
 

 
   

 

A Network Optimization Approach for Improving 
Organizational Design1 

CASOS Technical Report 
 Kathleen M. Carley, Natalia Y. Kamneva 

January 2004 

CMU-ISRI-04-102 

 

 

Carnegie Mellon University 

School of Computer Science 

ISRI - Institute for Software Research International 

CASOS - Center for Computational Analysis of Social and Organizational Systems 

 

 

 

 

 

                                                 
1 This work was supported in part by NASA # NAG-2-1569, Office of Naval Research Grant N00014-02-1-

0973, “Dynamic Network Analysis: Estimating Their Size, Shape and Potential Weaknesses”, Office of Naval 
Research, N00014-97-1-0037, “Constraint Based Team Transformation and Flexibility Analysis” under “Adaptive 
Architectures”, the DOD and the National Science Foundation under MKIDS. Additional support was provided by 
the center for Computational Analysis of Social and Organizational Systems (CASOS) 
(http://www.casos.cs.cmu.edu) and the Institute for Software Research International at Carnegie Mellon University. 
The views and conclusions contained in this document are those of the authors and should not be interpreted as 
representing the official policies, either expressed or implied, of the National Science Foundation, or the U.S. 
government.  

 



 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: optimizer, optimization, Monte Carlo, Simulated Annealing, multi-criteria 
optimization, global optimum, multivariate functions, Dynamic Network Analysis, Social 
Network Analysis 



 

 

 

 

 

 

Abstract 
Organizations are frequently designed and redesigned, often in efforts to improve 

performance or meet various managerial goals for coordination and communication. Such design 
is often done through the review of a few of options and the use of managerial and possibly 
personnel insight into how the new design might work. In contrast, we provide a systematic 
optimization based approach. In this approach, the user can pick one or more Dynamic Network 
Analysis (DNA) metrics and then use one or more of the available optimizers to find a design 
that more closely meets this ideal. The optimizer utilizes heuristic based optimization procedures 
to generate an optimized organizational design given a particular mission. DNA metrics, such as 
Communication Congruence, Resource Congruence, Cognitive Load, and Actual Workload, 
serve to define criteria. The Optimizer can perform multi-criteria optimization in order to 
improve several metrics simultaneously.  Two optimization methods can be used – Monte Carlo 
and Simulated Annealing, both of which are statistical methods of finding a global optimum. 
DNA metrics used in the optimizations are computed by ORA. This report describes this 
optimizer. 
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1. Introduction 
Organizations are often grow to have a particular structure or design, that, when examined 

can be seen to being fraught with defects. In contrast, technologies and various products are 
often engineered so that they exhibit a design that meets various goals. Many products are even 
optimized to meet some set of specifications. The same techniques, however, can be applied to 
organizations. We can ask, how should we design this organization, this group, this team so that 
it is “optimal” given some set of design criteria.  

Today, information processing, communication, and knowledge management are keys to 
effective organizational performance and adaptability. Changes in computational power, 
telecommunications, and information processing are affecting when, where and how work is 
done [1, 2]. Further changes in agriculture, manufacturing, transportation and technology are 
leading to the emergence of an increasingly mobile population and knowledge intensive 
organizations. New organizational designs are emerging such as network organizations [3, 4] and 
virtual organizations [5]. In these new organizations, even though information processing is key 
[6], communication is not constrained to be vertical [7]. Rather, the network of connections 
within and among organizations acts to constrain and enable the flow of goods, services, agents 
and information. The result is an environment in which the act of organizational design becomes 
a strategic exercise in establishing and managing these relations [8]. 

What are these relations? How can we, given the set of possible relations, find the optimal 
design? What are the criteria for determining whether a design is good? What are the appropriate 
optimization algorithms? In this report, we provide a first answer to these questions.  

What Are the Relations?  
A variety of networks exist within and among organizations. We can define a meta-matrix 

[9] as the networks connecting the four key corporate entities – agents, knowledge, resources, 
and tasks (see Table 1). Various aspects of organizations can be characterized in terms of these 
networks. For example, structure (such as the authority structure or the communication structure) 
is defined in terms of the interaction network connecting people to people. Culture can be 
defined in terms of the knowledge network – the connections of people to knowledge. And so on. 

The individual cells in this meta-matrix define items that can be manipulated by the manager. 
The goal from a design perspective is to alter the elements of Table 1 to achieve a design that 
meets a set of criteria. Clearly there are different constraints and costs on manipulating various 
aspects of this meta-matrix… In general these cells can be manipulated by adding or dropping 
nodes and adding or dropping relations.  Logically, the organization can be changed by adding or 
dropping nodes or relations. A node can be, given Table 1, a person, knowledge, resource, or 
task. A relation can be the connection between two nodes. Further, unlike nodes, we can talk of 
change in the strength of a connection. A number of key processes in covert networks affect 
these types of changes. Key processes affecting node change include: recruitment; the removal 
(death, isolation, etc.) of a person; change in mission (and so the addition or deletion of tasks); 
change in technology (and so the addition or deletion of tasks and resources); the consumption of 
resources; and the purchase/creation of resources. Key processes affecting the change in relations 
are re-assignment of personnel, training, co-work assignments, and evolution of 
friendships/communication structure.  
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Table 1: Meta-Matrix for Organizational Design 

 People Knowledge Resources Tasks 

People Interaction 
Network 

Knowledge 
Network 

Resource 
Network 

Assignment 
Network 

Knowledge  Information 
Network 

Resource Skill 
Needs Network 

Task Skill Needs 
Network 

Resources 
  Substitutes and 

Coordinated 
Resources 
Network 

Task Resource  
Needs Network 

Tasks    Task Precedence 
Network 

In most organizations, due to missing and capital outlays (fixed investments) changes to tasks 
and resources is harder than changes to people and knowledge at least in the short run. Thus, 
assuming that the set of tasks is more or less set by the organizational mission and the extant 
technology, then things involving adding/dropping tasks or connections among tasks will be 
difficult to do in the short run. In contrast, things involving people are easier to do in the short 
run. We can thus think of row 1 of Table 1 as representing that part of the organization that can 
be changed, manipulated, altered by the manager fairly quickly. The rest of the organization we 
can think of as the more fixed, less malleable, aspect of the current design. This characterization 
constrains the optimization problem to manipulating the top four cells – the interaction, 
knowledge, resource, and assignment networks to meet needs defined in part by the portions of 
the current design that are “fixed”. 

A great deal of research demonstrates that for humans, the networks that people operate on, 
and in, serve to constrain and enable further action and affect the efficiencies of such actions 
[10]. Similarly, for artificial agents, being able to traverse the digitized version of these networks 
enables machine comprehension [11]. For example, WebBots that serve as personal shoppers are 
more intelligent if they are more able to navigate through the links between sites on the web.  

Hence a change in any one of the four networks in which people are involved can potentially 
result in a cascade of changes in the others. For example, when individuals learn something new 
(by interacting with someone in their interaction network) that evokes a change in the interaction 
network [12]. As another example, when new personnel are hired they may bring new 
knowledge with them. As current personnel leave, the available knowledge may be depleted. 
From an optimization perspective the goal would be to find the set of changes that results in a 
cascade that meets the organizational goals.  

Managing these changes is the key to knowledge management. Information technology has 
the potential to affect this meta-network in several ways. First, it can affect the number and types 
of nodes in these networks; i.e. with the advent of new technology comes new agents, new 
knowledge, and new connections among knowledge. Second, information technology has the 
potential to alter the way changes occur and their impact. For example, some suggest that 
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holding data in databases, and knowledge systems like Lotus Notes provides organizations with 
the means to decouple personnel turnover and change in the knowledge network.  

By identifying the mission and technology as the constrained portions or the relatively fixed 
components of the extant system, at least in the short run, we open the possibility to locating the 
optimal form or structure of the rest of the system. We define the organizational design problem 
in terms of the meta-matrix that can be varied in the short run – the interaction network, the 
knowledge network, the resource network, and the assignment network. The system is optimized 
if the ties in this network are arranged such that they minimize those vulnerabilities of concern to 
the manager. 

What are these vulnerabilities? How can we define the set of them? By defining the 
organizational design in terms of a set of networks that open the possibility of using all networks 
(both social and dynamic network measures) as indicators of potential vulnerabilities. Further, 
we know from the past decade of work on organizational design, that many of these measures are 
directly related to encourage adaptation whereas others encourage high performance. For 
example, previous work indicated that high performance and adaptive systems tended to exhibit 
a high level of congruence, or match, between what resources were needed for a task and the 
availability of those resources (resource congruence) and in who needed to communicate in order 
to do the task and who actually communicated [13]. Further, organizations typically exhibit 
better performance and have fewer problems with personnel if workload is evenly distributed. 
Using heuristic based optimization tools, such as simulated annealing and Monte Carlo 
techniques, we have developed a series of procedures, that given meta-matrix data on an 
organization locates the organizational design that optimizes one or more of these criteria. 

There are two ways in which the optimization code can be used. First, it can be used to assess 
the extent to which the organization as a whole is in trouble. For example, if the current design is 
far from optimal it may not be worth destabilizing at all. Since destabilization involves the 
removal of critical nodes, the comparison of the relative difference from the optimum of the 
“destabilized” organization and original provides an indicator of the potential relative impact of 
the destabilization. Secondly, this tool can be used by a manager to locate possible new designs. 

 

2. Concept of Optimization: Our Case 

The optimizer utilizes heuristic based optimization procedures to generate an optimized 
organizational design given a particular mission. Dynamic Network Analysis (DNA) metrics, 
such as Communication Congruence, Resource Congruence, Cognitive Load, and Actual 
Workload, can be used individually or in combination as objective functions to be minimized or 
maximized. By combining several DNA measures, either via sum or product, multi-criteria 
optimizations can be performed. 

The space over which the DNA metrics are defined is not the N-dimensional space of N 
continuous parameters. In our case, N is either the number of nodes in the meta-matrix, or the 
total number of edges, and our sample space is a discrete with size proportional to 2N.  Because 
the set is discrete, we are deprived of any notion of “continuing downhill in a favorable 
direction.” The concept of “direction” does not have any meaning in the configuration space, and 
therefore we cannot use gradient or pseudo gradient methods to optimize our objective functions.  
On the other hand, the sample space is exponentially large, and so it cannot be explored 
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exhaustively.  The optimization methods used by Optimizer are therefore statistical sampling 
methods: Monte Carlo and Simulated Annealing. 

3. Input for Optimization 
The Optimizer takes as input an organization represented as a meta-matrix.  In the short run 

we assume that the number of entities (people, resources, knowledge, and tasks) is fixed.  It is 
also assumed that for the purposes of optimization, some matrices in the meta-matrix are 
constant, and some are variable (see Table 2). So, we define the organizational design as the set 
of cells in the meta-matrix that can be varied in the short run – the social network, the 
capabilities network, the assignment network, and knowledge network. The system is optimized 
if the ties in those networks are arranged such that they minimize vulnerabilities. We define a 
system to have the optimal organizational configuration or design if vulnerabilities due to one or 
more of the following are minimized: distribution of resources, distribution of communication 
ties, and workload. 

Previous work indicated that high performance and adaptive systems tended to exhibit a high 
level of congruence, or match, between what resources were needed for a task and the 
availability of those resources (resource congruence) and in who needed to communicate in order 
to do the task and who actually communicated. Furthermore, organizations typically exhibit 
better performance and have fewer problems with personnel if workload is evenly distributed 
[13]. 

In the case when the original input data does not have a required matrix of the meta-matrix, 
we can always create it as a random matrix at the beginning of the optimization process. 

 
Table 2: Meta-matrix shown with fixed and variable components. 

  People Knowledge Resources Tasks 

People variable 
component  

 variable 
component  

variable 
component  

 Variable 
component  

Knowledge     fixed 
component  

Fixed 
component  

Resources       Fixed 
component  

Tasks       Fixed 
component  

 

4. Output of Optimization 
As previously mentioned, DNA metrics serve to define criteria. As a single criterion of the 

optimization we used the DNA metrics Communication Congruence, Resource Congruence, 
Cognitive Load, Actual Workload, Communication, and Personnel Cost.  For the definitions of 
these measures, see the Organization Risk Analyzer (ORA) Technical Report.   These measures 
were chosen because previous work suggests that to improve performance of the organization we 
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should maximize Congruence, both Communication and Resource, and minimize variation in 
Actual Workload.  On the other hand, to improve adaptability we should minimize the variation 
in Cognitive Load.  Hence, optimizing a meta-matrix for performance or for adaptability requires 
optimization with criteria created as a sum or a product of the DNA metrics. 

Different DNA metrics require different sub matrices to be varied during the optimization 
process. Resource Congruence requires assignment and capabilities networks, Communication 
Congruence, Communication, and Cognitive Load additionally require social network, Actual 
Workload requires assignment and knowledge networks, and Personnel Cost requires all 4 
variable matrices to be completely optimized. However due to unwillingness of the user to 
change all variable matrices we always can consider only some of them as variable. On the other 
hand if we do not originally have any sub matrices, we always can consider them as variable and 
simulate them during the process of the optimization. Finally after the optimization process we 
will get all variable sub matrices close to their optimal meaning.  

 

5. Optimization Methods 
While the classical approach would obviously not be applicable to our problem, statistical 

heuristic techniques seem, intuitively, to be appropriate for our purpose. The literature survey 
demonstrated that each technique had its strengths and weaknesses. It also demonstrated that the 
performance of each algorithm would be heavily dependent on the nature of the problem itself 
and the heuristics that we used. We chose two statistical optimization methods: Monte Carlo and 
Simulated Annealing to use in the Optimizer.  

 

5.1. Monte Carlo Method 
The Monte Carlo method randomly samples the variable sub matrices of our meta-matrix. 

We randomly generate all cells in a meta-matrix with uniformly distributed random densities 
of sub-matrices. At each sample point, the objective function is evaluated. After N experiments 
we take as an approximation to the global optimum the sampled meta-matrix that yielded the 
highest objective function. 

The advantages of Monte Carlo method for solving our problem are: 

It provides a broad sampling of the parameter space, and gives the possibility of finding the 
global optimum. 

It allows random samples to be generated subject to structural constraints, such as each row 
in a sub-matrix having at least one non-zero element. 

It allows simulating of the sub-matrices with fixed or randomly distributed densities. 

Its disadvantages are that it can be slow (if many experiments are selected), and that because 
of the random, discrete nature of the search, the global optimum can easily be missed (if not 
enough experiments are selected).  
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5.2. Simulated Annealing Method 
 The rough idea of simulated annealing is that it first picks a random move. If the move 

improves the objective function, then the algorithm accepts the move. Otherwise, the algorithm 
makes the move with some probability less than 1: 

 

Formula 1    p = exp [−(E2−E1) / kT]; 

 

     The probability decreases exponentially with the “badness” of the move - the amount  

(E2 – E1) by which the evaluation is worsened. 

A second parameter T is also used to determine the probability. At higher values of T, “bad” 
moves are more likely to be allowed. As T tends to zero, they become more and more unlikely, 
until the algorithm behaves more or less like local search. The schedule input determines the 
value of T as a function of how many cycles already have been completed [14]. 

The algorithm was developed from an explicit analogy with annealing – the process of 
gradually cooling a liquid until it freezes. The objective function corresponds to the total energy 
of the atoms in the material, and parameter T corresponds to the temperature. The schedule 
determines the rate at which the temperature is lowered. Individual moves in the state correspond 
to random fluctuations due to thermal noise. One can prove that if the temperature is lowered 
sufficiently slowly, the material will attain a lowest-energy (perfectly ordered) configuration. 
This corresponds to the statement that if schedule lowers T slowly enough, the algorithm will 
find a global optimum. Simulated Annealing was first used extensively to solve VLSI layout 
problems in the early 1980s [14, 15]. Since that, it has been used in Operations Research to 
successfully solve a large number of optimization problems such as the Traveling Salesman 
problem and various scheduling problems [14]. 

The advantages of Simulated Annealing method are: 

     It is not “greedy,” in the sense that it is not easily fooled by the quick payoff achieved by 
falling into unfavorable local minima.  

     If it doesn't find the absolutely best solution, it often converges to a solution that is close 
to the true minimum solution. 

    It takes less time than Monte Carlo method to get a comparable solution. 

The disadvantages of Simulated Annealing method are: 

It does not easily allow the logical constraints on the solution: for example, keeping at least 
one 1 in every row of sub-matrices. 

It does not allow simulating of the sub-matrices with fixed densities. 

One of the difficulties in using Simulated Annealing is that it becomes very difficult to 
choose the rates of cooling and the initial temperatures for the system that is being optimized. 
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This occurs primarily because of the absence of any rules for selecting them. The selection of 
these parameters depends on heuristics and varies with the system that is being optimized.  

 

6. Performance Information 
To test the optimizer we used network data from the U.S. embassy bombing in Tanzania. The 

network is small, with 16 agents, 4 knowledge, 4 resources, and 5 tasks. 

Some results of the optimization using the optimizer were also presented in [17].                         

We optimized this data using both methods: Monte Carlo and Simulated Annealing. For 
Monte Carlo, we used the default case with the number of experiments N = 1,000,000 and the 
user specified case with a significantly smaller number of experiments N = 100,000. We also 
considered two different cases of optimization with a single measure to be optimized and with all 
four measures optimized using the sum criterion. The results of the optimization using Monte 
Carlo are presented in Table 3.  All table results are from running the Optimizer on a 2.53 Ghz 
Intel Pentium IV processor running Windows XP. 

For Simulated Annealing, we used the default case with optimization parameters T = 100 
(original temperature) and T_factr = 0.99995 (coefficient regulated cooling schedule). The user 
specified case was T = 90 and T_factr = 0.995 that required significantly smaller time in the 
optimization process. We also considered two different cases of optimization with a single 
measure to be optimized and with all four measures optimized using the sum criterion. The 
results of the optimization using Simulated Annealing method are presented in Table 4. 

 The time of optimization in minutes is presented in Tables 5 and 6 for Monte Carlo and 
Simulated Annealing, respectively. The experiments were done with the networks that contained 
25, 50, 100, 200, 500, and 1000 nodes in total. During these experiments the networks with one 
variable sub-matrix, two variable sub-matrices, and three variable sub-matrices were optimized. 
Also the optimization was provided for one measure or for four measures combined using the 
sum criterion. 

 

 

 

 

 

 

 

 

 



CMU SCS ISRI                                                                                          CASOS Report 

- 8 - 

 
Table 3: Optimization Results for Monte Carlo 

Optimized  

Measure 

Default       N = 1,000,000 User Specified   N = 100,000 

  Non-
Optimized 
Value 

Optimized 
Value 

Optimized 
Using All 4 
Measures 

Non-
Optimized 
Value 

Optimized 
Value 

Optimized 
Using All 4 
Measures 

Resource 

Congruence 

0.4 0.9500 0.9500 0.4 0.9000 0.8500 

Comm. 

Congruence 

0.425 0.7333 0.5250 0.425 0.7000 0.5833 

Std Dev in 

Cog Load 

0.0824 0.0164 0.0516 0.0824 0.0186 0.0702 

Std Dev in 

Work Load 

0.2644 0.0000 0.1491 0.2644 0.0000 0.1596 

Avg. Cog 

Load  

0.1329 0.1290 0.1290 0.1329 0.1298 0.1319 

Avg. Work 

Load 

0.2292 0.0000 0.0833 0.2292 0.0000 0.1458 
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Table 4: Optimization Results for Simulated Annealing 

 Optimized  

 Measure 

Default   

T = 100;  T_factr  = 0.99995 

User Specified  

T = 90; T_factr = 0.995 
  Non-

Optimized 
Value 

Optimized 
Value 

Optimized 
Using All 4 
Measures 

Non-
Optimized 
Value 

Optimized 
Value 

Optimized 
Using All 4 
Measures 

 Resource 

 Congruence 

0.4 1.0000 1.0000 0.4 1.0000 1.0000 

 Comm. 

 Congruence 

0.425 1.0000 0.8833 0.425 0.8250 0.6292 

 Std Dev in 

 Cog Load 

0.0824 0.0042 0.0259 0.0824 0.0098 0.0352 

 Std Dev in 

 Work Load 

0.2644 0.0000 0.0000 0.2644 0.0000 0.0860 

 Avg. Cog 

 Load  

0.1329 0.2461 0.2057 0.1329 0.3026 0.2089 

 Avg. Work 

 Load 

0.2292 0.0000 0.0000 0.2292 0.1667 0.0833 

 
Table 5: Time of Optimization in Minutes for Monte Carlo, N = 1,000,000. 

Number of 
nodes 

  One   measure    optimized   Four   measures    optimized 

    1 sub 
matrix 

  2 sub
matrices 

  3 sub 
matrices 

 1 sub 
matrix 

 2 sub 
matrices 

 3 sub 
matrices 

25 7  10  15  16 23 34 

50 16  24  34  37 55 78 

100 34  50  71  78 115 163 

200 68  100  142  156 230 327 

500 484  710  1008  1113 1633 2318 

1000 1936 2840 4032 4452 6532 9274 
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Table 6: Time of Optimization in Minutes for Simulated Annealing, T = 100; t_factr = 0.9995. 

Number 
of nodes 

  One  measure  optimized   Four  measures  Optimized 

   1 sub    
matrix 

  2 sub 
matrices 

  3 sub 
matrices 

  1 sub 
matrix 

  2 sub 
matrices 

  3 sub 
matrices 

25 0.15  0.18  0.20  0.38 0.52 0.52 

50 0.56  0.73  1.64  0.76 1.67 1.66 

100 2.18  2.47  5.03  4.48 5.18 7.11 

200 9.05  9.64  25.8  29.53 28.57 40.01 

500 61.00  82.37  100.8 323.48 345.67 387.70 

1000 363.72 605.10 950.68 1440.85 1650.29 1847.92

 
Comparison of the optimization time for Monte Carlo and Simulated Annealing is also 

presented in Figure 1.  The experiments have been done with the networks that contained number 
25, 50, 100, 200, 500, and 1000 total nodes. During these experiments the networks with one 
variable sub-matrix, two variable sub-matrices, and three variable sub-matrices were optimized. 
Also the optimization was provided for one measure or for four measures combined using the 
sum criterion.   
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Figure 1: Dependency of Optimization Time for Simulated Annealing and Monte Carlo for 1 measure and 4 
measures using the sum criterion 
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Table 7: Optimization by Simulated Annealing and Monte Carlo for Measures Communication and 
Personnel Cost 

   Communication    Personnel Cost 

 

 
 Simulated 

 Annealing 

 Monte 
Carlo 

 Simulated 

 Annealing 

 Monte          
Carlo 

Original     
Value 

0.9958 0.9958 0.4640 0.4640 

Optimized 
Value 

0.0040 0.3000 0.0893 0.1518 

 
 Some additional optimization results are presented in Table 7.  The table displays the 

results of the minimization of two additional measures of the Embassy Bombing Network – 
Communication and Personnel Cost.  Both methods required approximately the same amount of 
time, but Simulated Annealing gives considerably better results that Monte Carlo method. 
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7. Two Different Versions of the Optimizer 
The optimizer currently has two different versions. Both of them are integrated with 

netstatplus. The first version is also combined in the ORA interface. This version additionally 
includes the parser for parsing the output files written in xml format and coming from Java 
written interface to the C++ coded optimizer. This version takes all the parameters for the 
optimization from the ORA interface. It is simple for sophisticated and non sophisticated users to 
make deal with: to set, specify, and change methods, parameters, models, and datasets. It is also 
very usable for comparison of the original version of the dataset and corresponding metrics and 
the optimized version. 

The second version of the optimizer is the so called no-GUI version. It makes possible for 
the setting of all the parameters directly to the optimizer. While this version does not allow the 
user to manipulate the parameters, it is much faster since it does not have to parse the xml files. 
This version is extremely useful for operating with huge datasets containing more than 500 – 
1000 nodes when it becomes impossible to describe them in the xml format. It is also efficient 
for the simple and fast optimization tasks and for use with some other than netstaplus 
applications. In this version the user just prompts for the method of optimization, type of 
criterion, number and type of measures to be optimized. 

 

8. Design of the User Interface 
The Optimizer has a Java user interface combined with ORA interface (Figure 2) and 

described in detail in [18]. The Optimizer is invoked from the main menu and is contained within 
pop-up windows. 
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Figure 2 : ORA/Optimizer Interface 

 
The user can choose the method of optimization: Monte Carlo or Simulated Annealing 

(Figure 3). 
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Figure 3: The Optimizer GUI: selection of the optimization method. 

 
 

There are default versions of each method with default parameters of the optimization 
process (Figure 4) and also there is the option to change optimization parameters such as N and 
T (Figure 5). 

 
Figure 4: The Optimizer GUI: selection of the experiment type. 
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Figure 5: The Optimizer GUI: selection of the optimization parameters. 

 
 

The user can choose how many and which measures should be optimized (Figure 6). 
Figure 6: The Optimizer GUI: selection of the optimized measures. 

 
The user can choose which sub-matrices should be varied and which should be   fixed 

during the optimization process (Figure 7). For the Monte Carlo method the user has the option 
to optimize with fixed or varied densities of sub-matrices (Figure 7). 
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Figure 7: The Optimizer GUI: selection of the variable matrices, specification of their densities and 
constraints. 

 
 

The user can choose the optimization criteria: single, sum, or product (Figure 8). 

 
Figure 8: The Optimizer GUI: selection of the optimization criterion. 

 
The user can specify the brief or verbose forms of text file output (Figure 9). 
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Figure 9: The Optimizer GUI: selection of the output format. 

 

 

9. Limitations and Future Extensions 
The main limitation of this work is that we operated with a pretty small data set. As you 

can see from Table 5 and 6 the large data sets with a number of nodes exceeded 500 can hardly 
be optimized with current algorithms and hardware. So we are going to use some modifications 
of currents algorithms, combination of Monte Carlo and Simulated Annealing to decrease run 
time, for example. It is also possible to use constraints on some rows and columns of sub 
matrices to decrease the size of the variable networks. It will automatically lead to decreasing the 
optimization time.  

We also plan to increase the number of metrics being optimized. Practically the optimizer 
can be used with any DNA metric. It is possible to consider some other optimization criteria 
besides sum and product. For example, it might be minimax criterion when on every step of 
optimization we try to optimize the worst criterion. This strategy eventually leads to improving 
all metrics.  

We also consider the possibility to explore the linkage of optimizer to scheduler using the 
optimized designs as constraints on scheduling.  

  

10. System Requirements 

The Optimizer runs as part of ORA, which is freely available from the CASOS website.  The 
front end of ORA is written in Java, and the back end in a C++ network analysis library called 
NetStatPlus.  The Optimizer is written in C++ and currently runs on Windows XP using an Intel 
processor, and the code has been actively ported and tested on other platforms. 
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