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ABSTRACT.The quadratic assignment procedures for inference on
multiple-regression coefficients(MRQAP) has become popular in social net-
work analysis. These tests have been developed to assess the sizes of a
set of multiple-regression coefficients. However, research practitioners of-
ten use these tests to assess the size of individual multiple-regression co-
efficients. Although this might be a harmless extension, our our concern
focuses on this practice under conditions of multicollinearity. In this paper
we show analytically that different MRQAP-tests for individual parameter
estimates are biased under multicollinearity. Subsequently, we propose a
new MRQAP-test, which we call ”semi-partialing” that is robust against
multicollinearity. Extensive simulation results, as well as re-analysis of the
classic Laumann-Marsden-Galaskiewicz(1978)data show the added value of
this new ”semi-partialing” method over the existing methods.

1 Introduction

In this paper we analyze the sensitivity of "multiple regression-quadratic
assignment procedure (MRQAP)” tests for individual parameter estimates
under conditions of multicollinearity. These tests are especially useful for
models that endure problems with unspecified autocorrelation structures.
As autocorrelation makes use of t-tests for inference on the parameter es-
timates inappropriate, MRQAP-tests aim to offer an alternative. In fields
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that use network data the MRQAP-test is often applied. Although its fre-
quent use, some important questions about the MRQAP tests remain unan-
swered. One is whether the MRQAP-test is robust under multicollinearity
conditions?

Here, we briefly elaborate on the background of MRQAP tests and an-
alyze robustness of different MRQAP-tests against multicollinearity. Sub-
sequently, we show through simulations the seriousness of multicollinearity
conditions for different MRQAP-tests on linear model estimates. Also, we
show empirical consequences through re-analysis of the classic Laumann-
Marsden-Galaskiewicz (1978) data.

2 QAP: Non-Parametric Inference in Social Net-
work Analysis

To assess the association between data on interpersonal relations, a family
of inference tests have been developed based on the quadratic assignment
procedure (QAP)(for overview see Hubert, 1987). The null-hypothesis of
these tests is that the test-statistic of association equals the expected value
of the test-statistic under the permutation distribution (Hubert, 1987). In
other words, we test whether there is no similar pattern between the elements
of the different variables.

Data on network variables typically is represented in the form of a square
matrix. Based on random permutations of the rows and columns of one
variable, the QAP generates a permutation distribution that is similar to
the underlying distribution for which inference is drawn. Each permutation
creates a random data set that is automorphic to the original data on that
variable and, hence, when related to the other variable provides a random
estimate of the relation between the two variables. As there are many (n!)
possible permutations we may draw a random sample of these permutations
is to generate a reference distribution (Hubert, 1987). A major advantage
is that the test makes no assumptions about the distribution of parameters.
Rather, the QAP constructs a reference distribution of random parameters
that could have been derived from a dataset with the same structure as the
dataset under evaluation.

2.1 MRQAP-test

Several authors propose to extend the bi-variate situation discussed above
to the multivariate situation (e.g. Krackhardt, 1988; Hubert, 1987; Smouse,
Long & Sokal, 1986). In this paragraph we discuss several possible QAP
tests for multivariate regression.

Smouse et al. (1986) develop what we label as, the Y-permutation test
(see also UCINET by Borgatti, Everett & Freeman, 2002). Permutation



distributions for all coefficients of explanatory variables are derived from
the permutation of the columns and rows of the dependent variable.

The partialing-test (Krackhardt, 1988; Smouse, et al., 1986) starts with
estimation of the residual matrices of the partial regression of ¥ on Z, and
the partial regression of X; on Z, respectively Fyz and Ex,z. Where Z
represent all but the i** explanatory variables. From regression analysis we
know that the coefficient estimate of Fyz on Ex,z equals the estimate of
the " coefficient in the regression of ¥ on X. Where X represents the
full set of explanatory variables. The n! possible rearrangements of rows
and columns of Eyz(or Ex,z) provide a permutation distribution for the
ith variable’s coefficient.

Another test we discern is the X-permutation test. In this test we per-
mute one explanatory variable’s (X;) row’s and column’s. to generate a
reference distribution for it’s coefficient.

A fourth MRQAP-test, we call semi-partialing-permutation, combines
X-permutation-test and the partialing-permutation test. In this test we
replace X; with Ex,z. Again, we know that the regression of ¥ on Z and
Ex,7 will give the same estimate of the i'* variable coefficient as the i
variable coefficient in the regression of Y on X. (Note, that the other ¢
coefficients will change). Permutations of the rows and columns of Ex,z
allows to generate a permutation distribution.

2.2 Robustness against Multicollinearity

It can easily be shown that correlation between dependent variables affects
LS multiple regression coefficient estimates. Also, coefficient estimates are
dependent upon the correlation between the dependent and other explana-
tory variables. Here we refer to both types of correlation as multicollinearity.

Randomization of data by permutation of the rows and columns not
only randomizes the correlation between the dependent and the variable
of interest, also it disturbs the multicollinearity relations. The question is
whether these disturbing effects would cause an analytic bias in MRQAP-
tests discussed above.

MRQAP-tests, test the null-hypothesis, HO:

B =0, W) — B (8,))

in the model,

Y:f(617X177727E) (1)
where Y, X;, and FE are n X n matrices, Z is a n X n X g matrix, (; is
a real number, and v is a ¢ X 1 vector of real numbers. The probability
distributions of the matrices are permutation invariant, i.e., for all of the n!
possible permutations, 7y, of the n rows and columns of Y,

L(Y) = L(m(Y)) (2)



where k = 1,...,n!. Furthermore, under the null-hypothesis of no relation
between X; and Y, we can rewrite 1 as

Y = f(v,Z,E) (3)

We may express any estimator of 3; controlling for the effects of Z on Y as

which is permutation invariant,
Bi(f(v, Z,E), X, Z) = Bi(mi(f (7, Z, E)), me(Xi), 7 (Z)) (5)
Now assume, no multicollinearity, i.e. Cov(E,X;) = 0, and v = 0,

where E are the residuals from the LS regression in 1. Hence, under the null
hypothesis and the permutation invariance of (3;, we have

L(ﬁz(f(’77 Z, E)vXuZ)) = L(ﬁl(ﬂ-k(f(/yv Z, E))le’Z) (6)

Showing that Y-permutation and X-permutation are unbiased under these
conditions, respectively. Analogous, we can show that partialing and semi-
partialing are unbiased tests.

However, so far we assume no multicollinearity. First, let us consider
what happens if Cov(E, X;) # 0, i.e. correlation between X; and a linear
combination of Z. In this case we can rewrite 3 as

Y =f(v, 2, X:,U) (8)

where U is the residual matrix. However, substituting 8 in 4 under X-
permutation results in

L(Bi(f(v, Z, X,U), X, Z)) # L(Bi(f (7, Z, X3, U), me(X5), Z)  (9)

Because, the right-hand-side is dependent on more non-random variables
than the left-hand-side of 9.

Under Y-permutation in cases where there is a ”third variable” effect
Smouse et al. (1986) mention that problems may occur. It is easily shown
that these problems are analog to those that occur under X-permutation
when there is correlation between the independent variables. Also, we can
show that the partialing method becomes biased when both multicollinearity
conditions occur.

Under semi-partialing we can rewrite 4 as,

ﬁi:ﬁi(f(’)/?Z7E)7EXiZ7Z) (10)

where Ex, 7 is the residual of the regression of X; on Z. Because we know
Ex,7 is independent from Z by construction from 7 we know that semi-
partialing will be unbiased under multicollinearity conditions.



3 Simulation Results and LMG-Data

The simulation results show the sensitivity of MRQAP-tests for multicollinear-
ity conditions. Especially, results show that X-permutation creates an up-
ward bias, while Y-permutation is downward biased. Partialing-permutation
(Smouse et al., 1986; Krackhardt, 1988), only shows small upward bias in
the simulation results. We further inquire the sources of this limited bias
for the linear model. Consistent with our expectations formulated in section
3, the results for semi-partialing show robustness under all multicollinearity
conditions. We will show how these different tests affect the results of the
classic LM G-data.

4 Conclusion

As most studies assess type 1 error to determine effect size, X-permutation
would have serious consequences for theory testing under conditions of multi-
collinearity. Also, Y-permutation-test is biased, although downward in cases
of third variable effects. This effectively makes the Y-permutation-test unus-
able to assess the null hypothesis we consider here. When we were to assess
the null hypotheses that all variables have no effect, the Y-permutation-test
could be of value. However, the downward bias does raise questions about
the power of that test, especially in cases with more than two explanatory
variables. This is a serious issue that deserves attention, because many stud-
ies have published results on the basis of this test. With regard to partialing-
permutation the multicollinearity conditions do not seem to cause serious
problems. We were only able to detect a slight upward bias. However, it
is not clear which null-hypothesis could be assessed with a partialing-test.
Finally, the semi-partialing-test is analytically unbiased as confirmed by the
simulation results. We propose that this test might be a suitable alternative
to t-tests, in case of data with structural autocorrelation. We do emphasize
that these results are not yet confirmed for other than Gaussian data.
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