they now believe
they have cbrrectly taken into account what others are doing. This model corresponds to
a case of the myopic consensus model in which 3 is equal to 1 for all periods before ¢t* and
in which each player realizes only in period ’t* that her previous choices are an unbiased

estimate of the population mean. Therefore, the model can be written as:

Ty = Pk + € (6)

where §; is equal to 1 for all t < ¢* and where 8; = 3, < 1 for all t and s greater than or equal
to t*. In the above model, k corresponds to the initial choice generated by prior beliefs.

Letting B;- equal "—1’1, the model in Equation 6 can be rewritten as:

Ty = k+7v2+ € (7)

and estimated using OLS by regressing choice on a constant (k) and an indicator variable
(21) equalk to zero for all ¢ < t* and equal to one otherwise. This was done using fixed

effects for individual differences. The value of ¢* was determined by estimating the model

for all possible values of t* = 2,3,...,10 and then using the value of t* for each treatment
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i ,that provxded the best ﬁt 1 The parameter of mterest ﬁt~ can then be denved from the

e results of tl:us regressmn and is equal to -—1 Therefore, /3g~ can be obtamed from k and 'y ,

~ Table: 5 reports the results of these regresmons for the two no—feedback treatments and the

L cqrresponding estimates Ofﬂ e

Dependent Variable: | z;; L _
" B | NF MG
pr t=4 t=4
k | 27512 (1.256) | 29.554 (1.215)
y -7.805 (1.501) | -11.495 (1.452)
Obs. (N) | 7280  (28) | 280  (28)
R? 0.051 |1 0.093
MSE 1545 16.56
B - 0.716 | o611

: Standa.rderrors a:e»in parentheses.. Individual fixed effects included. .

Table 5. Parameter estimates for one-period learning model

The first thing to notiée in Table 5 is that ¢* is equal to 4 for both treatments, implying
that the best fit in the one-period learning model is when the learning is essumed to have
occurred after tl__ltee periods of experience wit}klout, feedback. The estimates of 7 are both
significantly less than zZero, indicating that, according to the model, learning does take place
in the fourth period (i.e., B < 1). While the values of k are different for the two conditions,
this difference is not significant when the two are estimated in a pooled regression. The

two values of 4 are different and this difference is significant at the p < 0.1 level when the

21 Determining the period for each treatment separately allows a test of the hypothesis that learning occurs
more quickly in Treatment MG than in Treatment NF, implying that ¢y should be greater than t},.

21



two treatments are estimated jointly. Speciﬁéally; B is lbwer for Treatment MG than for
treatment NF indicating that, as hypothesizgd, learning occurs to a greater extent when
players are asked to write down an estimate of the mean.

Comparing the two models (Tables 4 and 5), the myopic consensus model provides a
better fit in ferms of mean squared error than the one period learning model (Treatment
NF: 12.28 vs. 15.45; Treatment MG: 12.05 vs. 16.56). This is in spite of the fact that the

latter model has one more parameter.

6 Conclusion

The experiments reported ih this paper address the queétion of whether convergence towards
equilibrium behavior can occur in repeated play of games without any feedback between pe-
riods. The results from both the NF and MG treatments provide strong support for this
‘ hypothesyis, pointing to a form of learning not captured by the models in the literature. In
both conditions, the mean and median choices decreased with repeated play and the num-
ber of subjects changing their choices downward (toward the equilibrium) was significantly
greater than the number who increased their choices. While the convergence was greater in
treatment C, in which subjects received feedback, the fact that it took place at all in the
other treatments indicates that learning can take place in the absence of information about
outcomes and payoffs.

Parameter estimates for the two models of no-feedback learning also reflect the fact that

learning is taking place in both treatment conditions. In both models, the learning parameter
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(B) is estimated to be significantly bélow one. Support for the fact that these models (Which

are both special cases of the same more general model) capture learning can i)e found in
: th‘e fact that the parameter estimatefor the rhyopic consensus model reflects the greatest
~ learning in the control condition. :

A second qu.esti’on" was whether requiring subjects to write down a guess of the value:
of the meaﬁ W@u]d increase convergence tdwvardsv thé equilibrium. The results indicéte that
this is also true, particularly in that the number of participants whose choircesv decreased
between periods 1 and 10 was greater in the MG condition than in the NF condition. Also,
the learning parameter estimates for Treatment MG were lower (implyiﬁg greater learning)
than for Treatment NF in both models and this difference wés significant for one of the two
models.

Taken together, these results show that something resembling learning can take place
when subjects play games‘krepeatedly, even when they receive no feedback on payoffs or the
choices of other players. Moreover, there is some evidence that prompting subjects to think
more carefully about certain aspects of a game may lead to behavior that is more consistent
with equilibrium play.?? These resuits are important because they reveal the possibility that
the majority of the current learning models are misspecified in that they only take into
account learning through adaptation'. Since these models ignore the kind of learning that
takes place in the absence of feedback, parameter estimates for ”feedback learning” are most

likely biased.

22Croson (1999) and Warglien, Devét'ag and Legrenzi (1998) also report differences in behavior in games
when subjects are asked to guess about the choices made by other players.
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An interesting questipn meriting further ‘Study is to what games this result can be ex-
tended. The game/ used in these expériments has a unique solution on the boundary of the
strategy space which is the only strategy to survive iterated deletion of dominated strategies.
It is not ciear whether similar convergence toward equilibrium behavior would take place in
games without this property. In particular, this result might be more difficult to extend to
games with multiple equilibria requiring coordinated behavior — such as Battle of the sexes
or pure coordination games. On the other hand, subjects may learn to play the equilibrium
without feedback in a large number games tilat require some insight or careful thought to
determine the solution, such as the Dirty Faces game (sée Weber, 1998) or variants of the
Monty Hall problem (see Friedman, 1998).

Another important question has to do with how to further model the “learning” taking
place. The two models presented in the paper model the mechanism operating on behavior
in these experiments similarly to the standard models of learning through reinforcement of
strategies and beliefs, exéept here the reinforcement comes from a player treating her own
action as an estimate of other players’ actions. This approach would be proven incorrect
if no-feedback learning occurs when no such reinforcement is possible.?? Instead, it might
be the case that subjects are simply finding it easier to solve for equilibrium behavior with
repeated experience.?? For instance, repeated exposure to the game (and the environment in

which the game is presented) may lower the cognitive costs of figuring out the equilibrium.?

2For instance, when players’ strategies are not symmetric.

24Plott (1996) provides an informal theory of subject behavior in experiments and discusses how repeated
choices and practice (in addition to feedback) lead subjects to behavior more consistent with the predictions
of rational choice.

25As an example of this, consider McKelvey and Palfrey’s (1995) Quantal Response Equilibrium model of

24



, o ; v

While modeling this type of .adjtistment appeaifs difficult, the ,above' resnzlts and preliminary

- models indicate that it is both necessary and pOssibley to do so.

behavior in games. In this model, the parameter ) serves as a measure of the precision (inverse error) in
players’ best response functions. Repeated exposure to the game without feedback may serve to increase the
value of this parameter. '
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7 Appendix: Instructions

This is an experiment in decision making. Several research institutions have provided funds
for this research. You will be paid for your participation in the experiment. If you follow
the instructions, and make good decisions, you may earn an appreciable amount of money.
The exact amount you earn will be determined during the experiment and will depend on
your decisions and the decisions of others. Your earnings will be paid to you in cash at the
conclusion of the experiment. If you have a question during the experiment, raise your hand
and an experimenter will assist you. Please do not talk, exclaim, or try to communicate with
other participants during the experiment. Participants violating the rules will be asked to
leave the experiment and will not be paid. .

Please look at the number at the top of this page. This is your participant number for
the experiment. This participant number is private and should not be shared with anyone.
Your participant number will be the same for the entire experiment.

The experiment will last for 10 rounds. During each round, you and the other participants
will be presented with an identical choice problem. There are ten participants in the group,
and each of you will simultaneously choose a number from 0 to 100 inclusive. You can choose
any number in this range by writing that number in the appropriate place in the table below.
This choice is private and will not be revealed to other participants. After each of you has
chosen a number, the experimenter will come by to record your choice.

Your payoff will be determined as follows:

First, the average number of all participants’ choices (including yours) will be computed.
This average will be computed by adding up the numbers chosen by each of the ten partici-
pants and then dividing by ten.

A target number will then be determined by multiplying the average of all participants’
choices by two-thirds. Thus:

Target number = 2/3 x (Average of everyone’s choices)

The person who chose a number closest to this target number will earn $6. If there are
two or more participants whose choices are exactly equally close to the target number, then
these participants will equally divide the $6 prize.

C: At the end of each round, the experimenter will publicly announce the av-
erage of the ten choices and the target number and will write these two numbers
on the board. The experimenter will also announce the participant numbers of
the participants who won all, or part of, the prize.

In each round, please record the number you choose, the average, the tar-
get number, and the amount (if any) of the prize that you won in the table below.

NF: At the end of each round, the experimenter will calculate the average of
the ten choices and the target number, but these numbers will not be announced.
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At the end of the final (10th) round, the ten averages and target numbers will be
publicly announced and the experimenter will announce the participant numbers .
of the participants who won all, or part of, the prize in each round.

At the end of the experiment, please record the average, the target number,
and the amount (if any) of the prize that you won in each round in the table
below.

MG: At the end of each round, the experimenter will calculate the average of
the ten choices and the target number, but these numbers will not be announced.
Instead, you will be asked to write down your best guess of the average in the
table below. At the end of the final (10th) round, the ten averages and target
numbers will be publicly announced and the experimenter will announce the
participant numbers of the participants who won all, or part of, the prize in
each round.

At the end of the experiment, please record the average, the target number,
and the amount (if any) of the prize that you won in each round in the table
below.

At the conclusion of the tenth round, your earnings for the experiment will be the sum
of your earnings in each of the ten rounds plus the $7 participation fee.

We are now ready to begin the experiment. There should be no talking from this point
on. If you have a question, raise your hand.
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Figure 2. Cumulative choice frequency --'C tm@tmem
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