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Extended Abstract 
 
Let us be frank with ourselves and pose the question, why a computational model in the first 
place?  To answer this, we must demonstrate that analytic and statistical methods neither 
adequately explain our process nor properly predict the outcomes for anticipated scenarios, while 
computation achieves both.  Implicit in this endeavor is the requirement for us to define the 
criteria by which we convince ourselves, and others, that the model is both correct and useful.  
That is, at minimum, the model must both fit the given data and generalize to new data using 
parameters that are sensible, meaning that their derivation from the empirical data is clear.  
These tasks constitute the ever-present challenge of justifying and validating a computational 
model.  The ideal model is sufficiently predictive, so as to obviate the need for collecting new 
data, and yet maximally parsimonious, so as to be easily understood and usable. 
 
While many developed models of all flavors mathematical, statistical, and computational can 
describe a host of social phenomena, these phenomena are relatively simple compared to the 
ones that still require quantitative explication that is accurate enough to inform consequential 
decisions such as policy and organizational strategy.  In short, the state of the art in modeling 
still imposes no standards on many of the aforementioned validation issues.  At what point does, 
say, a statistical model become inadequate to capture the complexity of the problem and needs to 
be upgraded to a computational model?  Sometimes, we are attracted to the dynamic nature of 
computation, which gives us a means to observe the evolution of the system.  Other times, the 
system can only be accurately described as a dynamic process.  As more and more models arrive 
on the scene, we need to ask if an extant model is sufficient or if we need to develop yet another, 
specifically tailored to our specific problem. 
 
In this paper, we validate the predictive ability of a generalized computational model of decision-
making using empirical data from two distinct studies.  The first study comprises data obtained 
by the College of Nursing at the University of Arizona.  Researchers collected longitudinal 
performance data of a dozen nursing units across several hospitals along with a host of other 
variables, descriptive of the network structure and workloads of these units [1].  The second 
study looks at the performance of military units operating under an A2C2 command-and-control 
structure.  These units participated in a virtual war-game in which decision-makers performed 
tasks, allocated resources, and co-operated with their teammates to accomplish geographically 
localized military objectives (e.g. taking a beach and airport) [2].  Finally, our decision-making 
engine is one of the components of ORGAHEAD, a model of organizational adaptation 
developed at Carnegie Mellon University [3].  We will use this model to separately parameterize 
and fit the data from each study. 
 
Assuming we can achieve some fit to the data with our model, the primary challenge is to 
ascertain the balance point between parsimony and predictive power.  That is, how much of the 
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problem do we need to simulate?  Often times, this requires a trial-and-error search while 
constantly asking, at point does my model fail to predict?  The analyses in this paper represent 
one trial of such a search; as you will read below, by simplifying the complexity of numerous 
data elements, we impose a high degree parsimony in the model specifications while testing its 
fit with the A2C2 and nursing study data.  And throughout this search, we need to explicitly 
match key constructs between the model and data; these include variables of classical modeling 
as well as those defining the dynamic process: 
 
1) The dependent measure.  In the model as well as data, our primary outcome measure is 

decision-making accuracy: how correct are the organizational units in solving their decision 
tasks? 
 

2) The predictors.  For A2C2, we use the structure of the meta-matrix [4] to predict, both 
analytically and computationally, the task performance.  For the nursing study, we employ 
education and experience levels of people and the network structures from the various 
nursing units as our predictors. 
 

3) Aligning or reducing complexity.  The mapping of empirical data to a model’s process is 
perhaps the most crucial component of modeling.  Determining appropriate complexity of the 
parameters, the dynamic process, and outcome measures are distinct issues.  Again, the goal 
is to achieve that optimal balance between parsimony and predictive power.  And again, 
these decisions are subjective and often warrant experimentation. 

 
a. Complexity of the problem parameters:  In the nursing study, the difficulty, or 

complexity, of the decision problem was assessed using just a handful of predictors of 
performance, including co-morbidity in patients (i.e. how many medical issues did 
each patient have?) and staff evaluations of turbulence and complexity in their units.  
In A2C2, task dependency on resources defined the level of complexity per task.  
That is, the more resources a task required, the more complex we deemed the task to 
be. 

 
b. Complexity of the dynamic interaction: At one extreme, the model can attempt to 

capture each and every signal transferred between the information processing units, 
being people or books or computer systems.  However, that level of detail is often not 
necessary to achieve adequate predictive power.  For our validation efforts, we 
assume that such information is reducible and treat signals between agents in the 
model as a gestalt.  And, since we lack detailed communication data, we can only 
estimate the degree of simplification. 

 
c. Complexity of the outcome measures:  The outcome measure for each study and the 

model is a single scalar, thus keeping complexity low.   For the nursing study, our 
dependent or outcome variable is frequency of medication errors, while in A2C2, it is 
task accuracy.  And as mentioned earlier, in ORGAHEAD, decision-making accuracy 
is the appropriate analogous measure. 

 



d. Complexity of time:  While the nursing study occurred over a period of six months, 
we have no data on the rate of decision-making.  Instead, we collapse the model time 
horizon to a duration that yields sufficient variance in the outcome measures.  For the 
A2C2 study, we do have rates of decision-making; however, this validation exercise 
seeks parsimony as well as exactness, and, so we similarly collapse the time horizon. 

 
Our results demonstrate that an analytic or statistical model is insufficient to even fit the results, 
let alone describe the dynamic process.  For both studies, key indicators of performance did not 
correlate adequately with the empirical findings.  In the A2C2 study, resource distribution is 
often a strong predictor of task performance but did not correlate with the results of the study.  
Our model results yielded a much better fit; refer to figures 1 and 2.  Note that the relative 
orderings of performance matter here, rather than their actual values.  In the nursing study, the 
variables, which correlated highly with measures of performance, still failed to yield a proper 
ordering of performance, while model results again proved to be a better fit. 
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Figure 1.  A2C2 Study Results (left) vs. Model Results (right). 
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Figure 2.  A2C2 Study Results (left) vs. Analytical Results (right). 
 



These findings demonstrate that the non-linear, dynamic process through which the states of 
initial parameters evolve is essential in modeling these data, thereby justifying the application of 
the model.  So, as additional evidence of validity, we will present a deconstruction of the 
mechanisms that allowed the model to fit better than the analytical results. 
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