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Abstract 
Scholars engaged in the study of work group and organizational behavior are increasingly calling 
for the use of integrated methods in conducting research, including the wider adoption of 
computational models for generating and testing new theory.  Our review of the state of modern 
computational modeling incorporating social structures reveals steady increases in the 
incorporation of dynamic, adaptive, and realistic behaviors of agents in network settings, yet 
exposes gaps that must be addressed in the next generation of organizational simulation systems.  
We compare 29 models according to more than two hundred evaluation criteria, ranging from 
simple representations of agent demographic and performance characteristics, to more richly 
defined instantiations of behavioral attributes, interaction with non-agent entities, model 
flexibility, communication channels, simulation types, knowledge, transactive memory, task 
complexity, and resource networks.  Our survey assesses trends across the wide set of criteria, 
discusses practical applications, and proposes a research and development agenda that motivates 
advancement of computational science toward unification of organization theory.  
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Introduction 
 Work is central to every aspect of modern life.  What we “do for a living” influences not only government 
policy, community norms, and economic status but also our individual self-esteem, social activities, and even 
seemingly unrelated decisions such as when to marry and if and when to have children (Hulin, 2002).  The usual 
environment for work is some form of organization, ranging from companies, where people are linked as employees 
engaged in activities supporting profit or welfare maximizing motives, to an array of other organizational forms, 
such as families, communities, religious groups, and even nation states, where connections between people are based 
less on economic motives and more on genetics, social identity, or concern for promoting or defending the welfare 
of its members.  However, despite the pervasiveness and critical importance of organizations to society and 
individuals, a unified theory of organizations remains elusive.  Economists have a coherent body of theory 
underlying their understanding of the market transactions or contractual mechanisms that motivate organizations, 
but management scientists still struggle to provide an integrated theoretical rationale for the complex behavioral, 
cognitive, and attitudinal aspects of those same organizations (Simon, 1991).  To understand why this is so, we must 
look to the core of the types of organizations considered in this study – human beings.  Notwithstanding the 
existence of automata and avatars, organizations are principally comprised of human agents who contract tacitly or 
explicitly for an exchange of some degree of authority or autonomy for combinations of compensation, social 
identity, preservation, or other objectives of enlightened self-interest.  Comprised thusly of human agents, 
organizations, from the simplest of partnerships to the most intricate of international corporations, reflect not only 
the richness, complexity, variation, chaos, and beauty of human behavior but also its seeming defiance of theoretical 
conformity.  We should not be astonished then why predicting or even understanding organizational behavior is 
indeed daunting.  Nor should we be astonished by the multitude of partial theories of group and organizational 
behavior, which, although insightful and stimulating, oftentimes fall well short of theoretical unity or even harmony.   
 It is precisely this state of affairs that motivates our review of computational organizational models.  In the 
domain of computational modeling, ideally any number of theories can be fused and tested using the touchstone of 
simulation modeling, enabling the integration and generation of organizational theory that reflects both reality and 
emergence in human complexities (Masuch & LaPotin, 1989).  Our primary aim is to examine the extent to which 
researchers are beginning to harness computational modeling’s power to integrate the many desultory theories of 
behavior of individuals, groups, organizations, and groups of organizations ultimately in a unified theory of 
organizational behavior.  To review progress toward this end, we examine twenty-nine organizational simulation 
models developed over the past fifteen years.  We first introduce a framework for organizational simulation 
modeling that will guide our analysis of the reviewed models.  Then, based on our nomological construct, we 
discuss each class of models and their contributions to understanding organizations and their effectiveness.  Finally, 
we suggest a research agenda for extending the application of computational modeling toward the goal of integrating 
and ultimately unifying theories of organizational behavior. 

Model Selection Process 
 Simulation models included in this review span the period from 1989 to 2003.  To select models, we first 
searched general, business, psychology, interdisciplinary, social science, and dissertation abstract databases using 
the primary terms simulation, model, and expert system, in conjunction with numerous antecedent and secondary 
terms such as computer, computational, system dynamics, agent-based, and multi-agent.  This initial sweep yielded 
several hundred abstracts, from which we ultimately chose models introduced in twenty-nine peer-reviewed journal 
articles.  Our selection rules specifically required that models (1) focus on human organizations and networks (i.e., 
no robotic or avatar-based interactions except as part of overall human systems), (2) inculcate theory at a level at 
least as aggregate as individual behavior (i.e., no biological or chemical level models), and (3) enable investigation 
of multiple aspects of individual, group, and inter-group behavior (i.e., models that extend beyond single-purpose 
use for testing an existing theory, as in the case of Repenning’s (2002) exemplary application of system dynamics to 
the investigation of existing theory on innovation adoption). An additional condition we applied for inclusion is that 
the code for the models be publicly available or identifiable based on publicly available information.  Despite our 
rigorous identification methodology, the twenty-nine models reviewed are not intended necessarily to be 
“exhaustive.” We nevertheless believe the selected models are widely representative of organizationally oriented 
simulation systems introduced over the past fifteen years and will thus form a sound basis for providing perspectives 
on the present and future states of computational modeling. 



 

 

Definitions 
 Organizational Simulation Model.  We define an organizational simulation model as a type of Turing 
machine in which the discrete-state machine represents performance of a group of two or more individuals 
interacting to achieve a common goal.  Inputs and outputs are combinations of physical, behavioral, and cognitive 
characteristics of the individuals and groups comprising the organization.  State transitions are described by 
empirically based associations or mathematical relations founded on existing and proposed theory. 
 Organizational Simulation Framework.  Rather than simply reporting on models and their capabilities, one of 
our aims is to understand the state of computational organization modeling in the context of theories of organization 
and organizational behavior.  To do so, we require a framework for modeling organizational behavior against which 
we can measure the coverage of respective models reviewed in the study. We take this approach in recognition that 
the scientific standards applicable to a good mathematical model also apply to simulation. Such standards dictate 
that we (1) provide categories of assumptions so that insights and intuitions can be transferred from one context to 
another and cross-checked between different contexts, (2) allow insights and intuitions to be subjected to tests of 
logical consistency, and (3) establish the ability to trace back from observations to underlying assumptions to see 
which assumptions are really at the heart of particular models (Kreps, 1990). Thus, our review is organized around 
components of a heuristic model of organizational effectiveness that integrates and extends earlier effectiveness 
frameworks introduced by Hackman and Morris (1975), Nieva, Fleishman, and Rieck (1978), Nadler and Tushman 
(1980), Hackman (1983), McGrath (1984), Gladstein (1984), Goodman (1986), Sundstrom, DeMeuse, & Futrell 
(1990), Cohen and Bailey (1997), and Marks, Mathieu, and Zaccaro (2001).  

 
Figure 1.  Organizational Simulation Framework. 

 
 The framework has fourteen factors, categorized as “Inputs” (Resources, History, Culture, and External 
Environment), “Transformation Processes” (Composition, Organization Context, Psychosocial Traits, Technology, 
and Interactive Processes), outputs (Performance, Attitudinal, Behavioral), and linkages (Strategy and Action).  The 
framework embeds individual characteristics, described by “Composition” attributes, within the group or 
organization-level transformation processes.  Transformation processes represent the means by which strategy 
translates organizational inputs into meaningful action resulting in performance, attitudinal, and behavioral outputs. 
Results of both transformation processes and outputs have feedback impacts on inputs and the processes themselves. 
Performance outcomes range from objective measures – such as efficiency, cost, productivity, quality, safety, errors, 
or customer service – to perceived measures of those same dimensions.  “Perceived” performance outcomes 
measure how organizations and organizational units appear to work together, including the perceived level of 
integration of social identity groups (by gender, age cohort, or role, for example) and the perception of overall team 
functioning. Examples of attitudinal outcomes are job satisfaction, worker morale, turnover intentions, change 
resistance, and commitment.  Behavioral outcomes range from absenteeism and turnover to communication patterns, 



 

 

innovation, and learning. We represent organizational design factors in a multi-dimensional construct encompassing 
technology, composition, and organizational context.  We further break down each factor into specific sub-
categories in order to surface more explicit distinguishing factors of organizations (Kozlowksi & Bell, 2003).  For 
example, we disaggregate technology design into variables representing task (complexity, interdependence, and 
autonomy) and non-task technology (equipment, materials, and physical environment).  Composition variables are 
disaggregated into sub-categories that include individual characteristics such as personality, values, knowledge, 
experience, and tenure, and group and organization level characteristics such as size, demography, and diversity.  
Similarly, organizational context includes constructs for leadership, empowerment, and multi-cultural influences.  
       With respect to group and unit-level processes, we define categories of cooperation and communication 
variables in both internal and external contexts as well as separate group goal-setting and organizational justice 
variables.  Cooperation encompasses processes such as conflict resolution, collaborative decision making, and 
reflexivity.  Communication broadly includes processes that facilitate social and cognitive information sharing.  
Following Cohen and Bailey (1997), we differentiate psychosocial variables as group and unit-level constructs such 
as efficacy, affect, norms, cohesiveness, and cognition.  Collective efficacy is an expression of a group’s confidence 
in working together in general, while group affect is a measure of consistent or homogeneous affective reactions in a 
group (George, 1990).  Norms are tacit understandings or implied agreements of how group members should behave 
under certain conditions, and cohesiveness reflects the level of shared identity in a group or the extent to which 
members of a group view themselves as a group.  Group cognition encompasses group learning processes, shared 
mental models, and group transactive memory (Wegner, 1986).  Finally, our framework incorporates environmental 
factors as a distinct category that broadly encompasses industry characteristics, competition, and economic context. 

Analysis of Models Surveyed 
 Our analysis approach consisted of first coding the capabilities of each of the twenty-nine models (see Figure 
2) according to 290 capability evaluation factors representing the following categories:  range of organization 
designs, actor characteristics, organizational performance measures, agent physical attributes, agent behavioral 
attributes, agent cognitive attributes, task characteristics, task assignment, technology, resources, knowledge, 
simulation type, network representation, and communication processes.  Then, based on a mapping of each 
capability evaluation factor to one of the fourteen factors in the organization simulation framework, we calculated an 
index describing the models’ coverage of theoretical constructs in the framework. 

 
Figure 2.  Simulation Models Included in Review.1 

 General Findings.  Simulation models in our review are grouped into three broad categories according to 
simulation type: agent-based models, expert systems, and mathematical models.  As shown in Figure 3, while there 
has been a similar pattern of growth between model types, agent-based models now outnumber other types and are 
growing at a faster rate; in addition, agent-based simulations have the greatest representation of network structures.  
Networks are used to characterize not only social relationships but also organizational roles, communication 
linkages, advice relationships, tasks, knowledge, and resources.  Among the models surveyed, a wide range of 
organizational structures is represented, from hierarchies and bureaucracies to networks and nation-states.  The most 
prevalent type of structure is team-based, with fairly even focus on both traditionally managed and autonomous 
teams. 
 Models are generally limited to focusing on one level of analysis. However, some models simulate two or 
more levels (e.g., ELM, TASCCS, DYCORP, STEAM), with linkages defined as one or more performance or 
                                                 
1 Due to space restrictions, the conference version of this paper does not list references for the 29 models. A complete list of 
references for the models is available from the authors.   



 

 

decision making outcomes communicated from one level to another. One model, OrgCon, theoretically permits 
investigation of the effects of an unlimited number of levels; however, the measure is incorporated, as are other 
measures in such rule-based systems, as a set of ranges reflecting varying levels of influence of complexity or 
hierarchy on other organizational design variables.  Time is generally defined in the form of generic Markovian 
“time steps,” with linkages to normative or positive scientific interpretation completely dependent on the time frame 
of the inputs provided by the modeler.  Thus, most models offer only a means of construing time on a relative basis 
between simulations in a given study, not an absolute basis for making time-based predictions. 
 

             
 3a. Multi-Agent Models. 3b. Expert Systems. 3c. Mathematical/System Dynamics.  

Figures 3a-c.  Growth in Simulation Models by Type. 
Lightly-shaded region represents percentage that is network-based. 

 While all models instantiate one or more bodies of theory as an analytical foundation, applications of models 
generally fall into two broad categories – theory-building and situational simulation.  Theory-building models (e.g., 
Table 1) pose and test new theory based on results that emerge based on interactions of existing theory.  Situational 
simulations (e.g., Table 2) apply existing theory to situations typically unsuited to empirical investigation to validate 
theory under those conditions.  Both theory-building and situational simulations are useful for examining robustness 
of propositions under scenarios in which some or all key independent variables are changed. 

             
 As shown in Table 3, the range of theory encompassed by the surveyed models is dominated by socio-
technical systems theory (Emery & Trist, 1960), although the focus of such models is on simulating the interaction 
of people, task, and technology rather than on optimization of their social and technological outcomes. Not 
surprisingly, most of the socio-technical models also incorporate social network representations of actors. Closely 
aligned with socio-technical approaches are models incorporating contingency theory. These models are concerned 
less with agent specific behavior and more with aspects of design that are predicated on factors such as differing 
levels of formalization, centralization versus decentralization, and proactive versus reactive planning time horizons. 
  While models based on socio-technical systems approaches are cybernetic and constructivist in nature, 
seeking to balance technology and task in a context of socially shared meaning, models based on artificial 
intelligence (AI) theory presume that knowledge alone, rather than having a social dimension, is a commodity and 
that the application of such knowledge is in fact the true expression of intelligence (Minsky, 1967).  Thus, models 

Situational Domain Representative Models 
Tailor Shop 
Airlines 
Manufacturing 
Warehouse Order Picking 
Petroleum Refining 
Radar Detection 
Air Combat 
Resource Allocation 
Hospital Scheduling 
Border Hostility 
Urban Threats 

  Construct 
  OrgCon 
  ACTION 
  Plural-SOAR 
  SimVision 
  Team-SOAR 
  TacAir-SOAR 
  STRAT-PAC 
  TAEMS 
  CASCON 4 
  VISTA 

Table 2.  Examples of Situational Models. 

Theory Domain Representative Models 

 Organization Design 
 
 
 
 
  Organization Change 
  Enculturation 
 
  Cooperation 
  Gossip 

  Double-AISS 
  CORP 
  SimVision 
  Orgahead 
  NK Fitness 
  Punctuated Change 
  Cultural Transmission 
  SugarScape 
  Social Exchange 
  Trust Me 

Table 1.  Examples of Theory-building 



 

 

such as TASCCS (Verhagen & Masuch, 1994) and STEAM (Tambe, 1997) instantiate agents with decision logic 
oriented around agents’ respective skills, assigned tasks, memory, and mental models of other agents, enabling them 
to act and interact based on pre-programmed rules.  The “task” of learning thus becomes a pre-programmed routine 
of reinforcing the agent’s stock of knowledge based on responses the agent keeps in memory.  AI models are 
particularly useful for exploring the actions of both human and technological agents engaged in highly standardized 
processes with protocols defined for as near to all conceivable situations as possible. 

 
 Still other models are based on evolutionary designs and population ecology, enabling simple agents to explore 
complex organizational search spaces based on genetic algorithms or relatively simple sets of rules for death and 
regeneration.  These models tend to be more intellective in nature and are thus powerful for theory-building but less 
useful for situational emulation.  Models incorporating more specific theories, such as joint intentions theory and 
social learning theory, tend to represent those premises in combination with broader theories such as contingency 
theory and general artificial intelligence.  These models’ unique additions extend the detail with which models can 
address goal and outcome interdependence as opposed to simple task interdependence. 

         
 Figure 4.  Coverage indices of models Figure 5. Input versus Process (dark) 
 in chronological order, 1989-2003. and Output (light spectrum). 

Underlying Theory Representative Models 

Socio-Technical Systems Theory Double-AISS 
Construct 
ELM 
Brahms 
HITOP-A 

CORP 
ACTION 
Orgahead 
DYCORP 
VISTA 

Artificial Intelligence Theory Double-AISS 
Plural-SOAR 
TASCCS 

Radar-SOAR 
STEAM 
Team-SOAR 

Organizational Information Processing 
Theory 

SimVision 
Trust Me 
Brahms 

Orgahead 
Construct 

Contingency Theory OrgCon 
CASCON 4 

NK Fitness 

Evolutionary Theory/Population 
Ecology 

Cultural Transmission 
Sugarscape 

NK Fitness 
STRAT-PAC 

Punctuated Organization Change Punctuated Change  

Joint Intentions Theory STEAM  

Dynamic Phase Conflict Model CASCON 4  

Social Learning Theory Social Exchange Model 
Trust Me 

STEAM 

Table 3.  Underlying Theories of Reviewed Models. 



 

 

 Specific Findings on Coverage of Simulation Framework.  While we recognize that the idea of a unified 
theory of organizations is epistemological in nature, and that establishing the capability to simulate the behaviors of 
organizations in increasing detail may no more lead to such unification than the present panoply of partial theories, 
we nevertheless believe that such ideas and attempts to model those ideas are worthy goals (Hulin & Ilgen, 2000).  
Hence, our calculations of indices of coverage of the simulation framework (Figure 1) are intended less as absolute 
measures than as indicators of the richness and vastness of organizational behavior yet to be integrated.  Based on 
these calculations, as Figure 4 indicates, there is a discernible if variable trend upward in the coverage of inputs, 
processes, and outputs in the framework.  However, as Figure 5 depicts, the capabilities of most models cluster in 
the 5 to 15 percent coverage range, with a handful of models covering 25 to 30 percent of the framework.  Finally, 
Figure 6 summarizes average coverage of the simulation framework across all models and provides a scorecard 
value for each factor in the framework. Given that the framework, despite its theoretical grounding, is arguably 
much less than 100 percent representative of organization theory, our coverage estimates are clearly biased on the 
high side.  Thus, our analysis reveals there is much ground to cover in integrating existing theory.  

Discussion 
 As Figure 4 shows, the richness of simulation models has increased over the past fifteen years.  Representation 
of processes tends to dominate input and output coverage, indicating that existing simulations focus primarily on 
transformation factors such as group composition, technology, communication, and cooperation.  Somewhat 
surprisingly, output coverage is generally superseded by both input and process representation.  Most models focus 
on some aspect of performance or productivity, with little or no attention to behavioral and attitudinal measures.  
Future research should increase the incorporation of attitudinal and behavioral outcomes in models, along with 
dynamic feedback of those outcomes to input and process variables. 
 While most models exhibit fairly low coverage of the simulation framework (see Figure 5), even models with 
richer feature sets tend to have similar underlying theories and cover many of the same types of factors in the 
simulation framework. Thus, if there is a road to “unification of theory,” it clearly not one of merely adding or 
integrating multiple models together.  The range of underlying theory must expand beyond the fractional and 
mechanistic to the holistic and emergent.  Just as understanding biological evolution requires less about what atoms 
themselves are made of and more about how they behave in chemical and physical networks, discovering unified 
laws of organizational behavior will only result from understanding how sundry partial theories of organization 
interplay at each level in complex networks of people, resources, tasks, knowledge, and technology.  Future research 
should examine the appropriate range of theories further, refining the unified simulation framework ultimately with 
a level of dependent, independent, and control variables that fosters the study of both integrative and emergent 
organizational behavior irrespective of the specific goals of the simulation. 

 
Figure 6.  Simulation Framework Scorecard (0-100 scale). 



 

 

Conclusion 
 The current state of organizational simulation modeling largely continues to reflect the classical approach to 
empirical studies, limiting dependent variables to specific outcomes of interest and independent variables to those 
believed to be most associated with explaining variance.  This approach, while enabling organization scientists an 
additional tool for corroborating and testing relationships between restrictive sets of variables, leads to the same 
partial theories that result from empirical and experimental methods.  Although this result is not a poor one, it is 
certainly one that deprives researchers of the broader capability of computational modeling to integrate bodies of 
theory that would be impossible to combine otherwise, enabling exploration of unforeseen emergence and 
identification of new, more unified theory. The boundaries of simulation modeling must persist in widening beyond 
the present state of mirroring empirical limitations.  Yet, to do this, simulation models themselves must adopt 
improved theories of computation and applications of existing computer science to enable them to take full 
advantage of their ability to process complex interactions of increasingly human-like agents.  In addition, 
simulations must widen their boundaries with respect to organizational behavior by incorporating broader empirical 
grounding synthesized with computational approaches such as structural equation methods, system dynamics, and 
constraint satisfaction modeling.  Consequently, as computer science and simulation methods alike continue to 
advance, computational organization science may very well have opportunities for unification of theory in view at 
last.  

References 
Cohen, S. G. & Bailey, D. E., 1997,  What makes teams work: Group effectiveness research from the shop floor to the executive 

suite. Journal of Management, 23(3), 239-290. 
Emery, F. E. & Trist, E. L., 1960, "Socio-technical systems." In Management Sciences Models and Techniques, vol. 2.  London: 

Tavistock Institute. 
George, J. M., 1990, “Personality, affect, and behavior in groups.”  Journal of Applied Psychology, 75(2), 105-117. 
Gladstein, D., 1984, “Groups in context: A model of task group effectiveness.” Administrative Science Quarterly, 29(4), 499-517. 
Goodman, P. S., 1986, “Impact of task and technology on group performance.” In P. S. Goodman & Associates (Eds.), Designing 

Effective Work Groups (pp. 120-167). San Francisco: Jossey-Bass. 
Hackman, J. R., 1983, “A normative model of work team effectiveness.”  In Technical Report No. 2, Research Program on Group 

Effectiveness.  Yale School of Organization and Management. 
______ & Morris, C. G., 1975, “Group tasks, group interaction process, and group performance effectiveness: A review and 

proposed integration.” In L. Berkowitz (Ed.), Advances in Experimental Social Psychology. Orlando, FL: Academic Press. 
Hulin, C. L., 2002,  “Lessons from industrial and organizational psychology.” In J. M. Brett & F. Drasgow (Eds.), The 

Psychology of Work: Theoretically Based Empirical Research (pp. 3-22). Mahwah, NJ: Lawrence Erlbaum Associates. 
______ & Ilgen, D. R., 2000, “Introduction to computational modeling in organizations: The good that modeling does.” In D. R. 

Ilgen & C. L. Hulin (Eds.), Computational Modeling of Behavior in Organizations: The Third Scientific Discipline (pp. 3-
18). Washington, DC: American Psychological Association. 

Kozlowski, S. W. J., & Bell, B. S., 2003, “Work groups and teams in organizations.” In W. C. Borman, D. R. Ilgen, & R. J. 
Klimoski (Eds.), Handbook of Psychology (12, pp. 333-375).  Hoboken, NJ: John Wiley & Sons. 

Kreps, D. M., 1990,  Game Theory and Economic Modeling.  Oxford: Oxford University Press. 
Marks, M. A., Mathieu, J. E., and Zaccaro, S. J., 2001, “A temporally based framework and taxonomy of team processes.”  

Academy of Management Review, 26(3), 356-376. 
McGrath, J. E., 1984, Groups: Interaction and Performance. Englewood Cliffs, NJ: Prentice-Hall. 
Minksy, M., 1967, Computation: Finite and Infinite Machines. Englewood Cliffs, NJ: Prentice-Hall. 
Nadler, D. A. & Tushman, M. L., 1980, “A model for diagnosing organizational behavior.” Organizational Dynamics, (Autumn): 

35-51. 
Nieva, V. F., Fleishman, E. A., & Rieck, A., 1978, “Team dimensions: Their identity, their measurement, and their 

relationships.” In Final Technical Report for Contract No. DAHC19-78-C-0001. Washington, DC: Advanced Research 
Resources Organization. 

Repenning, N., 2002, “A simulation-based approach to understanding the dynamics of innovation implementation.” Organization 
Science, 13(2): 109-128. 

Simon, H. A., 1991, Organizations and markets. Journal of Economic Perspectives, 5(2), 25-44. 
Sundstrom, E., DeMeuse, K. P., & Futrell, D., 1990,  “Work teams: Applications and effectiveness.” American Psychologist, 45, 

120-133. 
Wegner, D., 1986, “Transactive memory: A contemporary analysis of the group mind.” In B. Mullen & G. R. Goethals (Eds.), 

Theories of group behavior (185-208). New York: Springer-Verlag. 
 


