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Abstract

The increasing availability of large-scale network data makes

the problem of network summarization especially relevant.

In any data summarization, however, it is important to

remain aware of the information not being presented. As

such, we present a mathematical framework within which to

consider the problem of network summarization. Using that

framework, the concept of information entropy is applied in

the context of network summarization. Finally, an O(—E—)

algorithm is presented for computing information entropy in

the case of simple deterministic network summarizations.

1 Introduction & Background

1.1 Motivation One of the many challenges network
analysts face when confronted with real-world problems
concerns the sheer size of real-world network data. Even
a relatively small dataset is likely to contain thousands
of nodes and many more connections. Particularly
in exploratory analysis, analysts often turn to some
variety of network summarization. This may consist
of anything from analyzing a subset of the network to
analyzing aggregate groupings of vertices as determined
by some network grouping algorithm[1].

In general, the purpose of any network summariza-
tion is to focus on the information of interest to the
research problem by setting aside some other informa-
tion. Although network summarization is often a nec-
essary step, it requires a balance between emphasizing
some hopefully information and ignoring some hopefully
unimportant information. There is always a risk that
the information being ignored is actually the most im-
portant. By quantifying the precise amount of informa-
tion being ignored, we hope to better enable network
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analysts to make informed decisions about the most ap-
propriate level of summarization.

1.2 Problem Domain As an example of the ubiqui-
tousness of network summarization, consider the prob-
lem of geospatially enable network analysis. As GPS
devices becomes increasingly affordable and usable, the
automated collection of geospatial information likewise
becomes both technically and economically feasible.
This is of particular importance in the application of
dynamic network analysis to problems in law enforce-
ment and counter-terrorism efforts. In these domains,
spatially tagged network data has the potential to widen
the scope of problems for which dynamic network analy-
sis is feasible and to enable an expansion from strategic
analysis into tactical analysis.

In order to achieve these goals, however, we need
to develop an integrated approach to network and
geospatial analysis. One simple step in the analysis of
geospatially tagged data would be to simply overlay the
network data onto a geospatial map. Figures 1(a) and
1(b) show two examples using this approach.

There is, however, a problem with this approach.
By emphasizing the relationships between geospatial
locations, we are discarding the the relationships within
regions. We may see connections from A to B and B to
C and infer a path from A to C through B, but there
may in fact be no viable path through those regions.
Of course, we can take steps to alleviate this particular
dilemma, but the general problem of information loss
still applies.

An appropriate measure of network information loss
must have some way of being combined with geospatial
information loss to provide an overall measure of the
quality of the resolution.

Relational datasets of all types can be extremely
large and network summarization is one simple method
for analysts to quickly gain insight into the data. The
proposed metric has a simple intuitive interpretation as
the percentage of information lost at a particular resolu-
tion. By providing the amount of network information
lost, we can help analysts choose the most appropriate
resolution for analysis. In addition, by leveraging the
general framework of information entropy, our proposed
metric can be combined with measures of information



loss in other types of summarization(e.g. geospatial lo-
cation).

2 The Model

We define a metric, network entropy, to be used as a way
of measuring information gain/loss in networks. Infor-
mation entropy is a way of quantifying the amount of
information in terms of the certainty of the informa-
tion. If we gain some information, E, the information
gain(IG) of E is defined by (2.1-2.2).

(2.1) IG[E] = h[X]− h[X|E]

(2.2) h[X] =
∑

x

p(x) log(p(x))

2.1 Definitions Let a graph consist of a set of ver-
tices, G = {1, 2, ..., N} and an affinity matrix, A, where
the value of aij represents the connection between i and
j. The size of the graph is represented by n.

A graph summary can be any means of representing
some subset of the information contained within that
graph. Network partitioning and grouping algorithms
are one popular example of graph summarization, but
other methods are possible. The important character-
istic of any network summarization method is that it
implies, explicitly or implicitly, an approximation of the
original network. In the case of a grouping algorithm,
the original network is reduced to a network of groups,
with the vertices within each group as irrelevant. We
define this as a vertex reduction of a graph and the rest
of the paper deals primarily with such summarizations.
However, the network entropy can be calculated for any
network summarization that produces an approxima-
tion of the network.

Let a node reduction of the graph, G, be defined
by the k × n matrix, C, where k < n is the reduced
resolution. The reduction, Ǵ = {1, 2, ..., k}, consists
of k meta-vertices, where each meta-vertex, a, contains
some set of vertices from the original graph. For each
<meta-vertex,vertex> pair, a ∈ C, i ∈ G, define cai as
P (x ∈ a|C, x = i)(hereafter P (a|i)). More intuitively,
cai is the extent to which i is represented by a.

C =

 c11 . . . c1n

...
. . .

...
ck1 . . . ckn

 .

For convenience, define the variable pC as a vector
of probabilities, where pC

a =
∑

i∈G cai. Now we can
compute P (i|a) = P (a|i)P (i)

P (a) = cai×1/n
pC

a
.

In practice, many node reductions are simple de-
terministic reductions whereby each vertex in the orig-
inal network is contained by a single meta-vertex with

(a) Network A

(b) Network B

Figure 1: Two simple networks with different geospatial
properties



probability 1.0. In these node reductions, we define
c : G → Ǵ as the function that maps vertices in the
original network to meta-vertices in the summary net-
work.

2.2 Defining Entropy We claim that the informa-
tion of interest in the network is the value of the edge
between each pair of vertices. Therefore, we define the
entropy of a network as the sum of the entropy of each
edge in the network. In order to define the entropy of
an edge, we must assume some underlying edge proba-
bility distribution. The most intuitive representation of
an edge is as a Bernoulli random variable, but other
probability distributions are certainly possible. For-
mally, we assume the edge for each pair, < i, j >,
is an independent random variable Xij . We assume
that the original graph, G, is the ground truth, where
Xij ∼ Bernoulli(aij). Each edge in the node reduced
graph is a linear combination of the random variables
in the original graph.

(2.3) Xab =
∑

i,j∈G

P (i|a)× P (j|b)×Xij

We can now create a maximum likelihood estimate
of Xab provided that we know the underlying distribu-
tion. If we assume X ∼ Bernoulli(p), we can calculate
the parameter, pab.

áab = ṕab =
∑

i,j∈G

P (i|a)× P (j|b)× aij

=
∑

i,j∈G

P (a|i)P (i)
P (a)

× P (b|j)P (j)
P (b)

× aij

(2.4) áab =
∑

i,j∈G

cai

n× pC
a

× cbj

n× pC
b

× aij

We can then go backwards, reconstructing the
approximation of the original graph that is implied in
the node reduced graph.

âi,j = p̂i,j =
∑

a,b∈Ǵ

P (a|i)× P (b|j)× áab

=
∑

a,b∈Ǵ

cai × cbj × áab

(2.5) âi,j =
∑

a,b∈Ǵ

cai×cbj×
∑

i,j∈G

cai

n× pC
a

× cbj

n× pC
b

×aij

We can then use these approximations to calculate
the entropy of each pair of vertices, i, j ∈ G as they
are represented in the node reduced graph, Ǵ. The
additive property of entropy allows us calculate the
entropy for the entire graph as the sum of the entropies
for the edges.

(2.6) H[i, j|C] = −p̂ij log(p̂ij)− (1− p̂ij) log(1− p̂ij)

(2.7) H[G|C] =
∑

i,j∈G

−p̂ij log(p̂ij)

In general, we can compute the network entropy for
any network summarization provided that we are willing
to assume an underlying edge probability distribution
and that we can reconstruct an approximation of the
original network based on the summary network. For
any network summary, Ǵ.

(2.8) H[G|Ǵ] = −
∑

i,j∈G

∫
x

P (aij = x|Ǵ)

2.3 Example Consider the simple network depicted
in Figure 2(a) and the summary/partition of it depicted
in Figure 2(b). The summary implies that the nodes
A,B anc C are interchangeable and that D,E and F are
similarly indistinguishable. The between-groups sum-
mary edge has a value of 1, with 9 possible pairwise
combinations of vertices in the two groups. There-
fore, the network summarization implies an approxima-
tion where each of the nine edges in the original graph
(A→D,A→E,...C→E,C→F) has a value of 1/9. Assum-
ing a Bernoulli distribution, we can calculate the en-
tropy for each of those nine edges.
(2.9)
h[A→ B|Ǵ] = −P (A→ B||Ǵ)×logP (A→ B||Ǵ)−(1−P (A→ B||Ǵ))×log(1−P (A→ B||Ǵ))

(2.10) h[A→ B|Ǵ] = 0.5032583

We can similarly calculate the entropy of the edges
within the vertices A,B,C and D,E,F as 0.9182958 and
0, respectively1. Using the additive property of entropy,
we find that the entire network summary has an entropy
of 9× 0.5032583 + 3× 0.9182958 + 3× 0 = 7.284212. If
we knew nothing about the network other than size and
density, we would estimate each edge having a value
of 0.4, with the entire network having an entropy of

1This assumes we ignore self-links. If we include self-links in

the calculation and assume all vertices are self-linked, we find
entropy values of 0.6500224 and 0.



14.56426. If knowing the entire network (by definition 0
entropy) results in reduction in entropy of 14.56426 and
the network summary reduced entropy by 7.28 then we
know that the network summary encapsulates 50.0% of
the information in the network.

(a) Simple Network

(b) Partitioned Simple Network

Figure 2: Two simple networks with different geospatial
properties

2.4 Calculating Entropy Algorithm 1 shows the
näive approach to computing entropy. As you can, this
has a time complexity of O(n2k2) and a space complex-
ity of O(n2). However, most existing network grouping
algorithms are not probabilistic and the computation
becomes much simpler by taking advantage of this. Al-
gorithm 2 takes as input a simple reduction function,
c : G → Ǵ and an edge set, E. Doing so reduces the
space and time complexity to O(|E|), where |E| is the
number of edges in the graph2.

2.5 Importance of Entropy The use of informa-
tion entropy as an underlying metric makes the integra-

2Assuming |E| is much larger than the largest meta-vertex in
the reduced graph.

input : G,E,C,p
output: The entropy, h of the graph G

under the reduction, C

á ← 01

for i← 1 to n do2

for j ← 1 to n do3

for a← 1 to k do4

for b← 1 to k do5

á [a][b] ← á [a][b] + C [a][i] ×6

C [b][j] × A [i][j]/(p [a] × p [b]
×n× n);

end7

end8

end9

end10

â ← 0 for i← 1 to n do11

for j ← 1 to n do12

for a← 1 to k do13

for b← 1 to k do14

â [a][b] ← á [a][b] + C [a][i] ×15

C [b][j] × á [a][b];
end16

end17

end18

end19

Algorithm 1: A Vertex-based Algorithm

input : G,E,c,p
output: The entropy, h of the graph G

under the simple reduction, c

á ← 01

for edge e in edges E do2

i←From(e)3

j ←To(e)4

a = c(i) b = c(j) á [a][b] ← á [a][b] + A5

[i][j]/(p [a] × p [b] ×n× n);
end6

â ← 0 for edge é in edges É do7

a←From(é)8

b←To(é)9

for node i ∈ G where c(i) = a do10

for node j ∈ G where c(j) = b do11

â [a][b] ← â [a][b] + á [a][b];12

end13

end14

end15

Algorithm 2: An Edge-based Algorithm



tion of network information gain with geospatial infor-
mation gain fairly straightforward. We can apply infor-
mation entropy to geospatial information gain as long
as we are willing to assume some underlying probabil-
ity distribution for the geospatial data as we did for the
network data. A normal distribution may be the most
intuitive, but other distributions may be more appro-
priate depending on the particular domain. We assume
that the set of actual locations in each aggregated re-
gion is a sample of independent identically distributed
random variables. We then use the sample of locations
to estimate the distribution for the given region. For
example, assuming a normal distribution, we estimate
µx, µy, σx, σy as the sample means and standard devia-
tions of the latitudes and longitudes. We can then com-
pute the differential entropy of the region(2.11). In the
case of a normal distribution, this reduces to (2.12)[2].
By using the additive property of entropy, we can com-
pute the entropy of the entire dataset(2.13).

(2.11) h[r] = −
∫ ∞
−∞

∫ ∞
−∞

P (x, y|r) log(P (x, y|r))dxdy

(2.12) h[r] = 1/2 log(2π expσ2
x)× 1/2 log(2π expσ2

y)

(2.13) h[R] =
∑
r∈R

h[r]

Because entropy is additive, we can compute the
overall information gain/loss simply by summing the
network information entropy and the geospatial infor-
mation entropy. This allows us to seamlessly integrate
the two different dimensions of the data.

3 Discussion & Conclusions

We examine the idea of information gain as it applies
to network summarization and propose information en-
tropy as a way of measuring the quality of a resolution.
We develop a probabilistic model of the information con-
tained in a network and derive a formula for information
entropy based on this model.

Although the computational complexity of comput-
ing network entropy depends on the network summa-
rization method used, we develop an O(E) algorithm for
simple deterministic node-reduction summarizations.

Network summarization has applications in a wide
variety of network analysis problems. In these situa-
tions, network entropy can be used by analysts to de-
termine the most appropriate level of summarization.
By using information entropy as the basis for measur-
ing the information in the network, we can combine the
network information with information provided by other

attributes (e.g. geospatial labels) in order to provide a
comprehensive picture of the information contained in
a particular network resolution.
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