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Various theoretical concerns often require researchers to answer questions of the form does co-member-
ship in a group predict other ties between those individuals. Data appropriate for answering such a
question often is referred to as network data. Network data exhibits row-column dependencies that often
invalidate traditional statistical methods for doing group comparisons such as analysis of variance and
the Kruskal-Wallis Procedure. Because of the positive dependence within rows/columns the significance
probabilities of such traditional methods may be exaggerated. This paper uses restricted-randomization
to develop exact permutation tests for network data where co-membership in groups can be specified
a priori. This enables the nonparametric estimation of the significance of standard statistics for group-
difference tests and ordered-alternative tests where the group orderings have been prespecified. These
methods ate demonstrated by examining three different data sets: Sampson’s Monastery data, Carley’s
Tutor Selection data, and Humana’s Human Rights data.

KEY WORDS: Anova; nonparametric tests; permutation analysis; dyads; co-membership; network data;
Kruskal-Wallis; Jonckheere-Terpstra.

Sociologists often are concerned with whether similar behavior depends on similar
position in the social structure, such as occurs when two individuals are members
of the same group. For example, sociologists have debated whether co-membership
in some group has predictable influence on such phenomena as the production of
consensus (Blau, 1977; Burt, 1982; Carley, 1986), conflict (Homans, 1950), the rate
of information diffusion (Burt, 1980; Carley, 1990; Fararo and Skvoretz, 1986), and
the type of information information that diffuses (Granovetter, 1973; Granovetter,
1974). Being concerned with the patterns of relationships among individuals sociol-

*This research was supported, in part, by the NSF under grant No. IST-8607303.
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2 K. CARLEY AND D. BANKS

ogists often ask whether having a particular relationship in common predicts other
relationships between individuals. For example, for all mid-career individuals, are
co-workers more likely to marry than other couples? Or, for all countries, do coun-
tries with similar economic levels show similar human rights behavior?

These questions are all concerned with whether the dyad-groups! (hereafter, D-
groups) are different, hence we refer to them as group-difference questions. Exam-
ples of D-groups are co-worker couples/non co-worker couples, pairs of students at
the same college/pairs of students at different college, and pairs of countries that
are economically similar/pairs of countries that are economically dissimilar. Some-
times the social scientist wants to know not just whether the D-groups are different,
but whether a prespecified ordering of those D-groups can predict the ordering of
a different relationship. For example, given data on faith and the amount of time
spent interacting, is it the case that pairs of individuals of mixed faith interact the
least, pairs where both people are Christian interact the next most, and pairs where
both are Bhuddist interact the most? Or, are pairs of poor countries more heteroge-
neous with respect to human rights than are pairs of moderately well off countries
which are in turn more heterogeneous than pairs of moderately well off countries
which are in turn more heterogeneous than pairs of wealthy countries? These ques-
tions are all of the form on relationship y is D-group a < D-group b < D-group c.
In each question an ordering of the D-groups are specified, hence we refer to these
questions as ordered-alternative questions.

Both group-difference questions and ordered-alternative questions are addressed
using network data—where the unit of analysis often is the pair of actors. In fact,
these questions require two networks. In the first network, the independent variable,
the relation between pairs of actors indicates to which D-group both actors belong.
In the second network, the dependent variable, the relation between pairs of actors
indicates some linkage that is expected to vary with D-group membership. Without
this network structure to the data, as when the unit of analysis is the actor, tradi-
tional methods (such as analysis of variance and the Kruskal-Wallis procedure) offer
easy tests for group-difference questions. Also, without this network structure when
one has an ordered-alternative question traditional methods such as the Jonckheere-
Terpstra test (Hollander and Wolfe, 1973) can be used. For network data, however,
the observations that pertain to a given actor are not independent. For example,
imaging that for each pair of students you know how many of the same classes they
have taken. If one of the students has taken four times as many classes as the aver-

IThroughout this paper we use the term dyad-group or D-group to refer to a set of dyads such that both
members in the dyad share some feature (have a particular type of relationship), such as each dyad is
composed of actors who are both Catholic (Catholicism relationship), or each dyad is composed of one
actor who is Catholic and one who is Jewish (inter-faith relationship). Because D-groups classify dyads
and not individuals the same actor may be in multiple D-groups. In contrast, we use the term actor-
group or A-group to refer to a set of actors such that all actors have some feature, such as the actor is
Catholic or the actor is Jewish. These A-groups are cquivalent to the subgroups identified by Iacobucci
and Wasserman (1987). In both cases, we use the term group, rather than subgroup, both for ease of
exposition and to clarify that we are not discussing the subgroup problem. In clinical trials, the subgroup
problem occurs when, for example, having given a drug to a group of individuals the researcher tries to
determine whether there exists a specific subgroup that is affected more than others by the drug. The
difference between the problem we address and the subgroup problem is that in our case the groups (or
subgroups) are predefined whereas in the subgroup problem they are not.
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INFERENCE FOR NETWORK DATA 3

ts other age student then it is likely that the number of classes this student has in common
als, are “ with each other student is much higher than for other pairs of students. This de-
0 coun- pendency can invalidate the traditional procedures for calculating the significance
probability of these measures.
fter, D- ' This paper (Section 2) develops a nonparametric analysis that takes proper ac-
. Exam- count of the dependency structure, and shows how the failure of independence can
Qents at ‘ cause traditional statistical procedures for examining group-difference and ordered-
ies that " alternative questions, when applied to network data to find spuriously significant
: Some- results. Because the proposed tests are permutation tests they are conditionally
ifferent, distribution-free and therefore impose no requirement for normally distributed ran-
ering of ‘ dom variables. As a consequence, the proposed tests are usually more conservative
of time (not always) than the inappropriate traditional tests. In Section 3, we illustrate the
ract the proposed methods by applying them to three data sets: Sampson’s Monastery Data
s where l (Sampson, 1968), Carley’s Tutor Selection Data (Carley, 1984; Carley, 1986), and
cteroge- ' Humana’s Human Rights Data (Humana, 1983). In Section 3, for group-difference
ountries questions, we will contrast the traditional statistical approach for calculating the
ountries significance probability for the F and Kruskal-Wallace measures of separation with
S¢ ques- ! our proposed permutation approach for calculating this probability. For ordered-
group c. alternative questions, we will contrast the traditional statistical approach for cal-
to these culating the significance probability for the Jonckheere-Terpstra measure with our
proposed permutation approach for calculating this probability. In Section 4 a dis-
Idressed cussion of these and related methods is provided. In Section 5 we draw some con-
In fact, clusions.
/ariable, Our goal is to determine whether a set of D-groups shows significant differences
belong. i in some dependent network-variable. Consequently, the tests we propose are partic-
of actors. | ularly useful in studying the impact of social structure defined via a set of D-groups.
Without ! Prior to using our tests the researcher must define a set of D-groups. There are
T, tradi- many ways of defining a set of D-groups. For example, a set of D-groups might
re) offer consist of couples that are both male, both female, or opposite sex; alternatively, a
re when set might consist of couples that are same sex and couples that are opposite sex.
*kheere- Thus the D-groups can consist of pairs of actors who are similar in some relation-
IoWever, : ship such as plays with (Homans, 1950), like (Homans, 1950; Newcomb, 1961), or
‘xample, : respects (Sampson, 1968), or in terms of some pattern of relationships (Breiger,
ses they Boorman, and Arabie, 1975; Heil, 1976; Burt, 1989), or set of relationships (White,
he aver- 1976; Lorrain and white, 1971). For our purpose, it is not important how the D-
groups are defined, merely that the pairs of actors in the network can be divided
1 that both : into a set of D-groups, and that the data used to define D-groups is different from
i‘ddg?gn’z | the dependent variables whose relationship we are trying to study.
isify dyads i
:rm actor- !
1€ actor is . METHODS
Iacobucci ;
?;u‘l’;';sri ‘i’; Per‘mutation tests often enable nonparametric inference for complex problems. As
er tries 1o i a sunple example of the strategy, consider .the k-sample location pr(.!blem. This
drug. The i examines a set of k random samples to decide whether these populations have a
groups (or i common center (or location), or whether there exists evidence that some popula-

tions have distributions that are shifted above or below the others. One observes




4 K. CARLEY AND D. BANKS

independent samples of size n;, i = 1,...,k. Each of these populations has a center
(which can be measured as its mean or median) which we denote as A;. The sam-
ples are independent of each other, and each sample consists of independent and
identically distributed values having cumulative distribution function F(x — A;). To
make a nonparametric test of the null hypothesis that there exists a common center;
i.e., Hy : A1 = --- = Ay, the permutation principle uses the fact that, under the null
hypothesis, all possible samples generated by any rearrangement of data values that
assigns observations to other populations, while holding the sample size per popu-
lation fixed, are equally likely. Any such possible sample is called a pseudo-dataset.
Since there exists a total of n = 5 n; observations, the probability under the null of
observing any particular set of samples (conditional on the data) is just

( " >-1=;ll—'ﬁni!.

Ny,y..., Nk fim1

Thus the significance probability of the test is
-1

n
(o tom)
Niy... Nk

where d is the number of pseudo-datasets that support the alternative hypothesis
as or more strongly than the observed dataset, where the strength of support is
assessed by the magnitude of some suitably chosen test statistic, such as a standard
normal theory F-test value from the analysis of variance. However, because of the
equiprobability of the pseudo-datasets under the null hypothesis, this result does not
depend on the form of F(-), and thus the procedure is nonparametric.

Network data offer a more complicated version of the k-sample location problem,
and the simple permutation test does not apply. Consider the following application:
a network researcher records for n; male students and n; female students the num-
ber of minutes each pair of students spends interacting during a typical schoolday.
This interaction time will be our dependent variable. The research hypothesis is
that there are group differences in the length of interaction among male-male pairs,
female-female pairs, and mixed-sex pairs. We record our dependent variable in a

matrix with deleted diagonal (see the right hand matrix in Figure 1). We note that’

if the data were counts obtained from cross-classifications of many observations
with respect to two or more factors, instead of being non-count numerical measure-
ments pertaining to a pair of individuals, then one would call the diagonal entries
structural zeroes. The entry in row i and column j of this matrix is the number of
minutes student i is observed as interacting with student j during a typical school-
day. We also record our independent or D-group variable in a matrix with deleted
diagonal (see the left hand matrix in Figure 1). The entry in row i and column j
of this matrix is a number identifying which D-group the pair of students is in: 1M
male-male, (2) female-female, and (3) mixed-sex. For each of these three D-groups
we can calculate A; as the median level of interaction for all pairs of students in
that D-group. We can now state the null hypothesis as Hy : A; = Az = A3. In this
example the data matrix for the dependent variable is symmetric, but the strategy
we will describe extends to asymmetric matrices as well. Asymmetric matrices allow
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INFERENCE FOR NETWORK DATA

GROUP
MATRIX

Groups based on
same/different sex

DEPENDENT
DATA MATRIX

Interaction --

number of minutes

Kris Zﬁ 4543 47 39

Farley ﬁ 50 59 57 38

Brian ;

Kevin

Candace 45 50 58 50

Julie 43 59 55 55

Ashton 475742 57

Brandy (@ 38 35 37138

L_%——i 0-08‘
.e"

Independent Prediction Dependent

Let A= median interaction

b‘{é@iﬁz‘iﬁﬁl&ﬁ‘%@ \‘ {evel for all pairs in group i

Group 3: MIXED-SEX

Ho: A= A=8,

FIGURE 1. Example network data for nonparametric testing.

the possibility of distinguishing such things

pairs, which is pertinent in some applications.
the Kruskal-Wallis test or the k-sample

permutation test) cannet correctly analyze these data; they all assume that observa-
w or column are dependent,
Figure 1 shows this de-
remarkably small. Many
but this forces one to
ed assumptions about
have a simple nonparame
analysis that assumes all rear- .
der the null hypothesis neces-

sarily ignores the dependencies within rows and columns of the dependent-variable

Traditional location tests (e.g- ANOVA,

tions are independent. Here the data within a given ro
since the values pertain (in part) to a common individual.
pendence with Brandy; entries in her row and column are
researchers attempt to model this dependency parametrically,
build a fairly complicated model and make possibly unwarrant
the underlying distributions. Often it is preferable to
procedure; however, any conventional nonparametric
rangements of the sample data are equally likely un

matrix that characterize network data.

Nonetheless, the permutation principle can apply to network data if the appro-
priate adjustments are made. In our example,
Whereas, D-groups are groups of dyads defined by the reearcher that se
of actors (i and j) into categories such that actor i is in A-group a

as female-male pairs from male-female

the A-groups are male and female.
parate pairs
and actor j
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6 K. CARLEY AND D. BANKS

is in A-group b and a may be equal to b. In our example, we defined three D-
groups—male-male, female-female, and mixed-sex. There is no unique link between
the number of A-groups and the number of D-groups that applies to all research
situations. For example, one researcher might, given the A-groups in our example,
look at the three D-groups we defined; another might combine the male-male and
female-female pairs into a single D-group of same-sex pairs.) We draw a distinction
‘between A-groups and D-groups since the hypotheses are concerned with what dif-
ference in some dependent network can be attributed to differences in pairs’ mem-
berships in D-groups, whereas the permutation test depends on rearrangements of
the data relative to the A-groups.

To apply the permutation principle to network data we use the fact that under the
null hypothesis of no D-group differences, the pseudo-datasets generated by rear-
rangements of the row and column labels are equiprobable (Hubert, 1985). This pa-
per exploits the equiprobability or row-column rearrangement under the null to es-
timate the nonparametric significance probability of two types of hypothesis tests—
one for group-difference questions and one for ordered-alternative questions. Both
tests share the same null hypothesis; i.e., Hy: A = --- = A,, which asserts that all
r D-group populations have the same distribution F (-) and the same location pa-
rameter. The first test, for group-difference questions, is analogous to the k-sample
location problem, with omnibus alternative alternative H,, : 3i, Jj such that A; # A;.
The second test, for ordered-alternative questions, has the alternative hypothesis
that Hy : Ar, <--- <Ay, Here, m,...,7, is a prespecified ordering of the r D-
groups and at least one of the inequalities is strict.

This second test often is more practical, since it enables the researcher to make
an inference on the significance of a particular arrangement of the D-group centers.
In passing, we note that the ideas developed in the following subsections are quite
generalizable and enable the extension of other sorts of traditional statistical tests
to nonparametric inference on network data. For example, one could compare all
D-groups to a control D-group, by using Dunnet’s test (1964) to measure the degree
of conformity with the hypothesis that all populations are centered at the center of
the control population. Also, one could extend Friedman’s test (1937) to examine a
two-way layout structure on the D-groups (in our simple example, one factor in the
design might be D-groups defined by sex, and the second factor might be D-groups
defined by race). Finally, if one is interested in a specific set of contrasts among
the D-group centers, one can use Scheffe’s projection procedure (1959) to develop
a test statistic for a specific dataset, and then use the fact that under the null, all
rearrangements of the A-group labels are equiprobable to generate a permutation
test.

Group-Difference Tests

To implement a permutation test for network data, we enumerate all possible rear-
rangements of the A-group labels, and find the proportion of rearrangements that
yield pseudo-data as or more supportive of the alternative than the actual data in
the dependent variable matrix. The strength of support can be measured using any
of many statistics that reflect group separation. In this paper, we will use the F
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INFERENCE FOR NETWORK DATA 7

statistic from an analysis of variance and the Kruskal-Wallis statistic. Row-column
dependency invalidates comparison of these statistics with customary tables; instead,
we use the values obtained from all possible rearrangements of the A-group labels
to develop the null distribution, and thereby obtain the significance probability.

Each rearrangement of the A-group labels induces a randomization of the data
in the D-groups. Since entries in common rows and columns are relocated together,
these randomizations preserve the row-column dependency structure. We call these
rearrangements of the dependent variable data matrix restricted-randomizations,
to distinguish them from the unconstrained rearrangement of this matrix allowed
by conventional permutation tests. The permutation principle ensures that these
restricted-randomizations are equiprobable under the null hypothesis that all D-
groups have common centers, and we denote this common probability by p. Then
the exact significance probability is s = d p, where d is the number of restricted ran-
domizations that give pseudo-datasets that are as, or more, supportive of the alterna-
tive than the data actually observed. This follows the same logic as for the standard
permutation test. For example, in Figure 1, the number of possible rearrangements
of the dependent variable data matrix that keep elements together within rows and
columns is p~! = (§) = 70. Without this restriction preserving row/column depen-
dence, the number of rearrangments is 28!; this reflects the fact that there are 28
entries in the upper triangular matrix and any arrangement of these entries can oc-
cur. If we had an experiment in which the matrix could be asymmetric, then the
number of unrestricted rearrangments increases to (2 x 28)!.

In practice, the combinatorial explosion prevents actual enumeration of all pos-
sible rearrangements of the A-group labels. Therefore we use a Monte Carlo pro-
cedure to equiprobably sample the set of restricted randomizations. Our programs
generate 10000 such samples and calculate a measure of group separation for each.?
The estimate of s is d*/10000 where d* is the number of sampled pseudo-data ma-
trices that show group separation at least as great as the original data. The standard
error of this estimate is 1/s(1 —5)/10000; it is largest when s = .5, and decreases
monotonically with s. There is no need for accurate estimation of s in the vicinity
of .5; these values offer no support for the alternative hypothesis. From a practical
standpoint, one wants accuracy near s = .1; here the normal approximation to the
binomial gives the width of a 90% confidence interval on the significance probability
as 2(1.645),/.1(1 — .1)/10000 = 0.00981, which seems sufficiently accurate.

There are many sensible measures that capture the separation among the centers
of the k populations. Our programs calculate two: the traditional F statistic, as
used in the simple one-way ANOVA, and the Kruskal-Wallis statistic, as used in
one of the nonparametric analogues to ANOVA. Generally, the F statistic is most
powerful when the data derive from a normal or light-tailed distribution. Whereas,
the Kruskal-Wallis statistic generally performs well with heavy-tailed distributions.
Arbitrarily many alternative measures could be devised. We use these two statistics
as they are known to bracket a wide range of behavior. Using our permutation
procedure we found that in general both measures are in close agreement on the

2These programs are written in Fortran, require IMSL, and have been run on a workstation under the
VAX-VMS operating system. Programs are available upon request from the authors.
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8 K. CARLEY AND D. BANKS

significance probability. This finding emphasizes the tendency for all variants of the
permutation test to agree.

Consider the example in Figure 1. In this case there are 3 D-groups and 28 ele-
ments in the upper triangular matrix for collaboration time. The traditional F statis-
tic for a one-way ANOVA is 3.084 with 2 and 25 degrees of freedom and a 0.064
significance probability. The traditional Kruskal-Wallis test provides a value of 5.024
with a significance probability of 0.077. In contrast, the restricted-randomization
permutation procedure we have described gives the significance probabilities of
0.148 and 0.15 for the F and Kruskal-Wallis measures respectively.? This simple
example illustrates that traditional analyses are not conservative and can exaggerate
the conclusions. In fact, in this example, the difference between the traditional and -
permutation approaches is quite large (approximately a factor of 2). Further, this ex-
ample illustrates that the significance probability generated by the permutation test
is relatively insensitive to the measure of group separation (here an F statistic and
a Kruskal-Wallis statistic).

The calculated significance probability depends on both the assumptions of the
model and the data. The nonparametric tests we have described make no assump-
tions other than that the rows (or columns) are independent. Other tests, which
make additional assumptions, are not valid unless these additional assumptions
hold. Their power, however, is an open question. Both the traditional F-test and
the Kruskal-Wallis test make assumptions about the data’s distribution that our per-
mutation tests do not. Consequently we know that in contrast to their permutation
versions, the traditional tests are not more powerful but can be less conservative
and exaggerate the significance probabilities of the measures of separation. Fur-
ther, depending on whether we use an F or a Kruskal-Wallis measure of group
separation, even under the permutation procedure, there will be some difference in
the significance probabilities. These differences reflect prior ideas about alternative
senses of group differences as embodied in these measures, but the permutation
technique does not enforce distributional assumptions required by the traditional
method of analyses.

We note that network data need not yield a symmetric dependent variable data
matrix, and the analysis should distinguish the asymmetric and the symmetric cases.
When asymmetry occurs, all matrix entries except the diagonal are informative. But
if the matrix necessarily is symmetric, then using the full matrix with deleted diago-
nal spuriously doubles the sample size, affecting the sensitivity of measures of group
separation. to avoid this problem, our programs check for symmetry. If the data is
symmetric, then the analysis depends only upon the superdiagonals. Otherwise, the
full matrix is used.

Ordered-Alternative Tests

The permutation principle also enables one to perform ordered-alternative tests.
Often there is more interest in detecting whether the D-group locations conform
to a hypothetical ordering than in simply discovering that an unspecified subset of

3For permutation tests, degrees of freedom for significance probabilities are entirely meaningless, since
readers are never referred to a distribution table, such as an F table.
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INFERENCE FOR NETWORK DATA 9

D-groups shows separation. For non-network data, one can use a single degree of
freedom test of a prespecified orthogonal contrast when the assumptions needed
for ANOVA hold, or the Jonckheere-Terpstra test when the Kruskal-Wallis analysis
is more appropriate. This subsection develops a nonparametric analogue of such
tests for network data.

The two statistics used in this paper do not exhaust the possibilities. Robertson,
Wright and Dykstra (1988, p. 206) point out that when classical assumptions hold
and the population medians are equally spaced in accordance with the alternative
hypothesis, then the Jonckheere-Terpstra test has very good power; however, when
only one inequality is strict and the ordering accords with the alternative hypoth-
esis, then the Chacko-Shovack statistic shows greater power than the Jonckheere-
Terpstra Test. Of course, the classical assumptions are not satisfied when the data
show dyadic dependence, and thus this power comparison may be misleading.

As before, the strategy rests upon Monte Carlo estimation of the significance
probability under restricted-randomization. We sample the set of row/column per-
mutations of the dependent variable data matrix, thereby preserving the dependency
structure within rows and columns, and calculate a test statistic for each that mea-
sures support for the alternative hypothesis. The crucial change is that instead of us-
ing measures of group separation, we use two measures that respond to separations
which conform to the user-specified ordering. One measure is best for continuous
data; the other is better for binary data. At need, one could refine this approach to
handle intermediate cases, such as ordinal data with a small number of categories.

For continuous data, the program calculates the Jonckheere-Terpstra statistic for
the prespecified ordering, and counts the number of pseudo-data matrices that give
values which equal or exceed the actual dependent variable matrix. The Jonckheere-
Terpstra test is a commonly used rank procedure; its test statistic is just the sum of
all r(r — 1)/2 one-sided Mann-Whitney test statistics that correspond to one of the
prespecified pairwise orderings. Since the procedure is based on the ranks of the
observations and not the actual values, the result is resistant to outliers and small
perturbations of the data. For example, consider the data in Figure 1. Suppose we
suspect that male-male pairs spend the least time interacting. This is an expected
ordering of 1< 2 < 3. The traditional Jonckheere-Terpsira test finds the significance
probability of the prescribed ordering as 0.043. After we restrict the randomization
to take account of the row-column dependency, the significance probability of the
prescribed ordering decreases to 0.034. In other applications the difference can be
much larger.

When the dependent variable is binary, the Jonckheere-Terpstra statistic encoun-
ters a problem with excessive ties. In this case our program calculates an alternative
measure. Let pi, i =1,...,7 be the proportion of ones in each of the r D-groups.
Without loss of generality, assume that the prespecified ordering is 1< 2< 3. Then
our measure of conformity is S (Bier — pi)?signum(Piv1 — pi)* This statistic
increases if and only if the observed proportions agree with the prespecified order.
As before, there are many alternative measures one might use (a natural candi-

4Signum is a standard operator that gives the sign of the argument. 1t is 1 if the variable is positive, —1
if it is negative, and 0 when the variable is 0.
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10 K. CARLEY AND D. BANKS

date is Z;:ll(_biﬂ = Pi)log(pi+1 — pi)*, which attains its maximum when the p; are
spaced equally and in the correct order) but in most situations all sensible measures
agree.

When using ordered-alternative tests there is the temptation to examine more
than a single prespecified ordering. This can be useful in exploratory analysis, but it
is incorrect to view the significance probabilities generated by multiple applications
as exact. This relates to the traditional problem of making repeated tests of signif-
icance using the same set of data; one finds that the true significance probability
always is greater than the result of the most significant test.

APPLICATIONS TO THE ANALYSIS OF SOCIAL DATA

We illustrate the proposed techniques with applications to three different data sets.
Prior to these applications each of the data sets is described briefly.

Sampson’s Monastery Data

Our first example concerns the classic Sampson monastery data. Sampson (1968)
describes a twelve month study of the relations between monks in a contempo-
rary American monastery. During the study conflict arose, the social group disinte-
grated, and a large number of members left. Among the data collected by Sampson
are answers to a set of sociometric questions on various relations (Affect, Esteem,
Influence, and Sanctioning) and information on the order of leaving. One question
one might want to address is whether pairs of individuals who are more similar in
their pattern of sociometric relationships are more likely to leave at the same time.
This is a group-difference question.

Since our interest is in answering this question and not in locating groups given
the sociometric data, we shall use the set of A-groups previously located by Breiger,
Boorman and Arabie ( 1975). Breiger, Boorman and Arabie (1975) applied the CON-
COR algorithm to Sampson’s measurements of the Affect, Esteem, Influence, and
Sanctioning relations between monks at time 4. Time 4 immediately precedes the
conflict and breakup. They generated a three block partition of the monks that

- corresponds well with Sampson’s division of the monks into the groups “Loyal Op-
position”, “Young Turk”, and “Outcast”. Table 1 shows the Breiger, Boorman and
Arabie partition of the monks into groups; we use a 1 for pairs of individuals who
are both members of the Loyal Opposition, 2 for pairs who are both members of
the Young Turks, and 3 for pairs who are both Outcasts. We will use this matrix as
our independent or D-group matrix.

Our dependent variable is shared order of leaving. Table 2 contains these data
such that pairs of individuals receive a 1 if they both stayed, a 2 if they both left in
last stage, a 3 if they both left in the first stage, and a 4 if they both were forced to
leave. Thus 1 through 4 gives the reverse order of leaving.

We can determine whether sociometrically similar pairs of monks are more likely
to leave the monastery at the same time by applying the group-difference test de-
veloped in Section 2. Based on Sampson’s analysis of the monastery, however, one
might wish to ask a more specific qQuestion such as does similarity in pattern of
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TABLE 1

Sampson: Group Matrix—Structural Groups
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Sampson: Dependent-Variable Matrix—Shared Order of Leaving
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Sampson: Results of Traditional and Proposed Tests
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sociometric relations predict the specific order of shared leaving. Or, more specif-
ically, does shared membership in the Loyal Opposition lead people to leave not
only at the same time but first, the Young Turks second, and the Qutcasts last? This
is an ordered-alternative question. In order to illustrate the proposed methods we
will apply both the traditional statistical tests that do not take the network structure
into account and the proposed permutation tests that take the network structure
into account by restricting the randomization. The results of all tests are shown in
Table 3.

For the group-difference test, when the network structure is not taken into ac-
count, the significance probabilities are exaggerated whether the F or the Krus-
kal-Wallis statistic is used. Yet, even our more conservative approach suggests that
co-group members are likely to leave at the same time. For the ordered-alternative
test, the traditional test would lead the researcher to conclude that co-group mem-
bers probably did not leave at the same time. Whereas, the proposed test suggests
the opposite conclusion. This analysis indicates that when the network structure is
taken into account co-group members are not only likely to leave at the same time
but that structural similarity correctly predicts the order of leaving.

Carley’s Third East Tutor Selection Data

Carley (1984) examined the relationship between undergraduate interaction in an
MIT dormitory and the students’ group decision-making process in selecting a new
tutor (graduate resident). The data included both an interaction matrix and cogni-
tive maps. A cognitive map describes a single student’s conception of the tutor’s
role at a particular time. These maps consist of a series of statements (called facts
in Carley, 1986) identifying each student’s criteria for determining whether someone
would make a good tutor. For every every pair of students, one counts the number
of statements in their maps in common. This number is an indication of the amount
of information or knowledge that the students shared. Carley calculated the amount
of shared knowledge at both the beginning and end of the decision making process.
The difference in these counts from the beginning to the end of the process repre-
sents the increase in shared knowledge between that pair of students. Given these
data a series of questions can be asked. For example, are pairs of individuals that
interact frequently more likely to have a greater increase in shared knowledge over
time than pairs of individuals who interact infrequently. Or, are pairs of individu-
als with similar patterns of interactions (i.e., pairs who are structurally equivalent
(Lorrain and White, 1971)) more likely to have a greater increase in shared know-
ledge over time than pairs of individuals with dissimilar patterns. These are both
group-difference questions. Carley (1989) used simple t-tests to answer these ques-
tions.

First, Carley argued that change in shared knowledge increases with increasing
levels of interaction. We refer to this as the first group-difference hypothesis. In
making this argument Carley defined two D-groups based on level of interaction—
D-group 1, pairs of students who are infrequent interactors (a raw interaction level
of 1 or 2) and D-group 2 pairs of students who are frequent interactors (a raw
interaction level of 3, 4 or 5). In Table 4 the raw interaction data is shown on the
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TABLE 4
Carley: Group Matirx—Raw & Collapsed Interaction

Raw Interaction Low/High Interaction
Johann 032431335422314 021221222211212
Lorenzo 303234452432443 202122221221222
Ian 230233232222522 120122121111211
Zebediah 422012333251132 211011222121121
Hilda 333103433322343 222102222211222
Ted 143230242431333 122120121221222
Lowell 342342052323352 221221021212221
Jacques 353334502322352 222222201211221
Eunice 5§22332220422214 211221110211112
Jubal 442234334023445 221122222012222
Deety 232523222203232 121212111102121
Woodie 222121322330222 111111211220111
Maureen 345133332422033 222122221211022
Hazel 142343551432302 121222221221201
Mannie 432233224522320 221122112211210

TABLE 5
Carley: Dependent-Variable Matrix—Change in Shared Knowledge

Johann 0 98 -13 44 75 73 126 116 32 66 8 71 57 63 69
Lorenzo 8 0 -31 -3 77 89 139 100 2 4 37 54 19 57 3B
Ian _13 -31 0-147 3 11 9 -12 -38 -2-115 -54 -70 -60 -8I
Zebediah 4 -36-147 0 27 94 68 41 —-17 28 -17 -29 -38 -48 36
Hilda 75 77 3 27 0 59 103 46 11 24 51 51 25 60 17
Ted 73 8 11 94 59 0 119 92 20 4 99 6 62 77 42
Lowell 126 139 9 68 103 119 0 132 19 49 134 171 89 102 110
Jacques 116 100 —12 41 46 92 132 0 7 26 72 8 51 49 24
Eunice 32 2-38-17 11 20 19 7 0 0 -24 -7 -8 -24 -54
Jubal 66 41 -2 28 24 4 49 26 0 0 -2 29 11 12 5
Deety 89 37-115 —17 51 99 134 72 -24 -2 0 12 -6 -56 13
Woodie 71 54 -54 -20 51 68 171 8 -7 29 12 0 -5 25 33
Maureen 57 19 —70 -38 25 62 8 51 -8 11 -6 -5 0 8 36
Hazel 63 57 —60 —48 60 77 102 49 -24 12 -56 25 8 0 -4
Mannie 6 133 —81 36 17 42 110 24 -54 5 13 33 36 -42 0

left, and the collapsed interaction data on the right.’ For the dependent variable,
Carley used the increase in shared knowledge over time for that pair of students.
This data is contained in Table 5. Using a f-test Carley then contrasted the mean
increases in shared knowledge for pairs of students who infrequently interacted with
pairs of students who infrequently interacted with pairs of students who frequently
interacted. The apparent significance probability of the f-test was less than 0.010.
Second, Carley argued that structurally equivalent dyads are as likely to show an
increase in shared knowledge as structurally different dyads. We refer to this as the
second group-difference hypothesis. In making this argument, Carley first applied
CONCOR (Breiger, Boorman, and Arabie, 1975) to the interaction data to locate
structural groups (see the lefthand matrix in Table 6) and then combined these pairs
into two D-groups—pairs of students who are not structurally equivalent in their

SData on pairwise student interactions were gathered halfway through the decision making process.
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14 K. CARLEY AND D. BANKS

TABLE 6
Carley: Group Matrices—Structural Equivalence Groups

Equivalent or Not
11121

Equivalence Groups

Johann
Lorenzo
Ian
Zebediah
Hilda
Ted
Lowell
Jacques
Eunice
Jubal
Deety
Woodie
Maureen
Hazel
Mannie
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pattern of interaction (1) and pairs of students who are structurally equivalent in
their pattern of interaction (2) (see the righthand matrix in Table 6).¢ For the de-
pendent variable, Carley again used the increase in shared knowledge over time for
that pair of students. Using a ¢-test Carley then contrasted the mean increases in
shared knowledge for pairs of students who are structurally equivalent with pairs of
students who are not. The apparent significance probability of the z-test was greater
than .25.

Beyond these two original group-difference questions, Carley (1989) also ad-
dressed an ordered-alternative question. Based on the constructural model, she pre-
dicted that higher levels of interaction cause larger increases in shared knowledge.
Defining five D-groups by interaction level as in the lefthand matrix of Table 4, this
implies that group centers for the data in Table 6 are ordered as1<2<3<4<s.
We refer to this as the first ordered-alternative hypothesis.

In a somewhat more complicated argument, Carley suggested that structural
equivalence tends to enhance the impact of interaction. Thus infrequent interac-
tors who are structurally equivalent are less likely than structurally different in-
frequent interactors to increase their shared knowledge. Conversely, frequent in-
teractors who are structurally equivalent are more likely than frequent interactors
who are not structurally equivalent to increase shared knowledge. This too, is an
ordered-alternative question. Figure 2 shows the predicted relationship between in-
teraction and structure under Carley’s constructural model. This assumes that the
students are culturally heterogeneous and none holds a major fraction of the pos-
sible statements. Labeling the cells in Figure 2 counter-clockwise as 1, 2, 3, 4 the
constructural argument predicts that the order of medians for the data in Table 7
where the pairs of student are devided into D-groups as in Figure 2 are ordered as
1< 2 <3< 4. We refer to this as the second ordered-alternative hypothesis.

SCarley applied CONCOR 1o interaction data from all 42 students involved in the selection locating 4
structural groups. We display data only for the 15 students for whom shared knowledge data is available.
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Constructural Prediction for Dyadic Behavior

Each cell contains the average increase in shared knowledge
for dyads with those characteristics

Infrequently Frequently
Interact Interact
Same
Group
Different
Groups

Order of averages for dependent variable:

1 <2 <3 < 4

FIGURE 2. Structure magnifies interaction.

TABLE 7
Carley: Group Matrix—Combined Structural Equivalence and Interaction

Johann 032132331321323
Lorenzo 303234342432333
Jan 230233232212121
Zebediah 122022331231232
Hilda 333203433322343
Ted 243230242432333
Lowell 332342032323342
Jacques 343334302422332
Eunice 122132220321223
Jubal 342234343023333
Deety 231323222203131
Woodie 122122321330222
Maureen 331233332312031
Hazel 232343432332302
Mannie 331233223312120

D-Group STRUT1801 consists of D-groups 1 and 3 from Table 6, which are the
structurally equivalent infrequent interaction groups. D-Group 2 consists of dyads
that are structurally different and have either a level 1 or 2 for interaction. D-Group
3 consists of dyads who are structurally different and have either a level 3, 4 or 5
for interaction. D-Group 4 consists of D-groups 2 and 4 from Table 6, which are the
structurally equivalent frequent interaction groups.
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16 K. CARLEY AND D. BANKS
TABLE 8
Carley: Results of Traditional and Proposed Tests
Significance Levels
Statistic Traditional Proposed
Group-Difference
Hypothesis 1
F 7.385, daf =1, 103 0.008 0.053
Kruskal-Wallis 6.460 0.011 0.061
Hypothesis 2
F 0.491, df =1, 103 0.485 0.209
Kruskal-Wallis 0.121 0.730 0.525
Ordered-Alternatives
Hypothesis 1
Jonckheere-Terpstra 1<2<3<4<5 0.010 0.036
Hypothesis 2
Jonckheere-Terpstra 1<2<3<4 less than 0.001 0.019

We examine Carley’s group-difference and ordered-alternative hypotheses using
both traditional tests and those we proposed. The results are shown in Table 8.
In this examination we will use those D-groups defined by Carley. For the group-
difference tests, for both hypotheses 1 and 2, the results conform with Carley’s pre-
vious conclusion, but our reanalysis respects dependencies in the data. The reader
should in this case notice the relatively large discrepancy between the significance
probabilities obtained under the restricted-randomization tests for the F and Krus-
kal-Wallis tests. This discrepancy occurs because the Kruskal-Wallis test tends to
lose power in the presence of many tied observations, as happens in this dataset.
Additionally, the reader will note that the proposed tests provide more conservative
estimates than the traditional tests.

Moving on to the ordered-alternative hypotheses we see that the results support
Carley’s model, but unlike the traditional test, the permutation version by taking
the network structure into account does not exaggerate the significance probability.
In the Sampson data, applying restricted-randomization to the ordered-alternative
test yielded a less conservative inference. In contrast, with the Carley data, this test
yielded a more conservative inference. The restricted-randomization analysis, how-
ever, offers a more accurate assessment of the degree of support than is available
from traditional procedures.

Humana’s Human Rights Data

Humana (1983) rates 74 different countries on four point scales that reflect their
practices for 40 different human rights. These rights include such items as Right of
peaceful assembly and association, Freedom to leave own country, and Right to use
contraceptive pills and devices. A score of 4 indicates that the country respects that
right, and a score of 1 indicates that the right is broadly violated. Also, Humana
indicates the per capita income of all 74 countries in the sample.

This application extends the proposed method beyond the scope of the two previ-
ous studies. First, the units of analysis are countries rather than people. Second, the
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TABLE 9
Humana: Group Data—Economic Levels
evels Country ID, Countries and Per Capita Income
Proposed
Level 1
29 Bang 110 3 Ethi 120 31 Indi 190 “
0.053 49 Viet 200 6 Moza 250 45 SriL 250 j
0.061 11 Tanz 300 13 Zair 300 40 Paki 340
30 Chin 350 10 Suda 370 4 Keny 380 :
0209 32 Indo 431 2 Egyp 450 8 Sene 500 -
0‘5?5 9 SAfr 500 14 Zamb 550 48 Thai 650 g
- 15 Zimb 700 41 Papu 750 42 Phil 800
26 Peru 820 5 Moro 850 7 Nige 1000
24 Colo 1200 25 Ecua 1200 46 Syri 1200
0.036 36 NKor 1300 12 Tuni 1400 17 Cuba 1400
71 Turk 1450 19 Pana 1550 38 Mals 1586
37 SKor 1650 1 Alg 1935 22 Braz 1995
0.019 23 Chil 2000 67 Roma 2000 66 Port 2375
33 Iraq 2410 47 Taiw 2500 21 Arge 2500
18 Mexi 2720 52 Bulg 2750 :
1eses using Level 2
n Table 8.
the group- 44 Sing 3500 74 Yugo 3500 65 Pola 3500
irley’s pre- 60 Hung 4000 73 USSR 4110 59 Gree 4250 .
ySp 27 Vene 4700 34 Isra 4900 61 Irel 5000 o
[he reader 53 Czec 5510 68 Spai 5578 57 GIDR 6430 .
ignificance 62 ltal 6914 39 NewZ 7000 72 UKin 7500 .
and Krus- Level 3 L
t tends to .
: 16 Cana 1 Ast 1 1 >
nservative 51 Belg 10890 43 Saud 11000 56 Fran 11500
64 Norw 11800 69 Swed 11920 20 USA 12000 B
ts support 58 GrFR 12500 54 Denm 12761 70 Swit 16500
by taking !
robability. '

alternative data set is much larger. Third, these data have not previously been analyzed from a 1

2, this test social network perspective.
Our examination of Humana’s data looks at pairwise rights agreement between

\;y:vs;i?aobvlve countries grouped according to three income levels. The three groups consist of all
pairs of countries within the same income category. Those three income categories
are: (1) impoverished—less than $3000/person/year; (2) mid-income—between -
$3000 and $9000; and (3) wealthy—greater than $9000. These levels were deter- {
mined as natural breakpoints in the histogram of national per capita incomes in !
lect their 1983 (Table 9). There are 15 countries in category 3, 15 in catory 2, and 44 in cate- f
s Right of gory 1. Our analysis excludes pairs of countries with different income levels. '
ght 0 use The 40 rights variables are used to generate five different dependent variables :
pects that that capture different aspects of pairwise national behavior. These are common be- *
Humana havior, shared rights, shared military rights, shared free speech rights, and shared i
strong rights. In all cases we use a very restrictive definition of “same”; i.e., both na-
WO previ- tions have to score the same number on the right in question. We use this restrictive
cond, the definition in order to maintain the categorical nature of the data. f
{
,
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18 K. CARLEY AND D. BANKS

Common Behavior: This counts the number of rights for which the two nations
have the same level of protection. Thus nation pairs that both protect a given human
right (score 4 on Humana’s scale) gain a point, as do pairs of nations that fail to
respect that right at the same level (i.e., both score 3, or score 2, or score 1).

Shared Rights: This counts the number of protected rights (scores of 4) com-
mon to any pair of countries. ,

Shared Military Rights: Banks (1989) uses variable clustering to identify five
variables among the 40 that shown strong internal covariation. For every pair of
nations, Shared Military Rights counts the number of these variables that are both
scored at level 4. These five variables are: (1) lethality of weapons normally car-
ried by civil police (this is measured on a four point scale, with 4 representing low
routine levels of force); (2) severity of punishment for refusing compulsory national
service; (3) freedom from compulsory military service; (4) ratio of police and mili-
tary to citizens, on a four point scale (a 4 indicates a low ratio); (5) proportion of
national income spent on above (this is measured on a four point scale with low
proportions scored as 4).

Shared Free Speech Rights: This is similar to Shared Military Rights, except
that the five freedoms considered represent a cohesive group of free speech vari-
ables identified in Banks (1989). The five freedoms are: (1) freedom from censorship
of mail; (2) right of peaceful assembly and association; (3) right of peaceful political
opposition; (4) severity of punishment for non-violent antigovernment activities; (5)
severity of punishment for possession of banned literature. Pairs of nations receive
an increase of one point for each of these freedoms that they both protect at level 4.

Strong Rights: This is a binary variable. A pair of countries receives a 1 if both
nations respect 15 common rights at level 4. Otherwise, the nation-pair receives a 0.

The full definition of all rights are presented in Table 10. The raw data used to
generate the matrices previously described are presented in Table 11. The rights
in Table 11 are in the same order as in Table 10. The concern in this study is
to discover how strongly D-groups determined by shared per capita income levels
predicts common rights behavior (in terms of the dependent variables defined
above). We address these questions in the context of network comparisons, but
recognize that alternative statistical methods enable one to consider very similar
questions.

Our first hypothesis is that pairs of countries with different economic levels show
different patterns of human rights behavior. This is a group-difference hypothesis.
To test this hypothesis we run the restricted-randomization permutation test for
group-differences on each of the five dependent variables. The significance proba-
bilities for both the F and Kruskal-Wallis measure are reported in Table 12. Our
second hypothesis is that the higher the economic level the more similar the pair of
countries are in their guarantee of rights. In other words, poor countries are more
heterogeneous with respect to human rights than are moderately well off countries
which are in turn more heterogeneous than wealthy countries. These are ordered-
alternatives tests. To test this set of hypotheses we run the restricted-randomization
permutation test for ordered-alternatives on each of the five dependent variables.
The significance probabilities for the Jonckheere-Terpstra measure are also reported
in Table 12.
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TABLE 10
Humana: Human Rights

Right

Right to early abortion.

Right to purchase and drink alcohol.

Severity of punishment for non-violent antigovernment activities.
Freedom to practice any religion.

Right of peaceful assembly and association.

Severity of punishment for possession of banned literature.
Freedom of book publishing.

Right to use contraceptive pills and devices.

Prevalence of capital punishment by the state.

Severity of punishment for refusing compulsory national service.
Proportion of national income spent on above.

Freedom from police detention without charge.

Right of divorce (for men and women equally).

Right to publish and educate in ethnic languages.

Ratio of police and military to citizens, on a four point scale.
Freedom from state policies to control artistic works.

Right to seek information and teach ideas.

Freedom from censorship of mail.

Freedom from political press censorship.

Freedom from directed employment or work permits.

Right to practice homosexuality between consenting adults.
Right of all courts to total independence.

Freedom from deprivation of nationality.

Freedom from compulsory military service.

Right of inter-racial, inter-religious and civil marriage.
Freedom of movement within own country.

Freedom to leave own country.

Freedom from compulsory religion or state ideology in schools.
Freedom from police searches of home without warrant.

Right of peaceful political opposition.

Right of assumption of innocence until guilt proved.

Freedom from civilian trials in secret.

Freedom from corporal punishment by state.

Right of accused to be promptly brought before judge or court.
Freedom from serfdom, slavery or forced child labor.

Freedom from torture or coercion by state.

Freedom of radio and television broadcasts from state control.
Right of independent trade unions.

Lethality of weapons normally carried by civil police.

Right of women to equality.

We find support for the hypotheses (though the least with shared rights). For both
the group-difference tests and the ordered-alternative tests the restricted-randomiza-
tion permutation tests yield more conservative inferences. Of particular interest
are the results for strong rights. The strong rights measure was a binary network.
With such data there are no standard tests for either a group-difference test or
an ordered-alternative test. However, the restricted-permutation test is directly
applicable. As can be seen, even when a strong notion of shared rights is chosen,
we find evidence for both group differences and differences ordered by economic
level.
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TABLE 11
Humana—Dependent Variable—Countries by Rights
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TABLE 12
Humana: Resuits of Traditional and Proposed Group-Difference Tests
Significance Levels
Statistic Traditional Proposed

Group-Difference
(1) common behavior )
F 220301 df =2, 1153* less than 0.001 less than 0.001
Kruskal-Wallis 152.956 less than 0.001 less than 0.001
Jonckheere-Terpstra 81953 less than 0.001 0.035
1<2<3
(2) shared rights
F 756.189 df =2, 1153 less than 0.001 less than 0.001
Kruskal-Wallis 206.595 less than 0.001 less than 0.001
Jonckheere-Terpstra 123113 less than 0.001 0.059
1<2<3
(3) shared military rights
F 86.735 df =2, 1153 less than 0.001 0.003
Kruskal-Wallis 121.849 less than 0.001 0.010
Jonckheere-Terpstra 80097 0.323 0.005
1<2<3
(4) shared free speech
rights
F 425.604 df =2, 1153 less than 0.001 less than 0.001
Kruskal-Wallis 291.280 less than 0.001 less than 0.001
Jonckheere-Terpstra 134071 less than 0.001 0.001
1<2<3
(5) strong rights
group-difference no standard test less than 0.001
ordered-alternative no standard test less than 0.001

*Degrees of freedom for the denominator is caiculated as 44+43/2 + 15+14/2+15+14/2 ~3 = 1153.

DISCUSSION

Previous methods for determining whether D-groups show significant differences in
some dependent variable include, among other methods, inspection, means-differ-
ence tests, Bradley-Terry paired comparison designs (Bradley, 1984), and the qua-
dratic assignment procedure (QAP) (see Hubert, 1987, or for an earlier treatment
of the combinatorial assignment strategy which underlies QAP, see also Hubert and
Baker, 1978). Unfortunately, none of these is entirely satisfactory, although QAP
comes the closest (as will be discussed in more detail). Inspection offers no mea-
sure of significance. Means-difference tests (analysis of variance, Kruskal-Wallis)
ignore dependencies arising from the fact that each actor influences observations
from many pairs. Bradley-Terry designs use binary ranking data, make restrictive
assumptions in modeling D-group effect, and require asymptotic theory for infer-
ence; this limits their range of application.

Kraemer and Jacklin (1979) develop a normal theory model for examining dyadic
data which consist of pairs of measurements for each dyad, one for each partner.
This differs from the framework we consider, which is nonparametric and allows
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22 K. CARLEY AND D. BANKS

for the possibility that only a single measurement is obtained on each dyad ob-
served, although all possible pairs of actors are observed. Inference in their frame-
work requires approximately normally distributed data; probably the most delicate
assumption is that dyads formed by partners from different A-groups have variances
that are simple functions of the A-group characteristics. The implementation of the
analysis can become cumbersome when there aré many A-groups, and one must do
substantial additional work to make inferences about significance of average differ-
ences between dyads according to the partners’ A-group memberships.

Kenny and La Voie (1984) also consider models with two observations on each
member of the dyad. Their analysis parallels normal theory methods, but uses the
jackknife procedure (cf. Efron (1982)) to obtain asymptotically nonparametric in-
ferences. The work is similar in spirit to much of Bradley’s research on round-robin
tournament designs (reviewed in Bradley (1984)); it develops models with actor,
partner, relationship, and error terms. In order to assess the effect of dyadic group-
ings, one must extend the model to include terms corresponding to the D-group
membership. As with much previous work, there exists no immediate test for sig-
nificant differences between measurements from dyads belonging to different D-
groups. '

Wasserman and lacobucci (1986) and Iacobucci and Wasserman (1987) describe
log-linear models for dyadic interactions of all possible pairs in a social group.
The methods are parametric, and correspond to maximum likelihood inference
when the data arise from multinomial, Poisson or product-multinomial distribu-
tions. Those models are focused on determining A-group differences, whereas the
proposed methods focus on D-group differences. Nevertheless, as lacobucci and
Wasserman (1987, p. 220) note, one can use their models for examining D-group
differences by computing the intra-class correlation coefficients and the product-
moment correlation coefficient for the inter-class dyad. As the number of levels of
the relational (and in the parlance of this paper, dependent) variable increases there
is a corresponding increase in the number of parameters estimated. Consequently
when the range of the dependent variable is large, the researcher may be forced to
collapse the data into coarser units of measurement.

In summary, previous research in this area has focused on cases in which @)
for the dependent variable there are exactly two measurements pey dyad, (2) spe-
cific model assumptions are made about the data, or (3) the primary interest of
the researcher is in predicting behavior from A-groups rather than D-groups, which
can necessitate a more complex analysis that attempts to fit multi-way interactions.
In contrast to the first point, our analysis addresses the case in which the depen-
dent variable has either one (€.g actual time spent interacting) or two measures

(e.g., perception of time spent interacting) per pair of actors. In contrast to the sec-
ond point, our approach is classically nonparametric; this enables straightforward
implementation when traditional statistical models are inappropriate. The issue un-
derlying the third point is more complex than the first two. The difference is, in
part, in what type of groups are being focused on. But an analogy may clarify the
issue. Our method is analogous to one-way analysis of variance, whereas the meth-
ods proposed by others such as Wasserman and Jacobucci (1986) and, even more
so, that proposed by Kenny and La Voie (1984) are analogous to multi-way analysis
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of variance. (Submodels of both Wasserman and lacobucci and Kenny and La Voie
exist, when one of the parameters is set equal to zero, that are analogous to one-way
analysis of variance.) Such a simplification, both as present in the proposed method
and as present in the submodels of Wasserman and Iacobucci and Kenny and La
Voie, sometimes permits a more straightforward analysis, and for many questions is
all that is needed.

Our work in this area suggests the following taxonomy for a large class of net-
work-data problems, based on the nature of the two matrices for which one wants
to access correspondence.

Numerical-Numerical: One has two matrices of network data, each of which
contains numerical information, and one wants a measure of association that in-
dicates how strongly the entry in one cell predicts the corresponding entry in the
other matrix. This is the case for which QAP is designed.

Categorical-Numerical: One matrix contains categorical information on pairs
of actors; this represents D-group membership. The other matrix contains numeri-
cal information on each pair. The researcher wants to discover the extent to which
D-group membership accounts for differences in the numerical data. This is the
case for which our procedures are designed. QAP is not appropriate when the ex-
planatory variable (group membership) is categorical.

Categorical-Categorical: In this case, one has two matrices of categorical data,
and one wants to determine whether categories in one matrix tend to correspond to
categories in the other. There does not seem to be a full treatment of this problem
that honors the network dependencies in the data. The closest work here is that by
Hubert and Baker (1978) who use bonary data and the group-difference procedure
we have outlined when applied to binary data. For binary data, as was the case
with the Strong Rights index built from Humana’s data, we can use our procedure
for categorical-numerical data to treat what is really a categorical-numerical data to
treat what is really a categorical-categorical situation. However, as soon as the num-
ber of categories in the dependent-variable matrix exceeds two, this generalization
fails. Future research should aim at addressing the categorical-categorical case.

When the matrices for both the dependent and independent variable contain
only binary data procedures for numerical-numerical, categorical-numerical, and
categorical-categorical essentially are equally applicable. More importantly, when
there are only two D-groups, a non-asymptotic version of QAP using dummy vari-
ables to code for D-group membership is equivalent exactly to the method we de-
scribe. Further, when there are only two D-groups and the independent matrix is
also binary then Hubert and Baker’s (1978) procedure (which is really a precursor
to QAP) is equivalent to the group-difference test we have proposed.

These equivalencies fail, however, when there are more than two D-groups. If '

there are more than two D-groups, neither QAP (nor its predecessor) enable group-
difference tests. QAP measures the strength of association between two matri-
ces; whereas, our procedure involves measuring group separation.” For the group-

TEssentially QAP measure the strength of association between two matrices by referring a normalized
measure of association to a z-score. The normalization is obtained by an asymptotic approximation to a
null distribution in which any rearrangement of the rows and columns is equally likely. The QAP strategy,
however, is broader than any particular implementation One could vary the measure of association
and replace the asymptotic approximation by Monte Carlo simulation without substantively changing
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difference test we proposed, when there are two D-groups, strong separation occurs
when A-group labels distinguish large data values from small ones in the depen-
dent variable data matrix. Similarly, in QAP, the D-group matrix and the dependent
variable matrix are most strongly associated when one group label picks out large
values on the dependent variable and the other group label flags small values. Our
procedure and QAP essentially are equivalent, when there are only two D-groups,
as in both procedures the null distribution is based on row-column permutation.

When there are three or more groups, measures of association (as used by QAP)
and separation (as we use) respond to different features of the data. With QAP,
changing the group labels will affect the conclusion strongly. If the group labels and
corresponding entries in the data matrix tend to increase together, QAP detects
strong association. QAP finds less evidence of association if the group labels are
shuffled so that the data trend is not monotonic with respect to the group labels.
In our method, separation doesn’t depend upon codes for the group labels; we can
renumber the groups and obtain exactly the same result. Therefore our procedure
and QAP address different problems, but the problems happen to coincide when
there are exactly two groups.

As a final point, let us consider the ordered-alternative test. Our procedure im-
poses a strict standard for rejecting the null. Unless the data strongly support ex-
actly the prespecified ordering, say 1 < 2 < 3 < 4 <5 < 6, then our test cannot reject
the null hypothesis. This contrasts with less stringent tests that depend on associa-
tion, such as those used in QAP. For example, if the true population ordering were
1<2<4<3<5<6, QAP ultimately would detect the generally concordant trend
in the data, declare a significant result, but overlook the discrepant cases in groups
3 and 4.

CONCLUSION

We have presented two very general nonparametric tests for network data that com-
plement each other. The first of these, the group-difference test, enables the re-
searcher to determine whether group membership is a reasonable predictor of other
shared traits. The second test, the ordered-alternative test, allows the researcher to
determine whether a particular ordering of D-groups corresponds to a particular
ordering of some measure of centrality for another shared trait. Both tests take into
account of row-column dependencies and are nonparametric. We show by several
examples that group-difference tests that do not respect the dependencies in the
data tend not to be conservative, and exaggerate the significance of their conclu-
sions. For ordered-alternative tests, depending on the particular dataset involved,
taking the dependencies into account may move the significance probabilities in
either direction from those obtained with a more traditional analysis. Nonetheless,

the idea (Hubert, 1985). In contrast to the QAP strategy, we observe a measure of group separation,
and determine the null distribution by permuting the rows and columns of the dependent variable data
matrix. The specific implementation used in this paper employs an F statistic and Kruskal-Wallis statistic
to capture separation. Also we prefer Monte Carlo methods as they are more accurate for small samples.
Exactly which test statistics are used and whether an asymptotic approximation or Monte Carlo technique
is used are minor matters. They do not speak to the fundamental difference between QAP and our
procedure, which is the focus on association as opposed to separation.
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our method is more accurate, in that it properly incorporates known dependencies
in the data. The difference in the significance probabilities calculated by traditional
methods and the permutation methods we propose can be quite large. This is es-
pecially true for the ordered-alternative test. Moreover, these tests, depending on
the data and the significance level used can change the interpretation of the results
from significant to non-significant (or vice-versa in the Jonckheere-Terpstra test).

Both tests can be used in a wide range of applications. However, proper use of
the ordered-alternative test requires one to prespecify a hypothesized ordering of
the group means (or medians), and then the test evaluates the extent to which the
data actually conforms to that ordering. When such an ordering cannot be prespec-
ified, the group-difference test still permits discovery of group effects. Regardless
of the test, if the significance probability is small, then the data corroborates the
researcher’s hypothesis. These tests provide social scientists with tools for doing
D-group comparisons on network data in an analytic rather than observational fash-
ion. To use these tools the researcher must have some basis for identifying D-group
membership using data other than the dependent variable. These tools increase the
researcher’s ability to compare D-groups and determine whether the extracted struc-
ture, or set of D-groups, can predict other variables. The group-difference test and
the ordered-alternative test allow the researcher to determine the explanatory value
of a particular set of D-groups, and even to compare the relative value of two dif-
ferent ways of grouping the data.
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