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Abstract

This dissertation explores the social network processes involved in adolescent sub-
stance use. Over the past three decades, researchers have focused on, with increasing
clarity, the specific dynamics of peer selection and peer influence in their attempts
to understand how adolescents first use a substance, what compels them to continue
use, and why some of them quit. However, the exact nature of interplay between
those two key social processes continues to be elusive, due to the lack of both robust
longitudinal network data and sophisticated network methodologies capable of ad-
dressing such data; it is only in recent years that advances in the field have improved
these deficiencies. The research presented here adopts an alternative approach using
a large cross-sectional data set that is not without its limitations, but still manages to
produce specific parameters for selection and influence some of which are surprisingly
similar to those reported in some recent work on this topic.

Inferences to describe adolescent networks are drawn from partially-formed ego-
network data contained in the 1998 and 1999 survey years of the National Survey
on Drug Use and Health; a modest level of precision in these analyses is achievable
thanks to the large sample size. A custom Poisson/binomial/multinomial mixture
is employed to extract precise peer network properties from ordinal response data
having categories of proportions which implicitly cover the [0,1] interval. In order to
understand the transitions in these network properties in tandem with the changing
levels of substance use, from one age to the next, I exploit 1) the monotonic relation-
ships between age and both peer network size and age-specific substance use, and 2)
the distinct nature of an adolescent’s peer group at the time of his or her first use of a
substance, or initiation. The ego-network parameters also allow for the construction
of network distributions: whole networks representing small hypothetical populations
of adolescents, say a grade or an entire school. These distributions can serve as more
than mere curiosities when used as a basis for a dynamic model of network change and
substance use. However, this work stops short of constructing such a model. Instead,
as an epilogue, and also as a prelude to future research, I address potential causa-
tion by calculating inter-latencies between substance use and certain factors, such as
attachment to parents, which are relevant to prevention and intervention strategies.
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Chapter 1

Introduction

Why does a teenager start to smoke? And why do smoking teens seem to “hang
out” with only other smoking peers? For most Americans familiar with our culture
of substance use, these questions seem rhetorical and elicit high school memories
of either clandestine meetings with friends at safe smoking locations or eyeing such
groups from a distance with a modicum of envy or disdain. Still, a general acceptance
of the culture of substance use has given rise to social norms, even protective ones; for
instance, in my high school, students would willingly identify themselves to smokers
hiding in bathrooms by uttering the key phrase “it’s cool” upon entry.

The question of what exactly explains this agglomeration of adolescent substance
users, of tobacco and other products such as alcohol and marijuana, continues to chal-
lenge researchers who have an interest in seeing a reduction in the levels of substance
use among youth. It is often the case that we observe groups of people conspicuously
sharing one or few common traits, be they behavioral, attitudinal, or sociodemo-
graphic ones. In sociological studies, this phenomenon is called ‘homophily’, a broad
term that describes people’s tendencies to seek out others who are similar to them-
selves. While it is tempting to simply admit clusters of people to be a foregone
conclusion, especially since we see and participate in them so often in social life, the
mechanisms involved in their assembly can be far subtle and not easily identifiable,
despite having been under scientific scrutiny from the early 20th century (Almack,
1922; Bott, 1928; Wellman, 1929; Hubbard, 1929; Hagman, 1933)1 until present day,
when recent advances in network methodologies have provided investigators a precise
means for measuring the extent of homophily in a spectrum of social contexts, includ-
ing adolescent substance use. Some notable sociological research into interpersonal
homophily has surveyed organizations (McPherson et al., 1992, 2001), communities
(Verbrugge, 1977), and even the entire population of the U.S. (Burt, 1984, 1985;
Marsden, 1987).

Over the past three decades, researchers have focused on two mechanisms believed
to be mostly responsible for the prevalence of the substance use among adolescents.

1Most of these early studies looked at friendship choices among young school children.
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For one, homophily, generally called ‘selection’ in the substance use literature, implies
substance users seek out fellow substance users. Alternatively, this homogeneity in
use behavior in peer groups can be the result of something else: non-users over time
trying a substance for the first time as a result of some kind of social influence. Social
or peer influence, commonly known as ‘peer pressure’ in lay writings, entail the change
of one’s opinions, attitudes, or behaviors such that they ultimately conform to those
of others, or ones others are perceived to maintain. Research into peer influence not
surprisingly has its early roots in social psychology (Festinger, 1950, 1953, 1954) with
some formalization recently developed in the neighboring field of sociology (Friedkin,
1990; Friedkin and Johnsen, 1990; Friedkin, 1998). Influence is considered to play a
prominent role in all aspects of substance use, especially when a teen tries a drug for
the first time; this event is known as ‘initiation’. Even when influence is identified as
the culprit mechanism, we still might want to specify the brand of influence responsi-
ble, which can range from being a subtle inducement or opportunity to mimic friends’
behavior to being an imposition when such behavior attains a normative status and
non-conformity becomes tantamount to expulsion. Alternatively, an adolescent might
selectively shift the composition of his or her friendship circle in order to reduce the
dissonance that arises when an inclination to try a substance or continue its use is
frowned upon. Failure to achieve this change, for instance with parents, can render
the adolescent susceptible to the anti-substance influence.

Some early studies, conducted in the late 1970s when network methodologies were
in their infancy, offer findings that point to peer influence as the overriding determi-
nant of substance use homogeneity within adolescent social groups (Kandel, 1978a;
Jessor and Jessor, 1978; Akers et al., 1979; Brook et al., 1983), while other work at
the time considers selection to have much larger role. Kandel (1978b) suggests that
this homogeneity, in specifically marijuana use, is due to both influence and selection
almost equally, while Cohen (1977) claims homophilic selection accounts for group
membership much more so than the pressure to conform. More recent work, by Bau-
man and Ennett (1996), alerts us to a bias for over-estimating the influence effect,
and their findings echo those of Cohen (1977): that selection plays a more promi-
nent role. Some research observe how commonly adolescents first try a substance
in the company of using friends, highlighting the preponderance of influence-induced
initiation (Hahn et al., 1990; Kirke, 2004a,b). Alternatively, selection of friends can
occur through other channels (e.g., similarities in music tastes (Steglich et al., 2006a)
or involvement in sports activities (Pearson et al., 2006)), and once a relationship is
established, substance use influence (to initiate or to continue using) takes hold.

Contained in all these studies is a framework for quantifying and analyzing peer
relations and behaviors that falls under the class of study broadly known as social
network analysis (Wasserman and Faust, 1994). The categories of network data cover
the gamut from the simplest, sets of dyadic relations, to ego-centric or ego-networks,
to snowball, and other link-trace, samples to complete networks, all of which qualities
are enhanced by multiple collections over time, bestowing them the status of longi-
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tudinal data. While sample sizes can strongly determine the precision of estimates,
which is generally the case for quantitative methodologies, the wide range of scope
in the ways we can measure social relations obliges us to consider how well the data
addresses inter-dependencies inherent in almost all social structures. Not surprisingly,
earlier network studies, including the aforementioned substance use articles, report
findings on just dyadic relations, in which the measures of interest are restricted to
activities between pairs of individuals; for example, Kandel (1978b) looks at pairs
of best friends. Since then, the methodologies and the quality of network data have
co-evolved.

Ego-centric networks, or simply ego-networks, comprise relational data from the
perspective of the respondent, called the ‘ego’, and include tie data from the respon-
dent to his or her immediate ‘alters’, those individuals in the respondents’ lives who
qualify into one or more social categories requested by the researcher, such as friend,
co-worker, etc. A well-known, nationally sampled ego-centric study is the Social Net-
work Module of the 1985 General Social Survey. This portion of the survey requested
data on people ‘with whom, in the last six months, you discussed an important per-
sonal matter’ in an attempt to obtain intimate, confidante relationships (Burt, 1984,
1985; Marsden, 1987). In studies that employ ego-centric networks, researchers gen-
erally collect, in addition to the ego-alter relations, personal information, such as
sociodemographic and behavioral data which are key in understanding the nature of
homophilic relationships; normally, the respondent provides his or own own data and
also that of their alters. Sometimes, perceived alter-to-alter relations are requested
from the ego. These triangular or triadic sets of relations are of particular interest to
network analysts. Structures that reflect or induce balance, transitivity, equivalence,
and small-world clustering highlight the substantial complexity inherent in triadic
relationships. Since it requires only a marginal amount of additional effort to collect
ego-centric data, over dyadic data, they are more commonly collected and studied;
some recent substance use studies that favor the use of ego-networks include work by
Gainey et al. (1995) and Ellickson and Bell (1990).

In the various brands of link-trace, or chain referral, sampling designs, such as
snowball sampling (Frank, 1977, 1979; Frank and Snijders, 1994), respondents are
selected by their affiliation to other respondents; hence these sampling methods re-
sult in chain-like structures and are often employed to access hidden or hard-to-access
populations, such as needle-injecting hard substance users or sexual networks. Recent
modifications have been made to address the bias introduced with this kind of sam-
pling in a technique called respondent-driven sampling (Heckathorn, 1997; Heckathorn
et al., 1999; Heckathorn, 2002, 2007; Salganik and Heckathorn, 2004). However, size
for size, complete network data is most robust yet the most difficult to collect as it
entails relational data between all actors from a pre-defined population. The closed
system nature of complete networks restricts the size of the sampled population gen-
erally to a few hundred at most. However, it remains the most useful kind of network
data for studying diffusive type events and behavior (Morris, 1993).
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Like the majority of social science data, network data, especially the larger sets,
tend to be cross-sectional. Two major data sources for adolescent substance use in
the United States do contain some network data: the Monitoring the Future (MTF)
and the National Survey on Drug Use and Health (NSDUH), formerly known as the
National Household Survey on Drug Abuse (NHSDA). However, as expected, the
quality of their data is restricted given the enormous sample sizes (10,000+) per
survey collection year; while the array of survey items is comprehensive, the network
data is ego-centric and only partial in that: they lack alter-alter ties and responses are
not given in exact quantities, but rather ordinal categories of substance use among
the respondents’ friends.

The recognition of limitations in cross-sectional data has fueled efforts into col-
lecting longitudinal data and developing appropriate dynamic network analysis, with
which researchers have been making statements on the selection/influence dynamic.
Notable work of this type include studies by Bearman et al. (2004); Pearson et al.
(2006); Hall and Valente (2007). Still, other studies continue to exploit the statistical
advantages afforded by the large, cross-sectional, substance use data sets (Evering-
ham and Rydell, 1994; Caulkins et al., 1999; Caulkins, 2000a; Caulkins et al., 2004).
However, the dynamic models in these works do not differentiate structure or specify
interactions between individuals.

With this dissertation, I aspire to contribute to the ongoing efforts into under-
standing adolescent substance use, by applying a novel inference technique on partial
ego-network data contained in one of the large, nationally sampled data sets and
then using derived estimates to triangulate selection/influence coefficients. The first
section of this dissertation introduces the probability model, a Poisson/binomial/mul-
tinomial mixture, used to extract precise estimates about the size of adolescent peer
networks and the number of those peers who use substances from ordinal response
data having categories of proportions which implicitly cover the [0,1] interval; for
those first analyses, I focus on a single substance, tobacco (i.e. cigarette smoking).
The second section exploits these ego-network parameters in generating distributions
of complete networks and highlights some network measures of interest to substance
use and network researchers alike. The third section expands the probability model
to incorporate joint analysis on ego-network data for two and then three substances.
However, due to technological limitations, a full suite of analyses cannot be performed;
the time required for each estimation is extremely long, and the sample size is not
large enough to support some of the joint analyses. Next, peer network estimates
from adolescents who have recently initiated are inferred and, when combined with
estimates on the non-using population, they give us measures for the risk of initiat-
ing. These initiation parameters are then used to predict transitions in ego-network
properties for both users and non-users alike, from which I draw precise estimates
about influence and selection and compare them with estimates from two other re-
cent adolescent substance use studies. Finally, I perform a relatively näıve analysis
on age-based curves which I treat as temporal, so that I might infer ordering and
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latencies between substance use and some covariates relevant to issues of prevention
and intervention.
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Chapter 2

Inferring Parameters of Adolescent
Ego-Networks

2.1 Data Source

Large sets of substance use network data are generally ego-centric and cross-sectional.
While efforts in the past decade have focused on collecting complete, longitudinal net-
works, their samples sizes tend to be smaller. An earlier study by Kirke (1996) and a
recent study conducted by Hall and Valente (2007) are relatively small, where sample
size n is 267 and 880, respectively. The sample size of the social networks in Na-
tional Longitudinal Study of Adolescent Health (Add Health) (Bearman et al., 2004)
is of moderate size, n = ∼15,000, with complete networks comprising entire schools.
Current non-complete/ego-centric, cross-sectional substance use networks are on the
order of 25,000 for the National Survey on Drug Use and Health (NSDUH), formerly
known as the National Household Survey on Drug Abuse (NHSDA) and ∼250,000
for the Monitoring the Future study (MTF). The data from each of these studies
have different limitations and strengths. Kirke’s data is relatively small, comes from
a discrete geographic area in Dublin County Ireland having a population of 2,500,
and though complete, the data is static (i.e. collected at only one time point), so no
dynamic inferences can be drawn. The data from the Add Health and Hall/Valente
studies are longitudinal, permitting some dynamic analysis, but the investigators re-
strict friendship size to maximum of five, with friends’ substance use in Add Health
being limited to just three best friends, much in the same way earlier studies lim-
ited the number of friends (e.g. Ennett and Bauman (1993)). Furthermore, Hall
and Valente only report on cigarette smoking behavior and, like Kirke’s data, their
population is geographically bound, to several areas of Los Angeles county.

As for the larger data sets, both the NSDUH and the MTF offer only ego-centric
data in the form of broad ordinal categories of friends’ substance use, such as ‘None’,
or ‘Few’, or ‘All’. Furthermore, while the sample size of the MTF study seems suf-
ficiently large, adolescents are sampled at only three grade levels (8th, 10th, 12th)

7



limiting the granularity of dynamic statements we can make. And, because it employs
five response categories of friends’ use, rather than four of the NSDUH, the network
parameter estimation procedure is further complicated. Despite the smaller sample
size of the NSDUH, its broader age range and simplifying ego-network response cate-
gories makes it the candidate data source, one from which we can draw age transition
inference. Furthermore, the NSDUH includes partial ego-network data on adults’
substance use, information that is relevant in the prediction of adolescent use but not
included in the other data sets.

The NSDUH is funded by the Substance Abuse and Mental Health Services Ad-
ministration (SAMHSA) and informs the Federal government on the use of alcohol,
tobacco, and various illicit substances. While survey administration commenced in
1971, the earliest publicly available data is the 1979 survey year. Since 1990, the sur-
vey has been conducted yearly and samples individuals ages 12 and older who live in
households and over-samples 12–17 year olds; the survey does not sample the prison
or homeless population. Surveys are answered in the privacy of each respondent’s
home with most of the computerized responses answered completely in private. The
survey takes approximately one hour to complete, and respondents are compensated
$30 in cash for their participation. Confidentiality is emphasized through the absence
of records on participants’ names and through protection under the Confidential In-
formation Protection and Statistical Efficiency Act of 2002.

Some concerns about the accuracy of sensitive self-report data have been allayed
with validity studies conducted in 2000 and 2001 (Harrison et al., 2007). For tobacco,
there was 84.6% agreement between self report in the past 30 days and urine test
results. About 5.8% reported no use and tested positive and 9.6% reported use in the
past 30 days and did not test positive. For marijuana, there was 89.8% agreement
between self report in the past 30 days and urine test results. About 4.4% reported
no use and tested positive and 5.8% reported use in the past 30 days and did not test
positive.

In the 1998 and 1999 NSDUH survey years, respondents were asked to state how
many of their friends smoked, consumed alcohol, and used marijuana. These ego-
centric response items will be used to construct a distribution of complete networks,
necessary for making dynamic statements on influence and selection. While these
measures convey respondents’ perceptions of friends’ use, D’Amico and McCarthy
(2006); Iannotti and Bush (1992); Iannotti et al. (1996); Kawaguchi (2004); and Olds
et al. (2005) demonstrate that perceived peer substance use behavior is just as, and
often more predictive, of respondents’ use than the actual peer use behavior.

This work will solely employ youth respondent data (i.e. 12–17 year olds) because
a) this population is oversampled, and hence, their data are more robust and b)
the youth-related covariates in the NSDUH important to intervention or prevention
strategies exist only for that age range in our data.1 Furthermore, earlier initiation, in

1Another reason to focus on this age range is that the majority of these youths live in households,
as opposed to other types of residences such as dormitories or barracks. Also, the acquisition of
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all of the substances examined, translates to a higher chance of persistent use through
adulthood (Everett et al., 1999).2 So, it behooves us to focus the analyses on those
initiation ages.

2.2 Notation

p(...) will refer to density of a distribution and will not necessarily be within the
interval [0,1]. Pr{...} will refer to either the density of a discrete distribution or
the probability of a discrete event; in either case, its referent values will be in the
interval [0,1]. More often than not probabilities or likelihoods of models will tend to
be extremely small. Hence, most of probability or likelihood results will be reported
as their natural logarithms. The notations L, L, and Lr denote, respectively, the
likelihood, log-likelihood, and log of the likelihood ratio between a given model and
the mode. The density function of a distribution, p, will be used directly as the
likelihood:

L(θ|y) = p(y|θ)
L(θ|y) = log[p(y|θ)]

The density p refers (but is not necessarily equal) to the probability of observing the
data, y, given a hypothetical parameter, θ. In reversing the conditional, we obtain
the likelihood of the parameter θ given the data y. While it is necessarily the case
that density function sums to 1 (i.e.

∫+∞
−∞ p(y|θ)dθ = 1 or

∑+∞
θ=−∞ p(y|θ) = 1), this

does not hold true for the likelihood:
∑+∞

y=−∞ L(θ|y) 6= 1.
The mode of some distribution x is denoted by a hat: x̂. In most cases, this will

be identical to its mean. In table headings, µx, or just some parameter x, refers to
the mean of the distribution around x and σx will refer to its standard deviation.

The expression (x0, x1, . . .) refers to a tuple or vectors of quantities. The operations
performed on it follow standard vector arithmetic. For instance (x0, x1, . . .)+(1, 2, . . .)
= (x0 + 1, x1 + 2, . . .). We name tuples with a parameter label in parentheses, e.g.
(nFDCIG) = (nNone, nFew, nMost, nAll), or in bold-type, e.g. θ = (θ00, θ10, θ01, θ11).

2.3 Terminology

For the sake of brevity, covariates of interest, in this dissertation, will often be called
by their formal, abbreviated names. The nomenclature of tags identifying a specific

tobacco ceases being illegal for teens over the age of 17.
2Probability of last month use is significantly lower for those respondents who initiated outside

of the 9-12 year-old range than for those whose initiation age is within that range. In Appendix A,
an analysis of peak initiation ages is provided along with evidence that shows early initiation incurs
higher rates of use in adult years.
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substance is:

When we see ... It refers to some frequency or recency of ...
CIG Cigarette Smoking
ALC Alcohol Consumption
MRJ or MJ Marijuana/Hashish Use
COC Cocaine Use

Recency of use for each substance was obtained through similar response items in
which respondents were solicited for the time frame in which they last used the above
substances. For the naming of the recency of use indicator variables, the above tags
are joined with the following suffices:

Have you ever used substance x in y?

where x ∈ {CIG, ALC, MRJ, COC} and y ∈

Informal Formal
“your lifetime” or “ever” xFLAG
“the past three years” xRC3
“the past year” xYR
“the past month” xMON

The response to these variables is either a No or a Yes, indicating use within the
stated time frame; these variables are converted to a binary indicator, 0 or 1.

Adolescent respondents were also asked to provide the degree of substance use
among their friends and adults whom they know; the responses were not confirmed
by the implicit alters and constitute the perceived ego-centric measures:

How many of x use substance y?

where y ∈ {CIG, ALC, MJ} and x ∈

x Formal Informal
“your friends” FDy “Friends’ Use”

“adults that you know” ADOy “Adults’ Use”

The response to these variables is one of {None, Few, Most, All}.
Respondents were also asked to provide their age at which they tried a substance,

assuming they had initiated on that substance:

How old were you when you tried x for the first time?

where x ∈ {CIG, ALC, MJ, COC}

x Formal Informal
CIG or ALC xTRY “initiation age” or
MJ or COC xAGE “age of first use”
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Have You Ever Used Cigarettes in ...
Past Past Past

Lifetime 3 Yrs Year Month Recency
Intercept -8.350*** -7.735*** -8.068*** -9.523*** -8.772***

(0.158) (0.163) (0.183) (0.227) (0.149)

Is Male 0.161*** 0.123ˆ 0.113 0.185 0.157**
(0.031) (0.032) (0.035) (0.041) (0.028)

Age 0.323*** 0.260*** 0.237*** 0.269*** 0.297***
(0.010) (0.010) (0.011) (0.014) (0.009)

Friends’ Use 1.122*** 1.224*** 1.275*** 1.416*** 1.242***
(0.023) (0.024) (0.025) (0.029) (0.021)

Adults’ Use 0.375*** 0.288*** 0.315*** 0.327*** 0.352***
(0.024) (0.025) (0.027) (0.031) (0.022)

n 24916 24916 24916 24916 24916
Pseudo-R2 0.335 0.325 0.322 0.345 0.319
p value 0.000 0.000 0.000 0.000 0.000
AIC 25677 24247 20817 15855 47925
BIC 25718 24287 20857 15895 47990

Table 2.1: Predicting Recency of Smoking with Common Covariates with Binary (and
Ordinal) Logistic Regression Models. All models above employ the precision weighted
data provided in the data. Significance and standard errors are drawn from unweighted
fit due to an artificial shrinkage on these introduced by the precision weights. Signifi-
cance is denoted by: ˆ= p < 0.10, ** = p < 0.01, *** = p < 0.001. Lower values of
AIC and BIC denote better fitting models.2

2.4 Relevant Covariates

Before introducing the decomposition of the ego-centric measures, we supplement
findings from prior research on substance use and peer networks by quickly confirming
the relationship between substance use and network covariates among the NSDUH
respondents; the network variables in these regressions will serve as the core of the
network inference. For the length of this chapter, we will focus on just tobacco use
(i.e. cigarette smoking) in order to easily present the methodology. Later, similar
analyses will be performed on alcohol consumption and marijuana use.

According the regression results displayed in Table 2.1, friends’ use dominates in
the prediction of respondents’ smoking across the indicators of recency as well as a
composite ordinal recency variable.4 The effect of a single jump in the category of

2The Akaike Information Criterion (AIC) is a goodness of fit measure, penalizing the likelihood
by the number of parameters: AIC = 2k−2log(L) where k is the number of parameters (or predictors
including intercept) and L is the likelihood. The lower AIC represents a better fitting model. The
Bayesian Information Criterion (BIC) is similar to the AIC except it penalizes free parameters more
strongly: BIC = klog(n)− 2log(L), where n is the number of observations.

4Recency is an ordinal variable, which exclusively separates the previous four indicators: 0=Never
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friends’ use is four to seven times greater in magnitude, depending on the recency
variable, than the increase in the probability of use incurred by aging a single year.
Males are more prone to delinquent or non-sanctioned behavior due to a combination
of biology and peer-influence, so gender is expected to be a modestly significant
predictor; yet, its effect is dwarfed by the other predictors. With age, it is clear
that being alive longer affords more opportunities to encounter smokers, and hence
the opportunities to smoke simply increase as time passes; in other studies, a more
appropriate hazard model is employed to predict the initiation age (Edelen et al.,
2006). Hence, a cohort will increasingly include more smokers over time.

2.5 Probability Model

In this section, our probability model is built incrementally, and we incorporate addi-
tional parameters and other covariates when appropriate. To begin, we focus on the
NSDUH ego-network response item for peer-group smoking, FDCIG:

How many of your friends smoke (FDCIG)?
None Few Most All

raw 9,865 10,626 3,804 756
weight adjusted 9,621 10,652 3,901 878

The raw row in the table shows how the 25,052 youth respondents between the ages of
12 and 17 answered the item,5 while the weight adjusted row reports the same total
respondents broken down into same categories, but proportionally to the precision
weights.6 From now on, this work will refer to the weight adjusted data, unless
otherwise noted. A facile calculation reveals that a majority (58%) of the adolescent
respondents had at least one friend who smoked.

2.5.1 Simple Binomial Model

If it was the case that we knew exactly the proportion of an adolescent’s friends who
smoke, we could start inferring the prevalence of smoking among their peers, with a

Use, 1=Within Lifetime, but not within last 3 years, 2=Within last 3 years, but not within last
year, 3=Within last year, but not in last month, 4=In last month. Appropriately, we employ an
ordinal logistic regression. To save space, the mean of the four Intercepts is reported.

5While the 1998 and 1999 surveys contain a total of 25,463 youth respondents, 412 have missing
FDCIG data.

6We sum the NSDUH’s respondent weight variable (ANALWT) for each response category, de-
termine their percentages, and multiply by the sample size.

ANALWT None Few Most All
sum 17,377,662 19,239,907 7,045,315 1,585,141
prop. 0.38405 0.42521 0.15570 0.03503
×25052 = 9,621 10,652 3,901 878
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simple binomial model:

nsmoke ∼ Binomial(nfriends, θ)

In this simple model, we assume, unrealistically, that all respondents have exactly
nfriends and the probability that a single one of their friends smokes is θ. The number
of friends who smoke, nsmoke, is then distributed binomially. More specifically, the
probability that a youth has x friends who smokes is

Pr{nsmoke = x} =

(
nfriends

x

)
θx(1− θ)(n−x)

Say a youth has five friends (nfriends = 5) and is embedded in a social world in which
a quarter of all peers smoke (θ = .25), then the probability that two of those friends

smoke (nsmoke = 2) is
(

5
2

)
· 0.252 · 0.25(5−2) ≈ 0.264. Expanding this further, we

compute the probabilities that 0, 1, 2, 3, 4, or 5 of his or her friends smoke, rounded
to four decimal places; the results are 0.2373, 0.3955, 0.2637, 0.0879, 0.0146, and
0.0010.

Unfortunately, the data reveals neither exactly how many friends smoke nor how
many total friends a respondent has; these are crucial pieces of information necessary
for analyzing friendship networks and later inferring how non-users and users might be
connected. Instead, we can map the four response categories to the space of possibly
using friends, and the accompanying probabilities, offered by the binomial model.
For example, if a respondent has five friends and answers ‘None’, then we know that
none of those five smoke. It is also reasonable to assume that if the respondent
answered ‘Few’, we can say that one or two friends smoke. ‘Most’ implies three or
four smoking friends, and ‘All’ means all five. At this stage, we ignore reporting
error; for example, a respondent may actually have only four out of five friends who
smoke, but in misremembering, answers the query with ‘All’ or ‘Few’. Also, for now,
we ignore other interpretations of ‘Few’ and ‘Most’; for example, it is possible that
some respondents regard 3 out of 5 as ‘Few’.

The probability associated with each of the responses to the NSDUH survey ques-
tion “How many of your friends smoke?” (FDCIG) can be now calculated. Given
θ = 0.25 and nfriends = 5, the probabilities that a youth would respond to the FDCIG
item with ‘None’, ‘Few’, ‘Most’, or ‘All’ are:
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Pr{y = ‘None’} = Pr{nsmoke = 0}
= 0.2373 . . .

Pr{y = ‘Few’} = Pr{nsmoke = 1 or nsmoke = 2}
= 0.3955 . . .+ 0.2636 . . .
= 0.6591 . . .

Pr{y = ‘Most’} = Pr{nsmoke = 3 or nsmoke = 4}
= 0.0878 . . .+ 0.0146 . . .
= 0.1025 . . .

Pr{y = ‘All’} = Pr{nsmoke = 5}
= 0.0009 . . .

Next, we seek the likelihood of the tabulated FDCIG data fitting our parameters,
θ = 0.25 and nfriends = 5; that is, how likely is it that these parameters are correct
given our data? The friends’ use data is expressed notationally as:

nNone = 9621, nFew = 10652, nMost = 3901, and nAll = 878

or equivalently:

(nFDCIG) = (9621, 10652, 3901, 878)

Since these probabilities determine how a set of items fall into four categories, the
appropriate likelihood distribution is the multinomial:7

Pr{(nFDCIG) = (9621, 10652, 3901, 878)|θ = 0.25, nfriends = 5)}

=

(
nNone + nFew + nMost + nAll

nNone nFew nMost nAll

)
· Pr{y = ‘None’}nNone

· Pr{y = ‘Few’}nFew · Pr{y = ‘Most’}nMost · Pr{y = ‘All’}nAll

≈
(

25052

9621 10652 3901 878

)
· 0.23739621 · 0.659210652 · 0.10253901 · 0.0010878

≈ e−4749.1 or exp(−4749.1)

7Multinomial distribution: The probability that n items will fill m possible categories, such that
there are θ1 items in the first category, θ2 items in the second, and so forth given that the probability
for an item to appear in the i-th category is pi, is:

p(θ) =
(

n
θ1···θm

)
pθ1
1 · · · pθm

m , where
∑m

i=1 θi = n,
∑m

i=1 pi = 1, and
(

n
θ1 θ2···θm

)
= n!

θ1!θ2!···θm!
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Since the actual probability/likelihood here is extremely small, its log is reported,
L = −4749.10.8 We can compare this result with the best log-likelihood obtainable,
which occurs at the mode of the distribution: the set of probabilities (nFDCIG)/Σ(nFDCIG)
= (0.384, 0.425, 0.156, 0.035).9 This best log-likelihood is L̂ = e−14.44, leaving our
model e(−14.44−−4749.10) or e4734.67 times worse than some idealized model that pro-
duces the modal probabilities:

L(θ = 0.25|nfriends = 5, yFDCIG) = e−4749.10

L(θ|y) = log(L(θ|y)) = −4749.10

Lr(θ|y) = log

(
L(θ|y)

L̂

)
= Lθ|y)− L̂ = −4749.10−−14.44

= −4734.67

Indeed, the fit is not so stellar. If we want to know the best fitting θ for nfriends = 5, we
would derive the maximum likelihood estimator of the mode using the first derivative
of the log likelihood. First, the likelihood as a function of θ:

p(y = (nFDCIG)|θ) = L(θ|y = (nFDCIG)) =(
nNone + nFew + nMost + nAll

nNone nFew nMost nAll

)
·[(

5

0

)
θ0(1− θ)5

]nNone

·
[(

5

1

)
θ1(1− θ)4 +

(
5

2

)
θ2(1− θ)3

]nFew

·[(
5

3

)
θ3(1− θ)2 +

(
5

4

)
θ4(1− θ)1

]nMost

·
[(

5

5

)
θ5(1− θ)0

]nAll

We calculate the log of the likelihood, ignoring the constant which will become zero
in the derivative:

L(θ|y = (nFDCIG)) = log(L(θ|y = (nFDCIG)) =

constant + nNone · 5log(1− θ) + nFew · log(5θ(1− θ)4 + 10θ2(1− θ)3)

+ nMost · log(10θ3(1− θ)2 + 5θ4(1− θ)) + nAll · log(θ5)

8Incidentally, this likelihood value was calculated using the actual, non-rounded Pr{y = ‘None’},
Pr{y = ‘Few’}, etc., and not the rounded probabilities in the displayed equation.

9These probabilities are obtained from the data itself:

pNone = 9621/(9621 + 10652 + 3901 + 878) ' 0.384,
pFew = 10652/(9621 + 10652 + 3901 + 878) ' 0.425,
pMost = 3901/(9621 + 10652 + 3901 + 878) ' 0.156,
pAll = 878/(9621 + 10652 + 3901 + 878) ' 0.035.

15



To obtain the mode, we first compute the first derivative of the log-likelihood:

L′(θ) =
dL
dθ

= nNone ·
5

1− θ
+ nFew ·

5(1− θ)4 − 30(1− θ)2θ2

5(1− θ)4 − 10(1− θ)2θ2

+ nMost ·
30(1− θ)2θ2 − 5θ2

10(1− θ)2θ3 + 5(1− θ)θ4
+ nAll · 5θ

We set (nNone, nFew, nMost, nAll) to (9621, 10652, 3902, 878), and then set the first deriva-
tive dL

dθ
to 0. When we solve for θ, we obtain θ = 0.252274.10 The log-likelihood

L(θ = 0.252274|(nFDCIG)) is -4747.60, which is exp(−4747.60 − −4749.10) or 4.48
times a better fit than our earlier estimate of θ = 0.25.

We also need to know the uncertainty surrounding our estimate; the standard
deviation (s.d.) of the mode can be obtained by calculating the second derivative at
the mode of θ (i.e. θ̂):

L′′(θ) = nNone ·
5

(1− θ)2
+ nFew · −

(
5(1− θ)4 − 30(1− θ)2θ2)2

5(1− θ)4θ + 10(1− θ)3θ2)2

)

+ nMost ·
−20(1− θ)3 − 60θ(1− θ)2 + 60θ2(1− θ)

5(1− θ)4θ + 10(1− θ)3θ2
+ nAll · 5

L′′(θ̂) = −578485.1, when we substitute θ with θ̂

The second derivative gives us an estimate of the covariance matrix,11 [−L′′(θ̂)]−1 =
Vθ̂, in this case just the variance; then, the s.d. of θ is 0.001314782, which is quite
small. If it was true that all youths had exactly five friends, then it is most likely
that just over quarter of their friends smoke or the probability that a single friend
smoke is roughly 0.2522 ± 0.0026 (or two s.d.’s). If we were restricted to selecting a
single constant for nfriends for all respondents, we might select a different value. But,
first, we need to generalize our interpretation of the response categories.

For some chosen nfriends,

Possible values for nsmoke

Response to FDCIG Minimum Maximum
None 0 0
Few 1 bnfriends/2c
Most bnfriends/2c+ 1 nfriends − 1
All nfriends nfriends

10The numerator of the final polynomial is 1337250θ4 − 9780650θ5 + 21514900θ6 − 11866600θ7 −
18873350θ8+31298150θ9−16761200θ10+3131500θ11. The other roots are -0.8624722, 0, 0.9998713±
0.0001287i, 1.0001287 ± 0.0001287i, and 1.9626492, none of which are both non-imaginary and lie
in between 0 and 1.

11The inverse of the negative second derivative at the mode yields the covariance matrix of a
multivariate normal approximation, or just the univariate variance in the single parameter model.
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Posterior quantiles for θ

nfriends L(θ̂) σ̂ 2.5% 25% mode 75% 97.5%
3 -118.12 0.00164 0.277 0.279 0.281 0.282 0.284
4 -3696.36 0.00154 0.297 0.299 0.300 0.301 0.303
5 -4747.60 0.00131 0.250 0.251 0.252 0.253 0.255
6 -10729.79 0.00129 0.265 0.266 0.267 0.268 0.270
7 -12104.73 0.00114 0.234 0.236 0.237 0.237 0.239
8 -18880.34 0.00114 0.246 0.248 0.248 0.249 0.251
9 -20306.83 0.00104 0.225 0.226 0.227 0.228 0.229
10 -27426.21 0.00103 0.235 0.236 0.237 0.237 0.239

Table 2.2: Log-likelihood and other statistics for best θ under a fixed nfriends binomial
model.

Essentially, a respondent who offered ‘None’ is claiming that zero friends smoke. If
the respondent marked ‘Few’, then s/he is telling us, under basic assumptions, that
the number of smoking friends lies between one and half the total number of friends.
‘Most’ means that the number of smoking friends is somewhere between just over
half and just one less than the total number of friends. Finally, ‘All’ implies that the
number of smoking friends is equal to the number of friends s/he has in mind.

According to Table 2.2, the best parameters are nfriends = 3 and θ = 0.281,
with a log-likelihood of −118.12, significantly better than any likelihood under a
different nfriends. If we had to work with a single value for total friends, we would
pick nfriends = 3 and assume that the chances of a friend smoking is significantly
more (in the statistical sense) than 0.252. At this point, we might interpret θ = 0.281
to be the proportion of youths, of ages 12–17, who smoke; this is a population-level
statistic. For comparison, we offer, from the recency of use data, the proportions of
respondents who claimed to have smoked at some point in their lives, in the past
three years, in the past year, and in the past month.12

Have You Smoked ... ? No Yes p(Yes) punweighted(Yes)
Ever 16182 9281 0.364 0.364
In Past 3 Years 17564 7899 0.310 0.309
In Past Year 19456 6007 0.236 0.230
In Past Month 21248 4215 0.166 0.156

Comparing this data to the θ results in Table 2.2, inferred under the näıve binomial
model, we conclude for now that the practical definition of perceived “smoking” lies
somewhere between past year and past three year use; the majority of the posterior
θ distributions lies between 0.236 and 0.310. That is, when a respondent thinks of a

12The variable names for these categories are CIGFLAG, CIGYR, and CIGMON. Also, these
categories overlap; a youth who claimed to have smoked in the past year would be also counted as
having smoked once in their lifetime.
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smoking friend, that friend is perceived to have smoked within the past three years
or within the past year.

2.5.2 Poisson/Binomial Mixture Model

Since it is unrealistic to assume all teens have exactly the same number of friends,
it behooves us to enhance the model and allow nfriends to arise from some discrete
random distribution:

nfriends ∼ X (i.e. some discrete distribution)
nsmoke ∼ Binomial(nfriends, θ)

The expression for each of the response categories now expands to:

Pr{y = ‘None’} =
∞∑
i=0

(
Pr{nfriends = i} ·

(
i

0

)
θ0(1− θ)i

)

Pr{y = ‘Few’} =
∞∑
i=2

Pr{nfriends = i} ·
bi/2c∑
j=1

(
i

j

)
θj(1− θ)(i−j)


Pr{y = ‘Most’} =

∞∑
i=3

Pr{nfriends = i} ·
i−1∑

j=bi/2c+1

(
i

j

)
θj(1− θ)(i−j)


Pr{y = ‘All’} =

∞∑
i=1

(
Pr{nfriends = i} ·

(
i

i

)
θi(1− θ)0

)

Note that for ‘Few’, we consider only nfriends ≥ 2; for ‘Most’, nfriends ≥ 3; and for
‘All’, nfriends ≥ 1. These categories are undefined for values below their respective
minimums; e.g. in order to have been able to respond with ‘Few’, a respondent
needed to have at least 2 friends in mind, or else the only applicable categories would
have been ‘None’ or ‘All’. For our discrete distribution X, we choose the Poisson
distribution, which is commonly used to model count data.13

nfriends ∼ Pois(λ)
nsmoke ∼ Binomial(nfriends, θ)

A new parameter λ refers to the mean number of friends among the population of
respondents; the variance of a Poisson is identical to its mean; hence, the Poisson
is a single parameter distribution. The functional form is as follows; we abbreviate
nfriends as just n:

Pr{y = ‘None’} =
∞∑

n=0

(
λne−n

n!
·
(
n

0

)
θ0(1− θ)n

)
13The Poisson distribution is more appropriate than the binomial in predicting number of friends.

In Appendix B, we justify its use by fitting to several empirical distributions of friend counts. Later,
in this chapter, we will explore other candidate prior distributions such as the negative-binomial.
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Pr{y = ‘Few’} =
∞∑

n=2

λne−n

n!
·
bn/2c∑
m=1

(
n

m

)
θm(1− θ)(n−m)


Pr{y = ‘Most’} =

∞∑
n=3

λne−n

n!
·

n−1∑
m=bn/2c+1

(
n

m

)
θm(1− θ)(n−m)


Pr{y = ‘All’} =

∞∑
n=1

(
λne−n

n!
·
(
n

n

)
θn(1− θ)0

)

While the modes λ̂ and θ̂ can be obtained using conditional maximization, that
method does not give us the variance around the modes. Instead, we employ the
Newton-Raphson algorithm which requires calculations of the first and second deriva-
tives for each parameter; given proper starting points, the algorithm will converge on
the mode and covariance matrix of a unimodal, multivariate normal distribution.14

As earlier, we attempt to compute these derivatives analytically, but now find that
the process quickly becomes unwieldy, even for low values of λ. For example, say
we want to solve θ for λ = 0.08 (or any other λ for which the maximum nfriends is
unlikely to be more than 3):

L(λ, θ|nFDCIG) =

constant +

nNone · log

[
λ0e−λ

0!
(1− θ)0 +

λ1e−λ

1!
(1− θ)1 +

λ2e−λ

2!
(1− θ)2 +

λ3e−λ

3!
(1− θ)3

]
+

nFew · log

[
λ2e−λ

2!

(
2

1

)
θ1(1− θ)1 +

λ3e−λ

3!

(
3

1

)
θ1(1− θ)2

]
+

nMost · log

[
λ3e−λ

3!

(
3

2

)
θ2(1− θ)1

]
+

nAll · log

[
λ1e−λ

1!

(
1

1

)
θ1 +

λ2e−λ

2!

(
2

2

)
θ2 +

λ3e−λ

3!

(
3

3

)
θ3

]

14The Newton-Raphson algorithm:(Gelman et al., 2003)

1. Choose a starting point, θ0, where θ is a vector of all parameters; in our case: θ = {λ, θ}.

2. For convergence steps, t = 1,2,3,....

(a) Compute L′(θt−1) and L′′(θt−1). The Newton’s method step at time t is based on the
quadratic approximation to L(θ) centered at θt−1.

(b) Set the new iterate, θt, to maximize the quadratic approximation; thus,

θt = θt−1 − [L′′(θt−1)]−1L′(θt−1).
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We compute the first derivative:

dL
dθ

= nNone ·
− λ

eλ − λ
eλ (1− θ)− λ

2eλ (1− θ)2

e−λ + λ
eλ (1− θ) + λ

2eλ (1− θ)2 + λ
6eλ (1− θ)3

+

nFew ·
λ2

eλ (1− θ) + λ2

eλ θ + λ3

2eλ (1− θ)3 − λ3

eλ θ
λ2

eλ θ(1− θ) + λ3

2eλ θ(1− θ)2
+

nMost ·
λ2

eλ 2(1− θ)− λ3

eλ θ
2

λ3

eλ θ2(1− θ)
+

nAll ·
λ
eλ + λ2

eλ (1− θ) + λ3

eλ θ
2

λ
eλ θ + λ2

2eλ θ2 + λ3

3eλ θ3

= nNone ·
3λ(5− 4θ + θ2)

−6 + λ(−10 + 15θ − 6θ2 + θ3)
+

nFew ·
2 + λ+ 3λθ2 − 4(1 + λ)θ

(θ − 1)θ(−2 + λ(θ − 1))
+

nMost ·
2− 3θ

θ − θ2
+

nAll ·
6(1 + λθ + λ2θ2)

θ(6 + 3λθ + 2λ2θ2)

Finding the numerator of the final expression, necessary to derive the modes λ̂ and θ̂,
and then finding the second derivative is a tiresome task, even more so when we will
need to solve for larger values of λ. Instead, we can use finite differencing to estimate
the derivatives for λ and θ:

L′(λ) =
dL
dλ

≈ L(λ+ δ, θ|y)− L(λ− δ, θ|y)
2δ

L′(θ) =
dL
dθ

≈ L(θ + δ, λ|y)− L(θ − δ, λ|y)
2δ

L′′(λ, λ) =
d2L
dλdλ

=
d

dλ

(
dL
dλ

)

≈ L′(λ+ δ|y, θ)− L′(λ− δ|y, θ)
2δ

≈ [(L(λ+ δ + δ, θ|y)− L(λ− δ + δ, θ|y))−
(L(λ+ δ − δ, θ|y)− L(λ− δ − δ, θ|y))]/(4δδ)

L′′(θ, θ) =
d2L
dθdθ

=
d

dθ

(
dL
dθ

)

≈ L′(θ + δ, λ|y)− L′(θ − δ, λ|y)
2δ

≈ [(L(θ + δ + δ, λ|y)− L(θ − δ + δ, λ|y))−
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(L(θ + δ − δ, λ|y)− L(θ − δ − δ, λ|y))]/(4δδ)

L′′(λ, θ) =
d2L
dλdθ

=
d

dθ

(
dL
dλ

)

≈ L′(λ, θ + δ|y)− L′(λ, θ − δ|y)
2δ

≈ [(L(λ+ δ, θ + δ|y)− L(λ− δ, θ + δ|y))−
(L(λ+ δ, θ − δ|y)− L(λ− δ, θ − δ|y))]/(4δδ)

L′′(θ, λ) =
d2L
dθdλ

=
d

dλ

(
dL
dθ

)

≈ L′(θ, λ+ δ|y)− L′(θ, λ− δ|y)
2δ

≈ [(L(θ + δ, λ+ δ|y)− L(θ − δ, λ+ δ|y))−
(L(θ + δ, λ− δ|y)− L(θ − δ, λ− δ|y))]/(4δδ)

where we select a δ low enough to approximate the derivative, typically 0.0001. The
following results summarize the fit for L(λ, θ|y):

λ̂ = 3.324, θ̂ = 0.326,

σλ = 0.02303, σθ = 0.00221,

µsmoke = 1.085, σsmoke = 0.00803,

Σ =

[
0.0005300 −0.00002080
−0.0000208 0.00000486

]
,

L(λ̂, θ̂|y) = −783.56

Figure 2.1 demonstrates that an assumption of normality in the error surrounding
the estimates is completely appropriate. Figure 2.2 demonstrates the unimodality of
the joint posterior: there is a unique λ, θ pair that best explains the observed data.15

The Poisson-binomial mixture model predicts youths to have mean of roughly 31
3

friends and that almost 1
3

of these friends smoke, yielding an average of just over one
smoking friend in each ego-network of peers. Furthermore, the negative covariance
between λ and θ is explainable: when λ increases holding for θ, the probabilities
pFDCIG = (pNone, pFew, pMost, pAll) shift towards ‘Few’. In order to balance this effect,
a lower θ is required to achieve a similar pFDCIG.

Despite employing a relaxed assumption on the friends parameter, this model
underperforms the fixed binomial model for nfriends = 3, which as we recall produced

15The effectiveness of the Newton-Raphson algorithm in these analyses obviates the need to resort
to more advanced methods of posterior estimation such as Monte Carlo Markov Chains (MCMC),
which in comparison tests yields identical results, as expected.
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Figure 2.1: Normal Approximations for λ and θ. After drawing 5,000 pairs of {λ,θ}
from the appropriate multivariate normal as defined by the means for λ and θ and their
accompanying covariance matrix, we plot each pair’s λ and θ separately to its actual
marginal likelihood (normalized by the likelihood at the mode): p(λ|y)/p(λ̂|y) and
p(θ|y)/p(θ̂|y); the dashed lines depict the densities for each normal approximation:
λ ∼ Normal(µ = 3.324, σ2 = 5.306 × 10−4) and θ ∼ Normal(µ = 0.326, σ2 =
4.86× 10−6).
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Figure 2.2: Joint Posterior Density for p(λ, θ|y). The joint density is clearly unimodal.
The left plot shows contour levels for a wide range of λ and θ, while the right plot
focuses more closely on the mode.
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L = −118.12. Still, it is unreasonable to assume that there is an, a priori, maximum
to the number of friends possible, so we will continue to employ the Poisson/binomial
model.16

2.5.3 Definition of “Few”

Here, we revisit the definition of ‘Few’, limiting what the maximum value could be.
The intuition here is that when dealing with counts, people will consider anything
above a certain small number, say 2, to constitute something more than just a ‘Few’;
hence, those quantities would be considered as ‘Most’. This makes some intuitive
sense: say I have ten friends and four of them smoke. Under the initial definitions,
I would declare that a ‘Few’ of my friends smoke. However, it is conceivable that a
respondent would instead mark off ‘Most’.

At most,

‘Few’ means ... λ̂ θ̂ σλ̂ σθ̂ L(λ̂, σ̂)
1 3.705 0.226 0.0333 0.00237 −422.10
2 3.690 0.288 0.0313 0.00238 −308.58
3 3.390 0.321 0.0248 0.00222 −715.96
4 3.331 0.326 0.0233 0.00221 −777.79
5 3.325 0.326 0.0231 0.00221 −783.20
6 3.324 0.326 0.0230 0.00221 −783.54
7 3.324 0.326 0.0230 0.00221 −783.56
∞ 3.324 0.326 0.0230 0.00221 −783.56

Consequently, ‘Most’ will simply reflect the converse of a restricted ‘Few’; e.g. if
nfriends = 6 and ‘Few’max = 2, then ‘Most’ will be 3, 4, or 5. These results advise
us to be wary of how respondents map counts to general categories. Indeed, if we
limit the definition of ‘Few’ to 2, we obtain a much better fit than we did under our
earlier formulaic definition (under the unrestricted ‘Few’ we obtained L = −783.56).
However, in subsequent analysis, it is not always the case that the fit is improved by
altering the definition of ‘Few’, and since there is no current empirical evidence for
restricting what ‘Few’ means, we will continue to use the original partitioning of the
FDCIG categories.

2.5.4 Definition of “Use”

We can take the estimated parameters from Poisson/binomial model and compare
the θ probability to the recency indicator variables to see if any would be a better
definition of concept of friends’ (or self) “use”, which for cigarettes was indicated by

16The fixed friends approach fails miserably in later analyses, and even with a modification,
imposing a binomial on the friend count, it is either inferior or sometimes comparable to the Pois-
son/binomial model that will employed throughout the rest of this work.
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the phrase “how many of your friends smoke?”. Ideally, if we had a true measure
of “use” and had a well-performing model, our θ and this measure should be almost
equivalent. Instead, we fit our findings to the empirical data by asking ‘how likely is
it that our estimate of θ can produce “use” as defined by one of the indicators?’:

L
(
θ|n1

n

)
= Multinom((n− n1, n1)|p = (1− θ, θ))

=

(
n

n− n1, n1

)
(1− θ)(n−n1) · θn1

where n is the size of the considered population and n1 is the subset of that population
who answered ‘Yes’ to a particular substance use recency indicator. Again, we employ
the multinomial distribution to give us a likelihood of our parameter being appropriate
given the data:

Indicator n− n1 n1 p1 L
CIGFLAG 16182 9281 0.364 -87.89
CIGRC3 17564 7899 0.310 -20.45
CIGYR 19456 6007 0.236 -506.84
CIGMON 21248 4215 0.166 -1692.92

Above, n1 denotes the count of teens who answered “Yes” to the indicator and n is
the total sample size. It appears that the three year recency indicator (CIGRC3) best
coincides with the estimate of θ, followed by the lifetime use indicator (CIGFLAG).
Remember, our estimated θ was 0.326. Furthermore, we can incorporate the fit
to empirically observed recency of use directly into the log-likelihood function that
estimates λ and θ:

L = L(λ, θ|nFDCIG) + L(θ|(n− n1, n1))

And, we get the following adjusted λ and θ for each of the recency indicators:

Indicator λ θ p1 L
CIGFLAG 3.27 0.340 0.364 -841.14
CIGRC3 3.35 0.321 0.310 -798.57
CIGYR 3.46 0.294 0.236 -1118.94
CIGMON 3.57 0.270 0.166 -1931.69

Recall that the earlier λ was 3.324, but the best fitting value here is 3.35. Again,
CIGRC3 appears for now to be the best candidate for cigarette “use”. We will keep
this issue in mind, as we now turn to estimating parameters for sub-populations of
teens.
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2.6 Sub-Populations

Given the substantial association between a teen’s substance use and the level of use in
his or her peer group, we might expect the network parameters for the sub-population
of using teens to differ from those of non-using teens. Specifically, the ego-networks
of teens who admit to some level of smoking will include more smokers than those
ego-networks of teens who claim to have never tried smoking. At first glance, we look
at the “ever smoked a cigarette” indicator (CIGFLAG) and split the sample into two
sub-populations of those who never used and those you smoked at some point in their
lives. The tabulated FDCIG responses for each of these sub-populations are:

yCIGFLAG None Few Most All µFDCIG prop.
0 8406 6315 1009 185 1.559 0.636
1 1215 4337 2891 692 2.335 0.364

Youths who have smoked at least once will list, on average, a higher proportion of
their friends as smokers than those who have not; this observation echoes the findings
of the earlier regression model reported in Table 2.1. We expect the estimated θ’s to
also differ accordingly; though, strictly speaking, this does not have to be the case if
for some reason the λ’s between the sub-populations greatly differed:

yCIGFLAG λ θ σλ σθ L n µsmoke σsmoke

0 3.476 0.198 0.0393 0.00251 -314.51 16182 0.689 0.0075
1 4.434 0.488 0.0437 0.00313 -55.43 9281 2.163 0.0232

Both 3.824 0.304 - - -369.94 - 1.226 -

The fit (i.e. log-likelihood) of this analysis is simply the sum of the log-likelihoods
(i.e. product of the likelihoods) of each sub-population, L = -369.94, and is signifi-
cantly superior to our earlier plain vanilla analysis which involved no breakdown of
the data; there, the L was -783.56. This improvement in the log-likelihoods is re-
flected in the narrow standard deviations that surround the λ and θ estimates for
both sub-populations; their differences are clearly significant. If we want to account
for the differences in the number of parameters, we would compare the respective
information criteria. We select the BIC which incorporates the sample size and find
that the new model (with BIC = 770) still outperforms the previous one that lacked
a population split (with BIC = 1587).17 Not surprisingly, we see that the rate of use
among friends of a smoker (θ = 0.488) is higher than that of friends of non-smokers
(θ = 0.198).18 Accordingly, the difference in the mean number of smoking friends re-

17The first model had two parameters, λ and θ, whereas in the last analysis we count yCIGFLAG

as an additional parameter; hence, that model has three parameters. Given equal sample sizes, a
superior model would need to outperform an inferior model by a factor of ∆(# of parameters) ·
log(N), that is, log(N) for every additional parameter, and in this case 1 · log(25052) or 10.13.

18We employ the term “smoker” loosely; here it of course specifically means one who has ever
smoked. This is less awkward than using the terms “initiate” and “non-initiate”. While there might
be some debate as to whether this definition of smoking is too broad, we will later see that the
CIGFLAG indicator is the appropriate proxy for “use” for certain age groups.
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flects greater affiliation with similarly behaving friends; smokers have more than three
times the number of smoking friends than non-smokers, confirming outside findings
of the prominent affiliation between smokers (Urberg et al., 1997).

However, we would not expect, a priori, that a smoker has more friends than
a non-smoker, despite the slightly overlapping λ distributions (as indicated by the
σλ’s). But, if we consider that less than half of the teen population are smokers
(under any of the recency indicators), it stands to reason that, if smoking is mostly,
or even partly, a peer-influenced behavior, those who engage in it will necessarily have
more friends.19 The disparity in the magnitudes of the L’s is partly explained by the
sub-population sizes; smaller populations tend to be more easily “fittable”. However,
as we will see, a worse L also suggests a less easily definable population, one that is
possibly composed of several distinct sub-types, as demonstrated by the superior fit
on the population when split by yCIGFLAG. Finally, each of the parametric differences
is highly significant, p < 0.001.20

We now revisit the definition of “use” by comparing the above results to similar
decompositions employing the other recency indicator variables: CIGRC3, CIGYR
and CIGMON.21 We find that the Ls are -400.88, -478.36 and -572.40, respectively.
Again, these results are deceptive, suggesting that partitioning the teen population
on CIGFLAG fits best (L = -369.94) and is perhaps the best definition for “use”. As
we briefly considered earlier, an alternative approach to fitting includes the overall
population-level of “use”. If we assume that respondents reside in separate ego-
networks, we can assess how good of a “use” variable CIGFLAG is by estimating
population-level use from the rate of use in each type of peer group.22 Specifically,
if our “use” decomposition variable (e.g. CIGFLAG) is accurate, then the rates of
smoking in each sub-population, weighted by the relative size of the sub-population,
should sum to the empirical, population-level rate of smoking:

n1

n0 + n1

≈
(

n0

n0 + n1

)
θ0 +

(
n1

n0 + n1

)
θ1

19In Appendix B, the friendship data from NSDUH survey years of 1979 and 1982 supports the
assertion that smokers have more friends than non-smokers. Urberg et al. (1997) also found that
adolescents who tried smoking have more close friends.

20

∆parameter t-statistic degrees of freedom
∆λ −1729.25 17386.46
∆θ −7561.35 15818.80
∆µsmoke −5883.45 10255.38

21To recap, CIGRC3 means “smoked in the past three years”; CIGYR means “smoked in the
past year”; and CIGMON means “smoked in the past month”. Naturally, CIGRC3 includes all
the respondents who answered ’Yes’ to CIGYR and/or CIGMON, and CIGYR includes all the
respondents who answered ’Yes’ to CIGMON.

22This is a reasonable assumption given that the sample of the NSDUH was dispersed over the
entire country. Still, it might prove valuable to understand how to estimate best “use” when this
assumption does not hold.
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pCIGFLAG ≈ (1− pCIGFLAG) · θ0 + pCIGFLAG · θ1

0.364 ≈ (1− 0.364) · 0.198 + 0.364 · 0.488

p = 0.364 ≈ q = 0.304

where n0 and n1 are the sizes of the non-use and use sub-populations, respectively
When we apply this method of estimating the predicted proportion, q, to each of the
indicator variables and compare it to the empirical proportion, p, we obtain:

If “use” is ... p q |∆| Li Ld Li + Ld

CIGFLAG 0.364 0.304 0.061 -219.49 -369.94 -589.43
CIGRC3 0.310 0.304 0.007 -7.90 -400.88 -408.77
CIGYR 0.236 0.305 0.069 -304.91 -478.36 -783.27
CIGMON 0.166 0.307 0.141 -1342.74 -572.40 -1915.14

where p is the observed proportion of use and q is the predicted proportion calcu-
lated.23 The Li, the log-likelihood that the decomposition result fits the observed use
pattern as specified by the indicator (denoted by the subscript i), was obtained using
a 2-parameter multinomial, which is equivalent to a simple binomial; we used the
actual weighted counts as the observed data and q as the hypothetical parameter.24

For example, we obtain the Li for the first entry (CIGFLAG):

Li = log[Multinom(n = (nCIGFLAG=0, nCIGFLAG=1)|θ = (1− q, q))]

= log

[(
nCIGFLAG=0 + nCIGFLAG=1

nCIGFLAG=0 nCIGFLAG=1

)
(1− q)nCIGFLAG=0 · (q)nCIGFLAG=1

]

= log

[(
25464

16182 9281

)
(1− 0.304)16182 · (0.304)9281

]
= −219.49

Ld is the log-likelihood from the λ, θ decomposition under the indicator (i.e. similarly
computed as all the log-likehood estimates we have seen prior to this section). The

23In Appendix C, we provide decomposition (i.e. λ and θ) results for each indicator.
24Weighted recency indicator count data; we use the sums at the bottom initially and later the

age-based breakdown:

nCIGFLAG nCIGRC3 nCIGYR nCIGMON

yAGE No Yes No Yes No Yes No Yes
12 3580 493 3668 404 3795 277 3903 169
13 3408 921 3546 783 3729 600 3989 339
14 3001 1427 3160 1267 3547 880 3871 556
15 2462 1937 2753 1647 3135 1265 3529 871
16 2018 2115 2353 1780 2765 1368 3113 1020
17 1714 2388 2085 2017 2486 1616 2842 1260
Σ 16182 9281 17565 7898 19456 6007 21248 4215
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sum of the two likelihoods gives us a measure of fit taking into account both fit on
the ego-network data as well as the estimate for population use as determined by the
various recency indicators. The highest log-likelihood is now obtained using CIGRC3
(in which the sum L is −408.77) suggesting once again that this indicator, rather than
CIGFLAG, is the appropriate proxy for “use”. Also, the predicted proportion of use
(q) is relatively stable across all indicators suggesting an underlying consistency in the
recency categories of use and proportions of friends’ who use across those categories;
however, further investigation is required to conclusively say that this is more than
mere coincidence.

Instead of fitting solely on FDCIG and then assessing how well the parameters
fit to the indicator data, we can be more precise by again the core log-likelihood
function to reflect concurrent fitting on both the ego-network data FDCIG for both
sub-populations and the various recency indicators:

Indicator λ0 θ0 λ1 θ1 q p = n1/n Ldi

CIGFLAG 3.29 0.219 4.39 0.505 0.324 0.364 -518.77
CIGRC3 3.48 0.212 4.58 0.514 0.306 0.310 -407.92
CIGYR 3.72 0.207 4.69 0.532 0.283 0.236 -691.77
CIGMON 3.91 0.203 4.79 0.567 0.263 0.166 -1528.63

where

Ldi = Ldi(λ, θ|(nFDCIG), (n0, n1))

= Ld(λ, θ|(nFDCIG)) + Li(θ|(n0, n1))

and p and q are, again, our observed proportion of use and our predicted proportion.
We observe that with the exception of θ0, the parameter estimates vary (perhaps
significantly) across the indicators; so, it will matter (for defining smokers’ and non-
smokers’ ego-networks) which indicator we choose to mean “use”. And, again, the
results support the earlier finding that CIGRC3 (again with the highest L) appears
to be the best overall definition of perceived “use”.

Given the shift in proportion of smoking with advancing years, it is reasonable to
believe that our parameter estimates too will shift with age:

yAGE λ θ σλ σθ L µsmoke

12 2.763 0.149 0.0788 0.00509 −125.48 0.41
13 3.246 0.219 0.0680 0.00509 −134.94 0.71
14 3.567 0.301 0.0608 0.00507 −113.81 1.07
15 3.670 0.368 0.0571 0.00508 −73.67 1.35
16 3.979 0.406 0.0613 0.00502 −69.61 1.62
17 4.101 0.445 0.0618 0.00495 −56.66 1.83
All 3.555 0.315 — — −574.18 1.16
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While the fit here (i.e. L) exceeds that of the non-decomposed model, it does not
exceed that of the CIGFLAG or CIGRC3 indicator decomposed models suggesting
that self-use, rather than age, is the primary determinant of association to peer group
smoking; this echoes the findings of the earlier regression model.25 We now observe
that the size of an adolescent’s peer group increases with advancing age. While we
might be tempted to think that this association is confounded with the increasing
prevalence of smoking with age, we will find later that this is not the case.26 We can
again match the predicted proportion of use for each age group with the observed
proportion. However in doing so, we make an important assumption: that peer
groups are homogeneous in age composition.27 Despite the apparent rigidity of this
assumption, the age difference between adolescent friends tends to be very small.28

A host of studies have confirmed age homophily, especially among youth, to allow
at least an initial assumption of friendship ties being within-age (Verbrugge, 1977;
Bott, 1928; Loomis, 1946; Fischer, 1977, 1982; Kirke, 1996; McPherson et al., 2001;
Marsden, 1988). The combined likelihood function produces the following fits, per
age group:

Ldi for CIG...
yAGE FLAG RC3 YR MON
12 -137 -156 -208 -290
13 -139 -151 -197 -349
14 -121 -120 -198 -384
15 -110 -78 -122 -289
16 -139 -78 -109 -240
17 -170 -74 -77 -179

ΣLdi -816 -656 -911 -1732

We identify the best indicator(s) in each age group with the bold-typed L values.29

The results are quite telling: while CIGRC3 remains the best overall indicator of
“use” (as expected), the appropriate indicator for “use” varies with age. This makes
some sense. Smoking is more stigmatic for younger teens who might consider a friend
who smokes only a few times to be a (gasp!) “smoker”. With increasing age comes

25Still, the age effect on substance use prevalence should not be ignored; across all recency indi-
cators, the level of use increases monotonically with age as shown in Table C.2.

26In Appendix B, the separate impact of both age and smoking on the size of the number of friends
is shown from empirical close friends data in the 1979 and 1982 years of the NSDUH.

27We will maintain this assumption throughout the rest of this report. Even if we relax the
assumption and believe a proportion of ties extend to proximal ages, the findings will be only
marginally affected due to the increasing trends in λ and θ.

28Kirke found the age difference in her data set to be 0.12 years, with s.d. = 1.41 years.
29We set the margin of inclusion to be 3 units, which translates to a ratio in likelihood of e3

or 20.09. Despite this large difference, there is a good chance the true distribution will include
the parameters associated with the bold-typed log-likelihoods, depending of course on the level of
uncertainty surrounding the estimates.

29



a lessening of the stigma attached to adolescent smoking (likely due to an overall
increase in contact with smokers); hence, the perception of “use” would require a
higher frequency of actual use, as captured by the tighter windows of recency.

Next, we decompose on both age and the indicators, starting with CIGFLAG:

yCIGFLAG yAGE λ θ σλ σθ L n µsmoke

0 12 2.923 0.111 0.105 0.005 -81.69 3580 0.33
0 13 3.422 0.150 0.101 0.005 -58.83 3408 0.51
0 14 3.667 0.203 0.094 0.006 -69.68 3001 0.74
0 15 3.841 0.245 0.096 0.006 -56.22 2462 0.94
0 16 4.030 0.271 0.105 0.007 -29.24 2018 1.09
0 17 4.290 0.280 0.119 0.007 -14.53 1714 1.20
1 12 3.529 0.360 0.167 0.016 -16.46 493 1.27
1 13 4.436 0.408 0.145 0.010 -20.59 921 1.81
1 14 4.734 0.456 0.123 0.008 -11.20 1427 2.16
1 15 4.305 0.491 0.093 0.007 -12.16 1927 2.11
1 16 4.643 0.507 0.096 0.006 -18.69 2115 2.36
1 17 4.624 0.537 0.088 0.006 -25.21 2388 2.49

All - 3.921 0.301 - ΣL = -414.58 - 1.26

The raw fit, ΣL = −414.58, exceeds those produced by models based on CIGRC3
(ΣL = −424.03), CIGYR (ΣL = −474.06) or CIGMON (ΣL = −531.89).30 How-
ever, the earlier CIGFLAG-only decomposed model (L = -369) we introduced at the
beginning of this section outperforms all of these, which might imply that the age
break-down is artificial (i.e. the age-based friendship assumption is too rigid). Or,
if that is not the case, the worsening of fits is merely coincidental. The results of
the age and smoking decomposition are shown graphically as trajectories in Figure
2.3. Both size of peer group and prevalence of friends’ smoking are distinct between
the sub-populations of adolescents who never smoked and those who have, separated
primarily by the prevalence of friends’ smoking.

Again, we assess the likelihoods, separately (Ld + Li) and jointly (Ldi), that we
obtain from fits to the ego-network response and the proportion of recency indicated,
self-reported use:

CIGFLAG CIGRC3 CIGYR
yAGE Ld Li ΣL Ldi Ld Li ΣL Ldi Ld Li ΣL Ldi

12 -98 -10 -109 -106 -101 -29 -129 -125 -101 -81 -181 -175
13 -79 -4 -84 -84 -82 -17 -99 -91 -89 -65 -154 -137
14 -81 -8 -89 -96 -83 -5 -88 -87 -107 -77 -185 -174
15 -68 -42 -111 -122 -69 -6 -75 -77 -75 -38 -113 -109
16 -48 -73 -121 -139 -53 -10 -62 -67 -55 -33 -87 -82
17 -40 -124 -164 -183 -39 -22 -61 -68 -47 -14 -62 -59
ΣL -729 -515 -736

30These latter results can be found in the appendix in Tables C.3, C.4, and C.5
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Figure 2.3: Trajectories for Cigarette Use. Solid line denotes sub-population of re-
spondents who have smoked at least once and dashed line denotes those who never
tried. The numerical labels denote age groups. Grey ellipses around each point show
the 95% probability regions surrounding each set of standard errors.
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The pattern of age-changing perception of “use” is further clarified, with changes
occurring at age 14 and then at age 16. When we pool the parameter estimates
that coincide with the best definition of “use” as determined by Ldi for each age, we
obtain:

Non-Smokers Smokers
yAGE λ0 θ0 λ1 θ1 L Indicator
12 3.05 0.103 3.57 0.348 -106 CIGFLAG
13 3.39 0.153 4.43 0.411 -84 CIGFLAG
14 3.70 0.209 4.84 0.474 -87 CIGRC3
15 3.86 0.257 4.41 0.527 -77 CIGRC3
16 4.00 0.296 4.75 0.542 -67 CIGRC3
17 4.43 0.307 4.88 0.593 -59 CIGYR

Both populations show a steady increase in number of friends and number of friends
who smoke. The probability of a friend smoking for a non-smoking 17-year-old ap-
proaches that of a smoking 12-year-old, revealing that there is just over a five year
separation in the smoking dimension between the worlds of smokers and non-smokers.
Oddly, there is a moderate drop in the number of friends for a smoker between the
ages of 14 and 15. In fact, this drop is consistent across the other decompositions.
While our data does not allow us to infer a reason for this, we can speculate that a
change in the school system, when teens enter high school, might be responsible for
this shift. Still, with non-smokers, there is no drop in peer group size and only a
small increase between these ages.

2.7 Fitting Results to a Linear Model

Instead of merely eyeballing the association between respondents’ characteristics (e.g.
age and smoking behavior) and their ego-networks, we can directly assess their pre-
dictive power on λ and θ, and similarly on µsmoke, by employing a linear fit; we have
the necessary point estimates as well as uncertainty bounds for conducting such an
analysis. We fit our estimates to the following linear regression models:

λ = β0 + β1 · ySEX + β2 · yCIGRC3 + β3 · yAGE

θ = β0 + β1 · ySEX + β2 · yCIGRC3 + β3 · yAGE

logit(θ) = β0 + β1 · ySEX + β2 · yCIGRC3 + β3 · yAGE

µm = β0 + β1 · ySEX + β2 · yCIGRC3 + β3 · yAGE

We choose the CIGRC3 indicator (i.e. smoked in past three years) as it seems to be the
best overall definition of cigarette “use”.31 While the reported marginal standard de-

31Alternatively, we could also look at a hybrid data set that consists of parameters using the
smoking indicator that best suits each age group.
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λ θ logit(θ) µsmoke

Intercept 0.421** -0.309*** -27.710*** -1.945***
(0.113) (0.014) (0.519) (0.064)

Is Male 0.040 -0.015*** -0.321* -0.044*
(0.025) (0.003) (0.116) (0.014)

Smoked in Past 3 Yrs 0.849*** 0.270*** 7.431*** 1.447***
(0.029) (0.004) (0.131) (0.016)

Age 0.224*** 0.036*** 1.344*** 0.193***
(0.008) (0.001) (0.036) (0.004)

L -58.619 -27.855 -116.627 -89.964
adjusted R2 0.088 0.279 0.203 0.345

p value 0.000 0.000 0.000 0.000

Table 2.3: Fitting Recency of Cigarette Use (CIGRC3) with Simulated Data. Stan-
dard errors appear in parentheses under each coefficient. Coefficient p-values are
denoted by: * = p < 0.05 ** = p < 0.01, *** = p < 0.001

viations, σλ, σθ, and σµsmoke
, give us a sense of the uncertainty around the parameters,

it is more precise to employ the covariance matrix, provided by the Newton-Raphson
procedure. Still, these do not necessarily express the population level spread around
the parameters; the covariance matrix, and the reported marginal σ’s, are analogous
to the standard errors from a regression model and not the standard deviation of mea-
sures obtained from a population. So, we conduct our fit on simulated data, using
both the parameters and their uncertainty bounds, as determined by the covariance
matrix to create distributions, around each combination of gender, age, and cigarette
use, with sample sizes consistent with the actual sub-population sizes.32. The de-
pendent measures of Table 2.3 arise from a model employing a fit to the ego-network
variable only and does not include the additional fit to the indicator due to difficulties
in converging to a stable solutions. We also conduct a regression analysis on logit(θ);
this is appropriate when the dependent variable is a proportion or a probability.

In Table 2.3, we observe with no surprise that the respondent’s recent smoking
is strongly associated with the degree of smoking (both proportion and count) in
his or her peer group and also the total number of friends in his or her peer group,
corroborating outside reports of a strong affiliation between smokers. We also see
that age significantly predicts both size of peer group as well as rate of smoking
friends, neither of which are surprising given that friendship circles grow over time,
and further, the proportion of smokers increases from age to age, increasing that rate
over time. However, predicting the parameter for friends’ count, λ is less precise, as
demonstrated by the lesser R2, due to the uncertainty surrounding its estimates. The
significant negative coefficient for being male, while puzzling, is corroborated by an

32The full data appears in Appendix E under Tables E.1 and E.2
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ordinal logistic regression on the ego-network cigarette use (FDCIG) predicted by age
and gender.33 Considering that being male is positively associated with cigarette use
of any recency (Table C.2), one explanation is that males are more easily influenced
when it comes to smoking; hence, we might observe boys to have fewer smoking
friends, depending on how much selection plays a role. Furthermore, we would also
see a negative coefficient if it was the case that boys are more likely than girls to
continue smoking without the presence of smoking friends. All these observations can
be summed up by saying boys take to smoking more easily than girls; this assertion,
however, requires further testing.

2.8 Alternative Mixtures

Often, when overdispersion in a Poisson is suspected, the negative-binomial is em-
ployed in place of a Poisson, essentially giving λ a gamma prior with two parameters,
α and β to specify the mean and the spread.34 In Appendix B, it is shown that the
negative-binomial is potentially the better distribution than the plain vanilla Pois-
son for raw friendship counts. However, under the few conditions tested here, the
negative-binomial appears to be unnecessary:

population λ ∼ α
β

α β θ L
all 3.58 4.06 1.13 0.349 -858.33
yCIGFLAG=0 3.48 2285 657 0.198 -315.36
yCIGFLAG=1 4.43 428 96 0.488 -55.05

While mean friends, λ ∼ α
β
, is comparable to the non-dispersed, Poisson-only findings,

there is actually a loss in the fit as indicated by the lower L. Furthermore, upon
looking at sub-populations, the estimation process is often degenerate, suggesting
that λ is not overdispersed; the large values for both α and β suggest that the spread
around the mean is exceedingly small and, hence, the variance of the distribution
approaches that of the Poisson.

Another mixture, in which nfriends is modeled as a binomial with a fixed maximum,
nmax, and also with a variable nmax having uniform density, is found to be degenerate

33Results of Ordinal Logistic Regression on Friends’ Smoking (FDCIG):

Dep. Var. Coefficient Std. Error t value
Age 0.4475 0.00769 58.18
Is Male -0.0703 0.02456 -2.90

A t value of absolute value greater than 2 usually denotes significance at the p < 0.01 level.
34The negative-binomial:

p(θ) =
(

θ + α− 1
α− 1

)(
β

β + 1

)α( 1
β + 1

)θ

, where θ = 0, 1, 2, . . .
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in many of the sub-population analyses, especially the substance using population.
Finally, we tested an alternative modeling of θ as well, treating it also as overdispersed,
by employing a beta-binomial (i.e. a beta prior on θ). However, this enhancement is
found to overfit the results; convergence cannot be achieved because there are simply
too many solutions.35

35However, these modifications have not yet been tested on any of the joint analyses.
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Chapter 3

Generating Distributions of
Complete Networks From
Ego-Networks

We have so far managed to improve our understanding of an adolescent’s peer group,
by estimating its size and smoker composition. While it behooves us to continue
the analysis at the ego-centric level and further explore the processes involved in
substance use, such as initiation as well as changes in peer group composition (and
we will examine these in a later chapter), we also need to address, in some way, the
interdependence between these ego-networks. That is, ego-networks do not evolve in
isolation, and the degree to which changes in one set of peers affect the dynamics in
another can often be predicted by their social proximity as well as strength of the
connections. Only under extreme conditions will ego-networks alone have as much
explanatory power as a complete network: when the dynamic, or behavior, under
study, exhibits complete independence between dyads or between ego-networks. In
the former case, simple dyadic data would be sufficient, and even the ego-network
would be overkill.1

Clearly, adolescent substance use is rife with interdependent social dynamics;
hence, ego-network-only analysis will offer only a partial depiction of events. Behav-
ior borne, even partly, from influence has a tendency to spread into epidemiological
proportions, though tempered when it also induces structural change, concurrently.
For example, an adolescent likely initiates in response to the influence of some using
friends. In turn, this new user becomes a source of influence for those friends who
have yet to sample the substance. Furthermore, if these non-using friends and the
new user have additional using friends in common, then the risk of initiation for the
non-users will jump a notch as a result of that one friend’s transformation. While
this dynamic may be indirectly captured in ego-network-only analysis, ideally we want

1However, one would be hard pressed to imagine any social process that exhibits this level of
independence.
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longitudinal, complete network data, which enumerates all existing ties among peers
of a discrete population at numerous points in time. However, network researchers
do not possess anywhere near the fantastical array of resources needed to collect this
kind of data on a large scale. Instead, current studies resort to surveying modestly-
sized populations, several hundred at most, with just a few waves of data collection.
Hence, we are left with two practical options for studying the role of peer networks in
adolescent substance use: either collect a large number of ego-networks with the ex-
pectation that the sheer volume of information will permit generalizability or collect
few instances of complete networks, sacrificing generalizability for more inter-related
data.2

Since our data falls under the first category of substance use data, the kinds
of inferences we can draw seem limited, at first glance, to isolated ego-networks.
However, our data permits us an additional layer of inference. Since we can identify
which respondents are users of a particular substance and which ones are non-users,3

we can essentially link ego-networks by assigning one respondent as the friend of
another, matching them according to the type of dyad these two are fullfilling (i.e. user
to user, non-user to user, or user to non-user). The goal, here, is not the construction
of the actual network from which the data was obtained,4 but one possible network
from which the ego-networks may have been drawn. Ultimately, we would generate a
population of hypothetical networks with the hopes of identifying network properties
that distinguish users from non-users; if we do not see any significant differences,
then either a) such distinctions cannot be uncovered through ego-network matching
or b) none exist. This linking of ego-networks is a relatively untested technique,
with good reason; the idea of creating distributions of data to supplement inadequate
data can feel anathema. Missing data techniques such as bootstrapping and multiple
imputation methods are relatively new in both network and general statistical analysis
(Schafer, 1997). Still, some research such as Friedman et al. (1997, 1999) have resorted
to using demographic and ethnographic data to link unresolvable ego-networks for
the purposes of attaining a complete network, using a software package LinkAlyzer
specifically designed for this purpose (Tien, 2001).

Implicit in linking ego-networks is the distinction between ties that remain within-
group and those that span groups, that is between-group ties. It is easy to envision this
process if one considers a hypothetical population of actors defined by only one or two
binary properties, such as substance use (yes or no). Building off work by Rapoport
(1957, 1958, 1963), Fararo and Sunshine (1964), Fararo and Skvoretz (1984), and
Skvoretz et al. (2004) further developed a biased net approach to explore network

2In network analysis, the scope of the network need not be vast if the focal behaviors are naturally
restricted by context, like an organization or school, or by definition, like kin relationships.

3Some caution is appropriate since the definition of ‘use’ has been shown to vary with age.
4Yet, a network reconstruction is possible if a) we know the ego-networks to have been sampled

from a common, discrete population and b) we have sufficiently identifying data that allows for a
one-to-one mapping between the ego-networks and a complete network.
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structure that is predicted, in part, by tie volume between groups. While homophilic
tendencies induce ties to remain within group, containment is generally not abso-
lute; hence, ties across groups ought to observed. This approach assumes a high
level of reciprocity in the ties studied; communication or friendship ties are often
reciprocal and shown to be so in empirical analysis, though not perfectly. Explicit
modeling of reciprocated ties across groups has been further developed by Heckathorn
(1997, 2002, 2007) and Salganik and Heckathorn (2004) in their efforts to improve
on link-trace sampling with respondent-driven sampling. All these models and the
matching process in this chapter convey some of the concepts in Blau’s macrosocial
structural theories focusing on intergroup relations as emergent from micro-structure
(Blau, 1977; Blau and Schwartz, 1984). Beyond static data, some dynamic modeling
studies have exploited both the propensity of ties to be formed along homophilic di-
mensions, while admitting a proportion of ties to be non-homophilic (Carley, 1990,
1991; Zeggelink, 1994, 1995). In Lee (2002, 2004), I conduct some preliminary explo-
ration into the ego-network linking approach, highlighting its complexity, strengths
and weaknesses. That line of work offers reasons to be wary of the simplistic nature
of the ego-networks analyzed here; the lack of alter-to-alter cross-ties in the NSDUH
ego-network data will widen the uncertainty of the matchings.

Perfect matching can only occur when our information allows us to fully identify
the alters of each ego-network; both actor and structural properties can serve as
identifying information. This is exactly how network analysts assemble a complete
network, by using uniquely identifying data, such as full names. Other traits such
as gender, age, etc. can also be instrumental when full identifying information is
unavailable; and the pattern of linkages between actor categories serve as structural
information that can assist in the matching. For instance, if a 16 year-old respondent
(a) is linked to a male 17-year-old (b) and a female 15-year-old (c) and reports a link
between the two of them, potential candidates for the male 17-year-old (b) would
have to report being involved in a triad with a female 15-year-old (c) and a male
16-year-old (a).

Unfortunately, in this work, alter-to-alter ties cannot be modeled since no relevant
data were provided by the NSDUH respondents. Instead, we focus solely on actor
properties to make the linkages, specifically substance use and age.5 We start with a
simple example to demonstrate the matching algorithm. In the left graph of Figure
3.1, we show a labeled, connected network of seven actors, two of whom are colored; for
our purposes, this denotes smoking. The right graph depicts each actor’s ego-network.
The small circles denote the types of friend(s) that the ego (large circles) reports
having. That is, actor 1 reports having exactly two non-smoking friends while actor
6 reports having one smoking friend and two non-smoking friends. The limitations of
the ego-network should be easily apparent; without proper identifying information,
we cannot know which two egos are actor 1’s non-smoking friends. However, since

5While networks are strictly limited to within-age groups, future work will include a relaxation
of this restriction.
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Figure 3.1: Example 7-node Network. On the left, we supply a simple, illustrative
example network comprising 7 members. The right figure displays each ego-network,
separately. Links directed upwards require recipient egos from the upper, white group
while links directed downwards have recipients from the lower, dark-colored group.

there are only two smokers in this network, these have to be actor 5’s two smoking
friends.

Our data is even less certain than what was just described. Instead of the exact
number of friends and the number of those who use a substance, we only know
distributions of ties counts through the inferred λ and θ. The goal of this chapter is
to provide a method for generating distributions of networks that comply with the
parameters inferred from the friends’ smoking (FDCIG) variable, when decomposed
with substance use covariates like recency of use.

3.1 Matching Ties

Our primary constraint is the number of ties that cross the distinct groups, the
distributions of which must be similar, under the assumption that our system is more
or less closed.6 That is, the total number of smoking friends that non-smokers, from
a given network, report need to equal the total number of non-smoking friends that
smokers, in the same network, report. The distribution of the total ties spanning
non-same groups is simply Poisson which converges to a normal distribution for large

6This remark alludes to our treatment of age-specific networks. Also, we treat the entire 12–17
year-old population as closed, another assumption we will relax in subsequent writings.
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means.7 That is, the sum of n Poisson samples, with a mean and variance of λθ,
yields a distribution with mean λθn and variance λθn. We are primarily concerned
about equating the number of friendship ties from n0 non-users to n1 users and ties
from those users to non-users, which we denote using T01 and T10, respectively. The
parameters for describing each set of ties are:

Non-User To User Ties User To Non-User Ties
µ01 = λ0θ0n0 µ10 = λ1(1− θ1)n1

σ2
01 = λ0θ0n0 σ2

10 = λ1(1− θ1)n1

T01 ∼ Normal(µ01, σ
2
01) T10 ∼ Normal(µ10, σ

2
10)

To assess how likely p(T01 = T10), we simply compute all the ways in which the
distributions can be equal and multiply their associated probabilities. For large values
of n, these distributions converge to normal distribution, and since we are concerned
with only discrete values, we can interpret the density directly as a probability:

p(T01 = T10|µ0, σ0, µ1, σ1)

=
µ1+4σ1∑

i=µ0−4σ0

Normal(i|µ0, σ
2
0) · Normal(i|µ1, σ

2
1)

=
µ1+4σ1∑

i=µ0−4σ0

1√
2πσ0

exp

(
− 1

2σ2
0

(i− µ0)
2

)
· 1√

2πσ1

exp

(
− 1

2σ2
1

(i− µ1)
2

)

We examine a range of four standard deviations below the lower µ and the same above
the higher µ in order to cover the range in which either probability is effectively non-
zero. Note, the farther apart µ0 and µ1 are, the lower our p(T01 = T10) will be, in
which case we deem the parameters inaccurate or inappropriate. In Figure 3.2, we
compare the overlapping tie distributions, given a network size of n = 100, using the
appropriate definition of “use”: CIGFLAG for the 12-year-olds and CIGYR for the
17-year-olds. The less-than-ideal overlapping of 17-year-old sub-groups suggests that
our calculated tie volumes are somewhat inaccurate. However, we can attempt to
adjust for this by incorporating tie volume equivalence into the fitting of ego-network
parameter estimates, under the belief that these estimates need to also reflect tie
volume consistency.

For each of the recency of use indicators, we report estimates when fitting to both
the degree of overlap in the tie count distributions for the two sub-groups and the
likelihood that the estimated θ’s reflect population level “use”; the log-likelihood is
denoted as Ldti. For comparison, we also report the earlier estimates obtained from
fitting to FDCIG only, with no additional constraints:

7If we wanted to be really precise, we would incorporate the covariance between λ and θ but
since these are small enough to not overly affect the variance of the tie volume distribution, we will
omit them for now.

40



10 20 30 40

0.
00

0.
02

0.
04

0.
06

Number of Ties (x)

p(
  T

ij   
=

 x
)

p(  T01  ) = x p(  T10  ) = x

(a) 12-year-olds

60 80 100 120 140 160

0.
00

0.
01

0.
02

0.
03

0.
04

Number of Ties (x)

p(
  T

ij   
=

 x
)

p(  T01  ) = x p(  T10  ) = x

(b) 17-year-olds

Figure 3.2: Matching Ties for Two Age Groups: on the left, we show the distribution
of T01 and T10 ties for 100 12-year-olds, n12 = (12, 88 ); on the right, the distributions
for an equivalent number of 17-year-olds, n17 = (61, 39 ).

Tie and Indicator None
λ0 θ0 λ1 θ1 Ldti λ0 θ0 λ1 θ1 Ld

yCIGFLAG 3.30 0.219 4.38 0.506 -526 3.48 0.198 4.43 0.488 -370
yCIGRC3 3.48 0.212 4.57 0.515 -413 3.50 0.210 4.58 0.513 -401
yCIGYR 3.72 0.207 4.69 0.532 -695 3.54 0.229 4.66 0.551 -478
yCIGMON 3.90 0.203 4.80 0.567 -1536 3.58 0.247 4.76 0.607 -572

The differences between the sets of results follow an interesting pattern: while the
ranges of θ’s are more constricted for tie and indicator fitting, the ranges of λ’s are
wider. Furthermore, the level of friends’ use for non-users θ0 is very narrow under tie
and indicator fitting; this coincides with an earlier observation, in the last chapter,
where we saw the predicted population level of smoking to be almost constant across
all definitions of “use”. The log-likehoods are naturally worse due to the additional
tie-matching constraint introduced into the likehoood.

Below, we report age-specific tie matching Ldt for each of the indicators as well
as fitting both tie matching and indicator Ldti, for each indicator:
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Ldt for CIG... Ldti for CIG...
yAGE FLAG RC3 YR MON FLAG RC3 YR MON
12 -101 -104 -106 -110 -109 -128 -179 -260
13 -84 -85 -93 -113 -88 -95 -141 -304
14 -88 -88 -113 -145 -102 -92 -178 -386
15 -78 -73 -80 -94 -129 -81 -113 -276
16 -63 -59 -59 -84 -149 -72 -85 -229
17 -58 -46 -51 -65 -195 -74 -63 -163
ΣL -471 -455 -501 -610 -773 -542 -758 -1618

The pattern of changing definition of “use” we observed earlier continues to hold.
Definition of friends’ smoking increases in recency from lifetime at ages 12 and 13,
to past three year use for ages 14-16, and past year use for age 17. Furthermore, the
past three years use recency indicator continues to be the best general definition of
friends’ “smoking”.

3.2 Network Generation

Now that we have the appropriate parameters that resolve ties between sub-popu-
lations of substance users and non-users, we can commence generating a complete
network. Later, we will generate a population of simulated networks from which we
can draw distributions of network-related measures.

Firstly, we decide on the size, N , of the total population of the network. This
population reflects a bounded group within which we believe almost all of the ties
remain; ties extending beyond will be rare or inconsequential. Accordingly, this
population can represent a school, a class, or even a single classroom, depending on
what we believe or assume about the boundaries of the teens’ social world. Next, we
assign a proportion, p, of those teens to be the substance users. Finally, we require
the parameters for number of friends for each sub-population, λ0 and λ1, and the rate
of use within each of those, θ0 and θ1. The procedure below details the generation
of just a single network; for the purposes of clarity, we will explain the algorithm in
segments.

Algorithm 1 Generate Ego-Networks, Part 1

Require: N � λ0, λ1 . size of population
Require: p, θ0, θ1 ∈ [0,1] . substance using proportions
Require: λ0, λ1 > 0 . mean friends per group

The population of N needs to be of sufficient size so as to support matching.
For instance, a network with high λ’s but low N would result in a non-matchable
set of ego-networks; there simply wouldn’t be enough egos to support the professed
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friendship ties.8

Algorithm 2 Generate Ego-Networks, Part 2

1: procedure GenEgoNets(N , p, λ0, λ1, θ0, θ1)
2: Draw (M0,M1) ∼ Multinom(N, (1− p, p)) . Sizes of sub-populations
3: for i = 1, . . . ,M0 do . Generate egonets for non-using population
4: Draw n0i ∼ Pois(λ0) . # of friends per non-user
5: Draw m0i ∼ Binom(n0i, θ0) . # of user friends per non-user
6: end for
7: for i = 1, . . . ,M1 do . Generate egonets for using population
8: Draw n1i ∼ Pois(λ1) . # of friends for user
9: Draw m1i ∼ Binom(n1i, θ1) . # of user friends for user

10: end for

Above, we sample the sizes of each sub-population as determined by a multinomial
distribution on 1 − p and p. For each member of each sub-population, we draw the
size of the ego-network (i.e. number of friends) n and from that count, we draw the
number of friends who are substance users, m.

Algorithm 3 Generate Ego-Networks, Part 3

11: T00 ← ΣM0
i=1(n0i −m0i) . # of non-user ties to non-users

12: T01 ← ΣM0
i=1m0i . # of non-user ties to users

13: T10 ← ΣM1
i=1(n1i −m1i) . # of user ties to non-users

14: T11 ← ΣM1
i=1m1i . # of user ties to users

15: end procedure
Ensure: T00, T11 mod 2 = 0 . Even number of ties within group
Ensure: T01 = T10 . Cross-group tie counts should match

Finally, we tally the tie volume for each category of non-user to non-user, non-user
to user, non-use to user, and user to user. An exact matching procedure requires the
number of ties within a group to be even; otherwise, we end up with an unmatchable
edge. Furthermore, the volume of ties across the sub-populations need to be equal
for the same reason. We adjust the simulated sample, if necessary, to achieve these
conditions.

Now that we have a sample population of egos and their professed ties to one an-
other, we explore all possible matchings. The process basically entails edge resolution
(i.e. finding an appropriate friend for everyone who needs one) by selecting the most
constrained edge to resolve, one at a time.

8The closest the data comes to suggesting the size of a closed network would be the census
segment or MSA status (Metropolitan Statistical Area) in which the respondents reside. We might
assume the sizes of school in rural areas to be generally lesser than those in urban areas. However,
in this report, we will consider N to be a free-parameter.
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Algorithm 4 Match Ego-Networks, Part 1

Require: V0 = {1, ...,M0}
Require: V1 = {M0 + 1, ..., N}
Require: E0 = {(n01,m01), ..., (n0M0 ,m0M0)}
Require: E1 = {(n1M0+1,m1M0+1), ..., (n1N ,m1N)}
Require: T00, T11 mod 2 = 0 . Even number of ties within group
Require: T01 = T10 . Fiddle, if necessary, to make # of cross-group ties equal
Require: T = (T00, T01, T11) . Tuple of counts for tie types
Require: E = ∅ . Set of all possible edge matchings, initially empty

In order to completely explore the combination space of all possible matches, the
procedure below must be recursive. At each nesting level, we provide it with sets of
remaining edges, one for non-users (E0) and another for users (E1), the current set
of matched edges, and finally a running tally of ties remaining in each category (T ).
Finally, we store each unique matching we find in E.

Algorithm 5 Match Ego-Networks, Part 2

1: procedure MatchEgoNets(E0, E1, Ecurr, T )
2: if T = (0, 0, 0) then . All edges have been matches
3: if ordered(Ecurr) 6∈ E then . Ignore duplicates
4: E = {E, ordered(Ecurr)} . Store complete matchings
5: end if
6: return
7: end if

At the beginning of each procedure call, we check to see if, basically, we are done
with the current match. If there remains no more unmatched edges, we can then check
our complete matching against the set of those already found; we are interested only in
the set of unique matches and not concerned with the number of ways a certain match
can be attained. Exact duplicate matchings are discovered due to the inefficiency of
the algorithm and has no bearing on the distributional properties of the networks;
that is, the number of duplicates we can find for a given matching is a “feature” of the
matching algorithm and not the social process that produces networks, in general.9

Finding duplicates is facilitated by sorting the (i,j) edge tuples on i and then j for
both pre-existing matches and newly found ones. Doing this will ensure that we
compare matches by the membership composition of each ego-network, and not how
each position (i.e. 1st friend, 2nd friend) is filled. Checking for duplicates efficiently

9However, if a social process explicitly mirrors our matching process, then duplicates need to be
considered. Such a process would involve assigning counts for friends and smoking friends to each
member network member and have each member seek friends randomly in order to satisfy these
constraints.
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is difficult since we cannot know a priori where in the recursion tree they occur; it is
often the case they arise in disparate parts of the tree.

Algorithm 6 Match Ego-Networks, Part 3

8: (u, v)← argmin(T00, T01, T11) . Find smallest sized tie type
9: if u = 0 ∧ v = 0 then . Match within non-user group

10: i← argmax(n0i) . Source node: has most un-matched edges of type u

11: Vdst ← {x : n0x −m0x > 0} . Nodes with un-matched within-group edges

12: Vdst ← {Vdst \ i} . Remove i as candidate if within group
13: δ ← (−1, 0) . Note how to decrease count of non-using friends
14: else if u = 1 ∧ v = 1 then . Match within user group
15: i← argmax(m1i)
16: Vdst ← {x : m1x > 0}
17: Vdst ← {Vdst \ i}
18: δ ← (−1,−1) . Note how to decrease count of using friends
19: else . Match across groups
20: i← argmax(m0i)
21: Vdst ← {x : n1x −m1x > 0} . Always match from 0 → 1
22: . Decreasing count of opposing group member occurs later
23: end if

In general, we select a candidate source edge by giving priority to those that exhibit
a higher level of constraint, so as to preclude incomplete matches (i.e. the situation
in which the matching procedure is halted and left with unmatchable edges).10 As
such, we select an edge from the type category (u, v) of smallest size. From that type,
we select an ego having the most number of edges of that type (lines 10, 15, and 20).
We construct a set Vdst of target egos, considering only those egos having unmatched
edges of the appropriate type. If the matching occurs within a sub-population, we,
of course, ignore the source ego from consideration as a target (lines 12 and 17);
reflexive friendships (i.e. friendships to self) are irrelevant. Finally, we record which
parts of the ego-network tuple (total friends and/or friends who use) need to be later
decremented in δ. For instance, in line 13, we decrement only the first part of the
tuple, representing just the “number of friends” since we are matching only non-user
to non-user edges. In the case of cross-group tie matching, we update differently
(ignoring δ, line 22) since the situation entails two separate actions.

While the notation does not explicitly reveal the source of nij and mij, it is
understood that these values are contained in the sets of remaining edges, E0 and E1,
of the current call.

10The simplest example of a mismatch can happen with a 3-node, uncolored network. One node
(#1) has degree two (ties to two other nodes) and the remaining two nodes (#2 and #3) each has
degree one. The only possible matching results in #2 and #3 being partnered with #1. However, a
matching process, that starts with one of the 1-degree nodes and allows it to match with the other
1-degree node, leaves #3 with unmatchable edges!
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Algorithm 7 Match Ego-Networks, Part 4

24: for all j ∈ Vdst do . Delve into matching each dest. candidate one at a time
25: if u = v then . Update remaining ties for nodes in same group
26: if i < j then . Handle ordering just to keep notation clean
27: Enew

u ← {..., (nui,mui) + δ, ..., (nuj,muj) + δ, ...}
28: else
29: Enew

u ← {..., (nuj,muj) + δ, ..., (nui,mui) + δ, ...}
30: end if
31: else . Update ties for nodes in different groups
32: Enew

0 ← {..., (n0i,m0i) + (−1,−1), ...} . Update non-user to user ties
33: Enew

1 ← {..., (n1j,m1j) + (−1, 0), ...} . Update user to non-user ties
34: end if
35: Ecurr ← {Ecurr, (i, j)} . Add new match to current set of edges
36: MatchEgoNets(Enew

0 , Enew
1 , {Ecurr, (i, j)},T − (i, j)})

37: . Fork a new branch in the matching tree for each candidate
38: end for
39: end procedure

Now that we have a candidate set of target egos Vdst, we iterate through each
one, exploring the space of all possible matches under each edge match. We update
the sets of remaining edges by employing the decrement tuple δ on the appropriate
sub-population(s). In the case of a cross-group match, we decrement both members
of the tuple for the non-user (matching to a using friend means we have to decrement
the total number as well) and just the total number of friends for the user; since his
or her match is to a non-user, the user-to-user count m1j remains the same. We then
call the procedure again with the sets reflecting the current match.

The algorithm is straight-forward and employs no additional optimizations, if any
are possible. Often, with large set of nodes, duplicate completed networks are found,
which we discard in the final count of unique, labeled structures. However, the set of
unlabeled graphs is significantly smaller than the set of labeled graphs due to the lack
of uniquely identifying features, which in our case are the two states for substance use
and n, m composition of the ego-networks. The 7-node network we presented earlier
results in 7 uniquely labeled graphs and 2 unique unlabeled graphs.

In Figure 3.3, we show two of the matched structures, one of which exactly matches
the original network. However, it is easy to see how a different labeling can occur,
nodes 1 and 2 can be switched around yielding the same unlabeled graph. The right
graph shows how the matching process can lead to differing unlabeled structures. The
network measures obtained from this graph will significantly differ from those of the
original.

For a more complex example, we generate a 100 actor network using the smoker/
non-smoker λ and θ parameters for 12-year-olds and another one for 17-year-olds.
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Figure 3.3: Matching 7-node Network. On the left, we supply the sample, illustrative
7 person complete network which also happens to be fully connected. On the right,
another network that is consistent with the ego-networks (assuming unlabeled nodes)
of the network on the left, but happens to be incorrect.

The generated networks in Figure 3.4 show some clear differences, most of which
are expected. The 12-year-old network is less dense (fewer ties) resulting in more
disconnected components like isolates and separated dyads.11

3.3 Network Measures

We examine the generated, completed networks with some widely-used network mea-
sures; these describe structural locations of individuals or groups relative to other
groups. The first measure, betweenness centrality, describes the degree to which a
node is embedded in the overall network, by highlighting the degree to which it lies
in between other nodes. Individuals with high betweenness centrality scores are often
considered to be boundary-spanners or gate-keepers due to their unique position of
connecting disparate groups. Betweenness centrality (CB) is formally defined defined
as:

CB(v) =
∑

s 6=v 6=t∈V s 6=t

σst(v)

σst

where σst is the number of shortest paths (i.e. geodesics) from nodes s to t, and
σst(v) is the number of those paths that pass through vertex v.12 This measure may

11Sample networks for 13–16 year-olds can be found in Figure D.1.
12A geodesic is in fact the shortest path between two vertices.
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(a) 12-year-olds (b) 17-year-olds

Figure 3.4: Sample Matched Networks. On the left, we display a simulated population
of 100 12-year-olds and on the right we have 100 17-year-olds, maintaining the correct
proportions of smokers per age group, using age specific definitions of “use”: lifetime
use (CIGFLAG) and past year use (CIGYR), respectively. The respective proportions
of use are 0.12 and 0.39. Dark colored circles represent cigarette smokers.

be normalized by dividing through by the number of pairs of vertices not including v,
which is (n−1)(n−2). The betweenness centrality scores for isolates or dyads is zero
as vertices in those structures do not lie in between anyone. We look at betweenness
measures for nodes in the main component as well as the entire population (which
incurs a bias towards 0 from those nodes not in the main component):

Betweenness > 0 All Betweenness + 1
12-year-olds µCB

σCB
L µCB

σb L
non-smoker 4.40 1.30 -407.61 3.37 2.19 -490.49
smoker 5.42 0.81 -72.83 4.97 1.68 -82.94

17-year-olds µCB
σCB

L µCB
σCB

L
non-smoker 4.18 1.07 -317.42 3.86 1.52 -347.76
smoker 4.45 1.08 -231.99 4.47 1.05 -231.80

Above are the results of a lognormal fit to the distributions of betweenness for non-
smokers and smokers per age group; the µ and σ fit the log of the original data.13

Under both categories of betweenness measurements, smokers are more embedded in
the social network than non-smokers, though the disparity shrinks with older cohorts.
However, the results are not significantly different. In order to conduct a more robust

13Employing the lognormal requires us to offset the betweenness measure of the entire network.
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analysis, we look now at a broader set of results, summarizing betweenness for just
the main component from 100 simulated networks for each age group, we find notable
differences between non-smokers and smokers:

Non-Smokers Smokers
Age µCB

σCB
df µCB

σCB
df n0 n1 t p

12 4.567 1.394 211 5.372 0.992 120 88 12 -2.50 0.023
13 4.388 1.255 245 4.971 1.097 162 79 21 -2.10 0.043
14 4.260 1.257 211 4.747 1.136 171 71 29 -1.89 0.064
15 4.325 1.201 283 4.555 1.131 192 63 37 -0.96 0.340
16 4.280 1.185 290 4.408 1.191 241 57 43 -0.53 0.595
17 4.180 1.219 338 4.497 1.148 236 61 39 -1.32 0.192

In assessing the differences, a conservative t-test is employed, in which the degrees
of freedoms are dictated by merely the average of the counts of non-user and users.
The deviations are computed according to those of imputation-based methods (Rubin,
1987).14 We find modest significance (below the 0.10 level, indicated by the bold-typed
p values) in the ways smokers and non-smokers are embedded in the network with
younger smokers being more centrally located than their older counterparts, hence,
their higher betweenness scores. However, an increase in both friends’ count and
smoking friends, as youths in both sub-populations age, reduces the distinctiveness of
their ego-networks, as evidenced by the lack of significant differences in this network
measure for the older youths.

Closeness centrality (CC) is modestly related to betweenness; it describes the
degree to which vertices are apart (or close) to all other vertices. One way of capturing
closeness is by the converse concept “farness” (CF ), which is defined as the mean
geodesic distances between a vertex and all other vertices:

CF (v) =
1

CC(v)
=

∑
t∈V \v

dG(v, t)

n− 1

where n is the number of vertices |V | and n ≥ 2. Closeness (CC) is then merely the
reciprocal of farness.

14The total variance, T , of an estimate combines the between-sample and within-sample variances:

T = W +
K + 1

K
B

where K is number of simulations (100) and

B =
1

K − 1

K∑
k=1

(
µCB,k

− µCB

)
and

W =
1
K

K∑
k=1

σ2
CB ,k
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Farness Closeness
Main Comp. All Main Comp. All

12 year olds µFc σFc µF σF µCc σCc µC σC

non-smoker 4.42 0.74 15.30 20.82 0.232 0.037 0.093 0.021
smoker 3.73 0.42 17.10 26.11 0.271 0.029 0.097 0.028

17 year olds µFc σFc µF σF µCc σCc µC σC

non-smoker 3.42 0.48 8.47 17.00 0.298 0.040 0.182 0.035
smoker 3.34 0.38 5.29 0.37 0.303 0.032 0.190 0.013

The difference in closeness centrality for 12 year-old smokers and non-smokers is
significant, t-value = 4.85, p < 0.001. The higher closeness/lesser farness of smokers
again indicates their centralized positions in the main component, relative to non-
smokers. We can also look at within- and between-group closeness:

non-smoker smoker
12 year-old µFc σFc µFc01 σFc

non-smoker 4.50 0.740 4.24 0.981
smoker 3.90 0.414 2.73 0.657

17 year-old µFc σFc µFc01 σFc

non-smoker 3.43 0.492 3.49 0.518
smoker 3.46 0.450 3.24 0.340

There is more differentiation in structure between 12-year-old smokers and non-
smokers, while this dissipates with increasing age, which is expected given how in-
creasingly more of the population smokes, thereby lessening the distinction between
smokers and non-smokers. Interestingly, the closeness of 12 year-old smokers to non-
smokers is not the same as that of smokers to non-smokers, which is possible given
the disparate sizes of the sub-populations. We can further look at these distinctions
in both farness/closeness for each age group drawing our measures from a distribution
of 100 simulated networks, as was done for betweenness earlier:

Farness:
Non-Smokers Smokers

Age µFc σFc df µFc σFc df n0 n1 t p
12 4.604 0.856 123 4.139 0.809 111 88 12 1.85 0.084
13 3.995 0.633 153 3.680 0.587 132 79 21 2.15 0.039
14 3.727 0.557 165 3.499 0.513 144 71 29 1.97 0.054
15 3.626 0.530 162 3.526 0.527 154 63 37 0.91 0.365
16 3.457 0.478 135 3.443 0.507 140 57 43 0.14 0.887
17 3.482 0.508 147 3.309 0.444 145 61 39 1.80 0.075
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Closeness:
Non-Smokers Smokers

Age µCc σCc df µCc σCc df n0 n1 t p
12 0.224 0.036 1021 0.249 0.037 400 88 12 -2.20 0.045
13 0.256 0.037 2086 0.278 0.038 982 79 21 -2.34 0.026
14 0.274 0.037 2461 0.291 0.038 1273 71 29 -2.13 0.038
15 0.281 0.037 2194 0.289 0.038 1565 63 37 -1.03 0.307
16 0.294 0.036 976 0.296 0.039 1117 57 43 -0.23 0.815
17 0.293 0.038 1366 0.307 0.037 1094 61 39 -1.90 0.061

Networks become more dense as youths age and form more and more friendship ties
with one another; hence, the closeness between everyone will increase, as we see in
the above results. Smokers and non-smokers remain distinct in their closeness or
reachability to others until about age 15, at which point smokers and non-smokers
mix in a such a fashion as to homogenize their friendship ties. Recalling that peak
smoking initiation occurs just around that age, we would hypothesize that these
first time users’ networks are also distinct from those of non-users in such a way
as to facilitate influence forces. As smokers and non-smokers networks become more
entwined after the age of 14, smoking influence becomes diluted; hence we also should
see a sudden drop in initiation rates. We explore this association later in this chapter.

An alternative definition of closeness exponentially weights the geodesic, giving
little weight to disconnected vertices (Dangalchev, 2006):

CC(v) =
∑

t∈V \v
2−dG(v,t)

Closeness, All
12 year olds µgc σgc

non-smoker 7.10 3.17
smoker 9.71 3.87

17 year olds µgc σgc

non-smoker 11.95 3.84
smoker 13.02 2.50

Here, the higher closeness values indicate actual closeness. While the differences
within age-groups are not significant, the smokers’ closeness are consistently higher
than those for non-smokers, under this alternative closeness measure.
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Non-Smokers Smokers
Age µCc σCc df µCc σCc df n0 n1 t p
12 7.716 3.578 114 9.797 4.711 103 88 12 -1.47 0.165
13 10.082 3.767 112 11.741 4.622 105 79 21 -1.52 0.141
14 11.349 3.758 115 12.817 4.143 108 71 29 -1.65 0.105
15 11.941 3.708 116 12.474 4.101 112 63 37 -0.65 0.518
16 12.980 3.855 109 13.074 4.075 110 57 43 -0.12 0.907
17 12.820 3.969 110 14.079 3.907 108 61 39 -1.56 0.122

Again, we generate 100 sample networks, collate the results, and conservatively t-
test the differences for Dangalchev’s closeness. While the differences do not achieve
significance, even at the 0.10 level, the p-values still suggest a the shift in structure
from age 14 to 15.

(a) 12-year-olds (b) 17-year-olds

Figure 3.5: Closeness Between Nodes. The geodesics (shortest paths) between all non-
isolated nodes (in the main component) to all others appear in shades of gray; lighter
color indicates higher closeness. The dashed lines denote the sub-population partition
between non-smokers, left and below the partitions, and smokers, to the right and
above the partitions. The axes differ slightly due to there being more isolates in the
12-year-old sub-population. The graph is undirected hence the distances and plot are
symmetric.

In Figure 3.5, the features of a core/periphery network structure (Borgatti and
Everett, 1999; Boyd et al., 2006) are shown to be prominent for the network of 12 year-
olds; the dark streaks denote members who are essentially outliers, far from almost
everyone. The more dense 17 year-old network displays a more complex structure of
multiple clusters (i.e. the streams of white), some of which overlap and some of which
do not (i.e. the dark patches). Still, the non-user component of this network does
seem to exhibit core/periphery features.

52



Watts’ clustering coefficient describes the degree to which a network displays qual-
ities of a small-world network, generally comprising loosely connected dense clusters
(Watts and Strogatz, 1998; Watts, 1999a,b). At the core of this measure is the degree
to which an ego’s alters are connected divided by the number of possible connections
among them. For a graph with vertices V = v1, v2, . . . , vn and a set of edges E where
eij denotes an edge between vertices vi and vj, a neighborhood for a vertex vi is
defined as:

Ni = {vj} : eij ∨ eji ∈ E

and ki is the degree of vertex vi or |Ni|. Then, the clustering coefficient of vertex vi

is:

CW (vi) =
|{ejk}|

ki(ki − 1)
: vj, vk ∈ Ni, ejk ∈ E

The clustering coefficient of the entire graph is simply the mean of the measure for
each vertex:

CW =
1

n

n∑
i=1

CW (vi)

We compute the clustering coefficients for each of the simulated networks:

12-year-olds µCW
σCW

p(µCW
< X) density

non-smoker 0.124 0.203 0.00 —
smoker 0.009 0.022 0.90 —
all 0.111 0.194 0.00 0.0299

17-year-olds µCW
σCW

p(µCW
< X) density

non-smoker 0.108 0.144 0.00 —
smoker 0.107 0.140 0.00 —
all 0.107 0.142 0.00 0.0477

Both networks as a whole (i.e. the ‘all’ rows) exhibit a strong degree of clustering,
more so than random; the significance values p show how the measures compare to
those obtained from distributions of Bernoulli random graphs with identical den-
sities.15 What is surprising is the near-significance of the 12-year-old smoker; the
measure suggests that really young smokers exist in less cohesive clusters than the
norm. In a sense, they are still outsiders, despite their apparent embededdness by
being connected to the popular peers. Ennett and Bauman (1993) find that smok-
ers are more likely to be ‘fringe’ members or ‘isolates’ of the network, instead of
‘liaisons’, which is not quite consistent with what we find in our analysis. We obtain

15The assessment of the significance of graph-level measures by employing Bernoulli random graphs
to generate a null hypothesis distribution is explored in depth in Anderson et al. (1999).
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more robust measures of age and substance use specific clustering coefficients from
the distribution of generated networks:16

Non-Smokers Smokers
Age µCW

σCW
df µCW

σCW
df n0 n1 t p

12 0.174 0.268 549 0.033 0.064 210 88 12 4.15 0.0001
13 0.188 0.248 534 0.058 0.104 283 79 21 3.62 0.0005
14 0.178 0.232 535 0.086 0.136 355 71 29 2.47 0.0156
15 0.158 0.209 474 0.081 0.137 386 63 37 2.22 0.0286
16 0.144 0.191 424 0.101 0.163 428 57 43 1.22 0.2236
17 0.161 0.208 448 0.129 0.155 308 61 39 0.90 0.3708

While earlier we saw early age smokers have higher closeness than their non-smoking
peers suggesting that they are more central in their respective networks. However,
the lower densities of their ego-networks, as indicated by the lower clustering coeffi-
cients, suggest, more firmly here, that while smokers are central, they are not tightly
embedded and instead exist interstitially between more cohesive structures such as
cliques, supporting the observation that they are ‘liaisons’ and not isolates or on the
fringe.

Again, comparing the Watts’ clustering coefficients from the generated network
to those coefficients measured from Bernoulli random graphs gives us a sense of how
much non-random social structuring occurs in sub-populations:

Everyone Non-Smokers Smokers
Age µCW

p µCW
p µCW

p density
12 0.157 0.0001 0.174 0.0000 0.033 0.4987 0.0305
13 0.160 0.0002 0.188 0.0001 0.058 0.2754 0.0370
14 0.151 0.0002 0.178 0.0000 0.086 0.0827 0.0408
15 0.129 0.0017 0.158 0.0003 0.081 0.1332 0.0416
16 0.125 0.0030 0.144 0.0086 0.101 0.0540 0.0444
17 0.149 0.0007 0.161 0.0010 0.129 0.0148 0.0463

And in fact, we again find that younger smokers exist in less structured local networks.
Yet due to their high embeddedness as evidenced by their high betweenness scores,

16The clustering coefficient is distributed between 0 and 1 and upon observation, a beta distribu-
tion seems appropriate to model the sampled measures. We report shape parameters, α and β, for
the distributions surrounding each of the reported measures:

Everyone Non-Smokers Smokers
Age αCW

βCW
αCW

βCW
αCW

βCW

12 13.88 74.32 12.58 59.55 0.65 19.00
13 16.13 84.44 14.80 64.06 2.04 33.41
14 18.51 104.05 14.98 69.29 4.26 45.56
15 13.75 92.72 11.83 63.21 3.66 41.90
16 15.54 108.45 9.35 55.58 5.92 52.96
17 15.21 87.16 11.63 60.51 7.09 48.06
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their local networks are less dense. Still, these observations lend support to the claim
that smoking is more stigmatic for younger teens; these young smokers may be linked
to the central social groups, but are not deeply embedded in them. With older teens,
we find a reversal of this trend; smoking teens now exist in structured networks and
non-smoking teens less so, in comparison. One explanation for this observation that
warrants further investigation is that, as teens age, smoking becomes more accepted
and more normative, while anti-smoking sentiments becomes frowned upon.

As mentioned earlier, there is a noticeable shift in how all the reviewed network
measures, that highlight structural differences between smokers and non-smokers,
shift around the age of 15. Specifically, the differences in mean centralities signifi-
cantly maintain from age 12 to 14 and suddenly vanish from age 15 or 16. It was
suggested that the networks of smokers and non-smokers, despite their parameters
continuing to be visibly distinct, begin to merge, as indicated by the increasing tie
volume between the user and non-user groups. This shift apparently, but not surpris-
ingly, has a behavioral consequence:

Differences in C between
prop. initiating = smokers and non-smokers;
p(yt+1

CIGFLAG = 1) t-test significance:
− p(yt

CIGFLAG = 1) Age p∆CB
p∆CC

p∆CW

0.092
〈 12 0.023 0.045 0.000

0.109
〈 13 0.043 0.026 0.001

0.118
〈 14 0.064 0.038 0.016

0.071
〈 15 0.340 0.307 0.029

0.071
〈 16 0.595 0.815 0.224

17 0.192 0.061 0.371

In the above table, the shift in significance in the centrality and clustering differences
between smokers and non-smokers corresponds to a sudden shift in the rates of initia-
tion. Just after the age of 15, the initiation rate drops from 11.8% of the population to
just 7.1%, and concomitantly, the differences in the mean betweenness and closeness
centralities cease to be significant. Watts’ clustering coefficient follows suit at age
16. This parallel shift suggests that the enmeshing of smokers and non-smokers into
increasingly heterogeneous social groups, then, dffuses much of the smoking influence;
hence, we see the drop in initiation rates with increasing age.

Earlier, it was suggested that the ego-network matching endeavor might be ren-
dered useless if we found no significant structural differences. Not only do we demon-
strate the opposite, but we also find a pattern of structural differences (and, for
later ages, structural similarities) that mirror and explain the changing inertia of
influence. These findings highlight the suitability of ego-network matching in infer-
ring complete networks from the NSDUH data and warrant further efforts into the
matching methodology.
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Chapter 4

Joint Poly-Substance Analysis

4.1 Alcohol and Marijuana: Marginal Analysis

So far we have focused solely on cigarette smoking. We now introduce analysis on the
remaining two substances, alcohol and marijuana, for which NSDUH respondents pro-
vided ego-network data. Population proportions of recent use of all three substances
are:

Used in ... Cigarettes Alcohol Marijuana
Lifetime 0.364 0.401 0.179
Past Three Years 0.310 0.390 0.174
Past Year 0.236 0.329 0.141
Past Month 0.166 0.178 0.077

Not surprisingly, marijuana use remains far below the other two substances, most
likely due to its illicit status. However, while differences in proportions for cigarette
smoking between the recency categories are evenly spaced, those for alcohol and
marijuana are not: the proportion for lifetime and past three year use for these are
almost identical.1 We give the empirical data on alcohol and marijuana recency

1A breakdown of the proportions by age suggests that after initiation, some level of use of alcohol
and marijuana will continue while, individuals are more likely to cease smoking cigarettes:

CIG... ALC... MRJ...
Age FLAG RC3 YR MON FLAG RC3 YR MON FLAG RC3 YR MON
12 2 3 3 4 1 3 4 3 0 0 1 1
13 3 4 6 8 1 5 10 7 0 1 2 2
14 4 9 7 13 1 5 15 13 0 2 4 6
15 7 9 9 20 1 6 18 23 0 3 8 10
16 8 10 8 25 1 8 22 28 1 6 11 12
17 9 10 9 31 1 9 22 34 1 8 12 16

The data in this table reflects the a breakdown of the Recency variable introduced in the preliminary
logistic regressions in Table 2.1, in which the overlap between the categories is removed (e.g. CIGRC3
now exclusively means “smoked in the past three years but not in the past year or month”). The
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indicators the same logistic regression treatment as we did for tobacco (back in Table
2.1) and find similar results: that while all covariates significantly predict self use,
friends’ use of the substance is the primary predictor.2 However, gender and adults’
use is more predictive of marijuana use than it is for smoking or drinking alcohol,
with coefficients that are roughly twice in magnitude and more significant. Again, the
illicit status of marijuana offers the likely explanation: boys are more likely to engage
in illegal behavior than girls and, furthermore, some contact with adult’s who use
marijuana would precede initiation given the difficulties in obtaining that substance.

We conduct a preliminary Poisson/binomial fit on each of the ego-network vari-
ables for alcohol and marijuana (FDALC and FDMJ):

λ θ µ σλ σθ σµ L n

Tobacco 3.32 0.326 1.09 0.0230 0.00221 0.00800 -783.56 25052
Alcohol 2.91 0.345 1.01 0.0203 0.00238 0.00756 -1092.05 24959
Marijuana 2.60 0.234 0.61 0.0232 0.00237 0.00562 -1131.26 24949

The estimates are potentially problematic because of the significantly differing rates of
peer network size, λ; this inconsistency underscores some inexactness in our mixture
approach to estimating the parameters. However, the large negative log-likelihoods
for alcohol and marijuana suggest the differences might be explained under a model
that estimates for sub-populations. It seems the case that a relatively bad fit is
due to a heterogeous population; recall earlier, our fit on friends’ smoking behavior
was vastly improved (i.e. the log-likelihood increased) when we explored different
sub-populations for the friends’ smoking response (FDCIG). Later, we will find this
inconsistency corrected when we estimate the parameters jointly.

If we merge the likelihood function for alcohol and marijuana to include a fit to the
population or age-population prevalence of recent use as well as a fit to reciprocating
ties, as we did for tobacco use in the last chapter, we can obtain preliminary definitions
of their “use”:

reported quantities are rounded percentages of each age population; the rows will not sum to 100
because we omit the percentages of individuals who have never tried the substance. The increasing
CIGFLAG implies that more smokers return to a state of relative non-smoking (beyond three years)
more so than those who have used alcohol or marijuana: the populations associated with their
exclusive FLAG indicators do not increase. Note, recent initiates do not contribute to the FLAG
category, but instead will fall into either the past year (YR) or past month (MON) categories. The
slightly later ages of initiation for alcohol and marijuana would only partly account for the pattern
we are seeing here.

2Results are reported in Tables F.1 and F.2 in Appendix F.

57



Ldt for ALC... Ldti for ALC...
yAGE FLAG RC3 YR MON FLAG RC3 YR MON
12 -69 -68 -69 -90 -74 -71 -89 -199
13 -154 -152 -169 -187 -171 -164 -177 -361
14 -123 -128 -125 -178 -148 -143 -131 -409
15 -94 -93 -95 -131 -164 -152 -107 -308
16 -72 -68 -63 -80 -214 -190 -90 -248
17 -79 -76 -66 -61 -264 -249 -113 -181
ΣL -591 -585 -588 -726 -1035 -970 -707 -1706

Ldt reports the fits on the ego-network (FDALC) and matching ties between users
and non-users. Ldti extends that two-fold fit to include a fit to the sub-population
prevalence of recent use. Again, the bold-typed log-likelihoods highlight the best fits
per age group. Inclusion of population prevalence into the likelihood (Ldti) clarifies the
pattern of “use” to mean recent within three years, for 12 and 13 year-olds, and past
year use for 14-17 year-olds. This clearly differs from the “use” pattern of cigarette
smoking, which graduated from lifetime use (CIGFLAG) to recent use within three
years (CIGRC3). The overall best indicator of “drinking alcohol” is past year use
(ALCYR). Since prevalence of alcohol consumption is higher than tobacco use in our
population, the corresponding definition of “use” is expected to be associated with a
more recent indicator.

Ldt for MRJ... Ldti for MRJ...
yAGE FLAG RC3 YR MON FLAG RC3 YR MON
12 -78 -78 -79 -100 -127 -129 -143 -224
13 -114 -119 -124 -139 -163 -170 -194 -282
14 -108 -109 -116 -160 -147 -150 -200 -384
15 -88 -87 -103 -139 -100 -102 -151 -388
16 -92 -91 -93 -142 -96 -96 -123 -412
17 -57 -61 -64 -96 -68 -68 -87 -329
ΣL -536 -545 -580 -776 -701 -715 -898 -2019

With marijuana use, we find a more liberal definition of “use”, one that leans
towards any level of use (MRJFLAG). Again, this is not surprising; since marijuana
use is far less prevalent than tobacco or cigarette use, we would expect the appropri-
ate indicator to be more inclusive than that of tobacco or alcohol. In later analysis,
when we need select non-age-specific indicators of use, we will accordingly employ the
indicators for past three years’ use of cigarettes (CIGRC3), past year use of alcohol
(ALCYR), and lifetime use of marijuana (MRJYR). In Figure 4.1, the age trajecto-
ries between at-least-once-users and non-users are shown to be distinct, especially for
marijuana use. These substances, along with cigarette smoking, have dissimilar con-
notations in society, which perhaps mirror the magnitudes in the differences among
these trajectories. However, it is impossible to tell at this point, for marijuana use,
whether we are seeing teens with using friends rapidly initiating or simply having
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Figure 4.1: Trajectories of Alcohol and Marijuana. The solid line denotes changes
in the λ and θ parameters for at-least-once-used adolescents and the dashed line for
never-tried adolescents. The gray ellipses denote the 95% probability region around
the standard errors.

stronger homophilic tendencies towards peers who also have used at some point; this
issue is addressed in the next chapter. Given that alcohol consumption and cigarette
smoking is more prevalent in our culture than marijuana use, we naturally see more
overlap in their trajectories.

4.2 Joint Analysis of Two Substances

Since each respondent provided ego-network data on all three substances, we can
estimate λ and θ jointly. For the sake of clarity, we will discuss the joint analysis
of two substances at a time, and then, in the following section, perform our analysis
on all three substances at once. We first present the joint data on friends’ usage
of cigarettes and alcohol in Table 4.1. The data suggests a possible pattern of co-
substance use among friends; respondents are more likely to report similar levels
friends’ use for both substances than not. We can confirm this with the contingency
data comprising each of the four categories of joint use:
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Friends’ Friends’ Drinking (FDALC)
Smoke weighted frequency %

(FDCIG) None Few Most All None Few Most All
None 8035 1284 188 66 32.3 5.2 0.8 0.3
Few 2225 6442 1636 257 8.9 25.9 6.6 1.0
Most 230 1089 2130 432 0.9 4.4 8.6 1.7
All 42 130 220 478 0.2 0.5 0.9 1.9

Table 4.1: Joint Friends’ Use of Cigarettes and Alcohol. In order to improve read-
ability, the proportions have been converted into percentages.

Drank Alcohol in Past Year?
(ALCYR)

weighted freq %
No Yes No Yes

Smoked in Past Three Years? No 14634 2931 57.5 11.5
(CIGRC3) Yes 2441 5458 9.6 21.4

And, there is indeed a significant co-use pattern in our population; the χ2 for the
table is an extreme 6775, with p < 0.001. The marginal levels of use are 31.0% for
cigarette smoking and 32.9% for alcohol consumption. Even with a more restrictive
definition of alcohol consumption, its perceived prevalence of “use” is higher than
that of cigarette smoking.

With the four categories of tobacco/alcohol use, the set of friend types now ex-
pands as well to four categories. That is, the single parameter θ for friends’ use of a
single substance now expands to four parameters for each combination of use/non-use:

θ00 + θ01 + θ10 + θ11 = 1

where θij = p(zCIGRC3 = i, zALCYR = j) and z is use behavior of some hypothetical
friend. p and θ express the probability that a friend smokes, drinks, or does both.
The marginal probabilities of use among friends are:

p(zCIGRC3 = 1) = θ10 + θ11 = θ1·

and
p(zALCYR = 1) = θ01 + θ11 = θ·1

The likelihood is now expressed as L(θ = (θ00, θ10, θ01, θ11)|nFD), where nFD contains
all sixteen joint proportions from Table 4.1. Deriving it follows the same strategy as
that for smoking; however, the addition of a single substance increasingly complicates
the procedure. We will need to explain the likelihood in multiple parts. Furthermore,
the focal parameter is θ and not the prior distribution for λ, so we will assume a fixed
nfriends for now, which we will refer to as just n.
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The first and easiest part of the joint distribution is assessing the probability
that the respondent claims one or both of the friends’ use level is ‘None’. Given
a predetermined number of friends, n, and a hypothetical rate of friends’ use, θ
= {θ00, θ10, θ01, θ11} for two (unspecified) substances, and the friends’ use responses
x0, x1 ∈ {‘None’, ‘Few’, ‘Most’, ‘All’}; if we want to know the likelihood of either x0

= ‘None’ or x1 = ‘None’, then:

p(yFDCIG = x0, yFDALC = x1|n,θ) =

p(n00 = n, nij = 0, nji = 0, n11 = 0) if xi = ‘None’
bn/2c∑
k=1

p(n00 = n− k, nij = 0, nji = k, n11 = 0) if xi = ‘Few’

n−1∑
k=bn/2c+1

p(n00 = n− k, nij = 0, nji = k, n11 = 0) if xi = ‘Most’

p(n00 = 0, nij = 0, nji = n, n11 = 0) if xi = ‘All’

where

(i, j) =

{
(1, 0) if x0 = ‘None’
(0, 1) if x1 = ‘None’

which expands to the following multinomial probabilities:

(
n

n, 0, 0, 0

)
θn
00 θ

0
ij θ

0
ji θ

0
11 if xi = ‘None’

bn/2c∑
k=1

(
n

n− k, 0, k, 0

)
θ

(n−k)
00 θ0

ij θ
k
ji θ

0
11 if xi = ‘Few’

n−1∑
k=bn/2c+1

(
n

n− k, 0, k, 0

)
θ

(n−k)
00 θ0

ij θ
k
ji θ

0
11 if xi = ‘Most’(

n

0, 0, n, 0

)
θ0
00 θ

0
ij θ

n
ji θ

0
11 if xi = ‘All’

When one of the friends’ use variables is ‘None’, we expect its marginal sum, nij

+ n11, to be zero. Subsequently, which use categories the friends fall into will be
completely determined by the non-‘None’ variable, nji. If the second variable is also
‘None’, then we predict for all n friends falling into n00.

If we want the probability for either x0 = ‘All’ or x1 = ‘All’, then:

p(yFDCIG = x0, yFDALC = x1|n,θ) =

p(n00 = 0, nij = n, nji = 0, n11 = 0) if xi = ‘None’
bn/2c∑
k=1

p(n00 = 0, nij = n− k, nji = 0, n11 = k) if xi = ‘Few’

n−1∑
k=bn/2c+1

p(n00 = 0, nij = n− k, nji = 0, n11 = k) if xi = ‘Most’

p(n00 = 0, nij = 0, nji = 0, n11 = n) if xi = ‘All’
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where

(i, j) =

{
(1, 0) if x0 = ‘All’
(0, 1) if x1 = ‘All’

which expands to:

(
n

0, n, 0, 0

)
θ0
00 θ

n
ij θ

0
ji θ

0
11 if xi = ‘None’

bn/2c∑
k=1

(
n

0, n− k, 0, k

)
θ0
00 θ

(n−k)
ij θ0

ji θ
k
11 if xi = ‘Few’

n−1∑
k=bn/2c+1

(
n

0, n− k, 0, k

)
θ0
00 θ

(n−k)
ij θ0

ji θ
k
11 if xi = ‘Most’(

n

0, 0, 0, n

)
θ0
00 θ

0
ij θ

0
ji θ

n
11 if xi = ‘All’

Here, we predict for one of the friends’ use variables being ‘All’. In this case, the
marginal sum, nij + n11 needs to equal the entire set of friends n. The degree of use
of the second variable is then determined by n11 which expresses both substances.
nji which expresses the second substance is disqualified because it contradicts the
complete presence of the first substance.

If both x0 = ‘Few’ and x1 = ‘Few’, then:

p(yFDCIG = ‘Few’, yFDALC = ‘Few’|n,θ)

=
bn/2c∑
i=0

bn/2c−i∑
j=I0(i)

bn/2c−i∑
k=I0(i)

p(n00 = n− i− j − k, n10 = j, n01 = k, n11 = i)

=
bn/2c∑
i=0

bn/2c−i∑
j=I0(i)

bn/2c−i∑
k=I0(i)

(
n

(n− i− j − k), j, k, i

)
θ

(n−i−j−k)
00 θj

10 θ
k
01 θ

i
11

where

I0(i) =

{
1 if i = 0
0 otherwise

The yFDCIG = ‘Few’ and yFDALC = ‘Few’ denotes of a mixture of friends in n01, n10,
and n11, or just n11 alone; it does not necessarily mean the respondent has a few
friends who both smoke cigarettes and drink alcohol. For instance, if a teen has one
friend who only smokes and another who only drinks, the response would still be
‘Few’ and ‘Few’. The indicator function I reflects the two minimum conditions: 1) a
respondent has no friends who use both substances, in which case s/he needs to have
at least two friends, who use different substances, 2) a respondent has at least one
friend who uses both substances; this is also a minimum condition, as the respondent
need not have any more friends using either substance to qualify for this combination
category.
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If both x0 = ‘Most’ and x1 = ‘Most’, then:

p(yFDCIG = ‘Most’, yFDALC = ‘Most’|n,θ)

=
dn/2e−1∑

i=0

dn/2e−i−1∑
j=I0(i)

dn/2e−i−j−1∑
k=I0(i)

p(n00 = i, n10 = j, n01 = k, n11 = n− i− j − k)

=
dn/2e−1∑

i=0

dn/2e−i−1∑
j=I0(i)

dn/2e−i−j−1∑
k=I0(i)

(
n

i, j, k, n− i− j − k

)
θi
00 θ

j
10 θ

k
01 θ

(n−i−j−k)
11

where

I0(i) =

{
1 if i = 0
0 otherwise

The pivotal constraint for the ‘Most’,‘Most’ category is the number of completely
non-using friends, n00. If there is at least one completely non-using friend, n00 > 0,
then the rest of the friends can be all dual substance users. However, if n00 = 0,
then in order to satisfy this category, the respondent needs to have again at least two
friends who each use only one of the substances, but different ones.

If either x0 = ‘Few’ and x1 = ‘Most’, or x0 = ‘Most’ and x1 = ‘Few’, then:

p(yFDCIG = x0, yFDALC = x1|n,θ)

=
bn/2c∑
i=0

n−1−i∑
j=bn/2c+1−i

min(bn/2c−i,n−i−j)∑
k=I0(i)

p(n00 = n−i−j−k, nuv = k, nvu = j, n11 = i)

=
bn/2c∑
i=0

n−1−i∑
j=bn/2c+1−i

min(bn/2c−i,n−i−j)∑
k=I0(i)

(
n

n− i− j − k, k, j, i

)
θi
00 θ

j
uv θ

k
vu θ

(n−i−j−k)
11

where

(u, v) =

{
(1, 0) if x0 = ‘Few’ and x1 = ‘Most’
(0, 1) if x0 = ‘Most’ and x1 = ‘Few’

and

I0(i) =

{
1 if i = 0
0 otherwise

and

min(x, y) =

{
x if x < y
y otherwise

The primary constraint is friends who use both substances, n11, which determines the
allowable range for the substance ‘Most’ friends use (j). The ‘Few’ number of friends
who use the other substance (k) is then defined by both i and j, the maximum of
which is the remaining number of friends up to bn/2c.
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Now that we can obtain the probabilities, pFD, associated for all sixteen possi-
ble combinations of yFDCIG and yFDALC, we can express the log-likelihood (for four
parameters in θ):

L(θ|nFD, n) = log [Multinomial(nFD|pFD, n)]

= log

 All∑
i=None

All∑
j=None

nij

 ·
 All∏

i=None

All∏
j=None

1

nij!
· pnij

ij


where pij = p(yFDCIG = i, yFDALC = j|n,θ) and nFD contains counts of all sixteen
possible combinations of joint responses to yFDCIG and yFDALC responses.

For practical computation, we will resort to a less complicated procedure: enu-
merate all possible combinations and then assess both the category to which the
combination belongs and the associated probability:

n00 n10 n01 n11 zFDCIG zFDALC q = Multinomial(n|θ)
3 None None 0.1315
2 1 Few None 0.0705
1 2 Most None 0.0126

3 All None 0.0007
2 1 None Few 0.0985
1 1 1 Few Few 0.0352
2 1 Few Few 0.2123

2 1 Most Few 0.0031
1 1 1 Most Few 0.0759

2 1 All Few 0.0068
1 2 None Most 0.0246

1 2 Few Most 0.0044
1 1 1 Few Most 0.1060

1 1 1 Most Most 0.0189
1 2 Most Most 0.1143

1 2 All Most 0.0204
3 None All 0.0020
2 1 Few All 0.0132
1 2 Most All 0.0285

3 All All 0.0205

where n = (n00, n10, n01, n11) (i.e. a particular row combination), and θ = (0.575,
0.096, 0.115, 0.214) (i.e. the self-reported proportions of our adolescent population
based on past three year smoking (CIGRC3) and and past year alcohol consumption
(ALCYR)). To obtain the pFD probabilities, we collate the q probabilities for each
FD pair from the above table:

pij =
ncombos∑

k=1

I(i, j, k) · qk
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where ncombos is the number of enumerated combinations (i.e. 24 combinations for n
= 3), k points to a particular row,

I(i, j, k) =

{
1 if zk,FDCIG = i and zk,FDALC = j
0 otherwise

and i ∈ {None, Few, Most, All} and j ∈ {None, Few, Most, All}. Now that we
can quickly compute the given the likelihood given a fixed n friends, we include the
Poisson prior on n:

pij =
∞∑

n=0

λne−λ

n!

(n+3
n )∑

k=1

I(i, j, k) · qk


L(λ,θ) = log [Multinomial(nFD|pFD, n)]

where the number of combinations per n, ncombos|n, is
(

n+3
n

)
. For practical purposes,

we compute for values of n friends which give noticeable probabilities, > 1 × 10−6;
limiting the sum to five times our projected, hypothetical λ (i.e. 5λ) effectively
accomplishes this, given that our λ is generally less than 6.

Alternatively, we can compress the notation, by summing each of the sixteen
probabilities pFD at index (u, v), where u, v ∈ {‘None’, ‘Few’, ‘Most’, ‘All’}; in the
tuple notation for pFD, the zero padding indicates summing for only the probability
associated with index (u, v):

pFD(λ,θ) =
∞∑

n=0

λne−λ

n!

 n∑
i=0

n∑
j=0

n∑
k=0

(0, . . . , 0, puv(i, j, k,θ), 0, . . . , 0)


where

puv(n, i, j, k,θ) = Multinomial((i, j, k, n− i− j − k)|θ)

=

(
n

i, j, k, n− i− j − k

)
· θi

00 · θ
j
10 · θk

01 · θ
(n−i−j−k)
11

and

u =


‘None’ if i+ k = n
‘Few’ if 1 ≤ n− i− k ≤ bn/2c
‘Most’ if bn/2c+ 1 ≤ n− i− k ≤ n− 1
‘All’ if i+ k = 0

and

v =


‘None’ if i+ j = n
‘Few’ if 1 ≤ n− i− j ≤ bn/2c
‘Most’ if bn/2c+ 1 ≤ n− i− j ≤ n− 1
‘All’ if i+ j = 0
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As before, the probability of use for each of the sixteen states of friends’ use pFD

is employed in a multinomial with the sixteen categories of empirical counts nFD to
assess the log-likelihood L(nFD|λ,θ) = log[Multinomial(nFD|pFD)].

4.3 Results from Joint Two Substance Analysis

We derive parameter estimates for each joint pairings; from the three substances, we
have three unique, unordered pairs:

x0 x1 λ θ00 θ10 θ01 θ11 µ0 µ1 L
CIG ALC 3.12 0.567 0.092 0.091 0.250 1.07 1.07 -2145.88
RC3 YR 3.17 0.575 0.096 0.115 0.214 -2387.92

CIG MRJ 3.08 0.627 0.162 0.034 0.177 1.04 0.65 -2503.48
RC3 FLAG 3.21 0.659 0.162 0.031 0.148 -2673.61

ALC MRJ 2.83 0.620 0.157 0.026 0.197 1.00 0.63 -2267.77
YR FLAG 3.16 0.641 0.180 0.030 0.149 -2712.06

The first line, of each pair of lines, reports the basic Poisson/binomial parameter
fit, with no divisions in the population.3 The second line provides two pieces of
information. In the x0 and x1 columns, the line displays the recency of use indicator
employed for the fits in both lines of the pair. Next, the estimated parameter in the
second line is just λ, because we fix θ to the population-level “use” proportions, where
“use” is indicated by the recency indicator types; that is, we want to know how well the
population-level prevalence alone predicts the friends’ use ego-network. As expected,
there is more consistency in the mean number of friends λ as well as the marginals on
the mean number of using friends, indicated under µ0 and µ1. Furthermore, we find
that the population-level proportions alone are insufficient proxies for θ; this suggests
that there exists distinct sub-populations which display vastly different ego-network
substance use properties.

For the purposes of verification, we look at sub-populations according to school
grade level:

3The standard errors surrounding the parameters of the first line in each pair:

x0 x1 σλ σθ00 σθ10 σθ01 σθ11 σµ0 σµ1

CIG ALC 0.0188 0.0025 0.0014 0.0014 0.0020 0.0075 0.0074
CIG MRJ 0.0199 0.0025 0.0017 0.0009 0.0017 0.0075 0.0057
ALC MRJ 0.0186 0.0025 0.0017 0.0008 0.0019 0.0073 0.0056
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Grade λ θ− θc θa θca L n µany σany

6 2.76 0.783 0.085 0.031 0.101 -307.21 3879 0.87 0.021
7 3.08 0.681 0.096 0.053 0.170 -343.10 4357 1.51 0.027
8 3.41 0.563 0.101 0.084 0.252 -337.79 4609 2.35 0.036
9 3.61 0.477 0.094 0.125 0.303 -251.14 4232 2.99 0.044

Each user type is represented by the following character tokens: ‘–’ refers to non-use,
‘c’ refers to smoking only, ‘a’ refers to alcohol consumption only, and ‘ca’ refers to
use of both. Despite the age dispersion for each grade level, key parameters such as
λ and θca increase monotonically with grade level. These results are compared to
those of Simons-Morton and Chen (2006), who in 1996 followed a cohort of 2453 6th
graders into the 9th grade; these students were sampled from seven middle-schools in
a suburban Maryland school district, and the time frame overlaps the NSDUH survey
years for our data. Respondents were asked ‘how many of your five closest friends
smoke/drink?’; as in the NSDUH, the definition of ‘use’ (i.e. smoking or drinking)
is left unspecified. The above µany mirrors the measure of friends’ use employed in
that study, in which reports the count of friends who smoke added to the count of
friends who drink; hence, friends who use both substances are tallied twice. The
plot in Figure 4.2 directly verifies the accuracy of our µany and indirectly verifies the
friends count parameter λ and the level of friends’ use in the θ’s. Our mean number
of substance using friends as a function of education level corresponds very closely to
the same measure of their study.

We briefly report one more set of results before moving on to the next section
where we jointly estimate parameters for all three substances.4 The sub-populations
in the following tables are defined by each of the four combinations of cigarette and
alcohol use, defined by past three year use and past year use, respectively. Each sub-
table is denoted by the additional constraints on the likelihood function: none (i.e.
meaning we fit only on the joint friends’ use data), indicator fitting (i.e. include a
fit to the overall population level proportions of CIGRC3 and ALCYR), tie matching
(i.e. include a fit for count of ties between each user type to every other user type
with the exception of its own kind).5

4Age-specific estimates for all joint pair combinations can be found in Table F.6
5The size of the sample population for the tie matching fit is somewhat arbitrary, yet should

represent the size of a connected network. We select a size of n = 100, which is a) a realistic size for
a network component and b) admits enough tie overlapping between each sub-population without
straining the fit on the joint friends’ use.
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Figure 4.2: Average Friends’ Use. The dashed ‘S’ line denotes data from Simon-
Morton’s 1996 study, that looks at a cohort from early fall of the 6th grade (F6 or
month 0) to fall of the 9th grade (F9 or month 36), with three additional surveys in
between; the line plots the number of friends who smoke and/or drink alcohol. In that
study, friends who use both substances are counted twice for this plot. The solid ‘L’
line denotes equivalent average counts of friends who use from our joint analysis on
tobacco and alcohol; a grade year is considered to span from June to June so point
estimates are placed at mid-grade months, i.e. November. Due to the large sample
sizes for both data sources, confidence intervals are not visible.
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Augmented Likelihoods
none indicator only

use λ θ− θc θa θca λ θ− θc θa θca

- 3.17 75.3 6.8 5.0 12.9 3.12 74.4 7.0 5.5 13.1
c 4.03 51.2 19.0 7.0 22.7 4.02 50.0 19.7 8.1 22.2
a 4.20 47.6 7.5 20.3 24.6 4.19 46.0 8.1 22.1 23.8
ca 4.63 30.0 11.8 14.6 43.7 4.63 28.8 12.5 16.1 42.6

Ld = −1319 Ldi = −1392

ties only ties and indicator
use λ θ− θc θa θca λ θ− θc θa θca

- 3.17 75.2 6.8 5.0 13.0 3.12 74.3 7.1 5.6 13.1
c 4.03 51.2 18.5 7.3 23.0 4.01 49.9 19.1 8.5 22.5
a 4.01 47.6 7.3 19.7 25.4 4.00 46.1 7.9 21.4 24.6
ca 4.44 30.0 11.8 14.7 43.6 4.45 28.7 12.6 16.2 42.4

Ldt = −1861 Ldti = −1935

Parameter estimates for each row are percentages, for the sake of readability. The
four likelihoods produce similar θ’s, differing at most by a few percentage points.
In all of these, we find an interesting pattern of affiliation that implies separate,
yet overlapping, substance use cultures. For instance, respondents who only smoke
(“smokers”) are more likely to report having friends who also only smoke more so
than any of the other type of substance user; the “ties and indicator” table entry
at (c,θc) is 19.1%, highest in its column. Similarly, respondents who only drink
alcohol (“drinkers”) are also more likely to have only alcohol-drink friends than any
others; (a,θa) = 21.4%, also the highest in its column. Both of these demonstrate
a possible homophilic selection mechanism along specific substances, and not just
general substance use. While some of this symmetry is observable directly from the
FDCIG and FDALC data, it is more prominent in these findings.

However, the differences in mean friends λ for the non-tie matching likelihoods
complicate our earlier assertion that users of a less prevalent substance would have
more friends. We would expect smokers to have more friends than drinkers, since
cigarette use is less prevalent than alcohol consumption: pCIGRC3 < pALCYR. How-
ever, this is not the case. What might account for this is the difference in their
levels of affiliation to other substance users and consequently to non-users. Smokers
show higher rates of affiliation to the majority population of non-users more than
drinkers, while conversely drinkers show a higher affiliation to other drinkers, as well
as drinker/smokers more than smokers to smokers. This inconsistency suggests an ad-
ditional mechanism such as alcohol consumption being associated with a higher level
of social activity, which happens to be the case at least anecdotally: social gatherings
of youth and adults alike often include alcohol consumption.
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4.4 Joint Analysis of Three Substances

We now turn to joint analysis of all three substances. Here, we report the tabulated
responses of friends’ use (again as percentages of the total number of responses):

yFDMJ = None yFDMJ = Few
yFDALC = yFDALC =

yFDCIG None Few Most All None Few Most All
None 31.92 4.03 0.39 0.09 0.39 1.05 0.21 0.08
Few 7.68 10.79 1.50 0.21 1.14 14.45 3.76 0.34
Most 0.70 0.76 0.65 0.11 0.13 2.85 3.01 0.70
All 0.08 0.10 0.07 0.08 0.03 0.30 0.29 0.16

yFDMJ = Most yFDMJ = All
yFDALC = yFDALC =

yFDCIG None Few Most All None Few Most All
None 0.01 0.08 0.15 0.04 0.02 0.00 0.01 0.06
Few 0.12 0.56 1.26 0.26 0.02 0.03 0.06 0.23
Most 0.08 0.68 4.71 0.45 0.01 0.07 0.19 0.47
All 0.04 0.10 0.35 0.36 0.02 0.03 0.17 1.32

The mass of responses for each quadrant gathers at the diagonal entries (e.g. yFDCIG

= ‘Few’, yFDALC = ‘Few’, yFDMJ = ‘Few’) again pointing to co-substance using friends.
If we look at the proportions of use for each combination of past three year smoking
(CIGRC3), past year drinking (ALCYR), and lifetime use of marijuana (MRJFLAG),
we find some of the co-substance use pattern to hold:

Never Tried Have Tried
Marijuana Marijuana

Drank Alcohol in Past Year?
No Yes No Yes

Smoked in the Past No 56.4 9.5 1.1 2.0
Three Years? Yes 7.7 8.5 1.9 12.9

Marijuana use itself is strongly associated with co-substance use. On the left the use
percentages are roughly similar (7.7%-9.5%), while on the right, when a respondent
has tried marijuana at least once in his or her lifetime, there is higher concomitant
recent use of both cigarettes and alcohol (12.9%). Also we note the use of just
marijuana is a rarity (1.1%) as is the use of just alcohol and marijuana (2.0%).

The eight categories of co-substance use for three substances correspond to now
eight categories for θ:

θijk ∈ {θ000, θ100, θ010, θ110, θ001, θ101, θ011, θ111}
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# of Substances
n One Two Three
0 1 1 1
1 2 4 8
2 3 10 36
3 4 20 120
4 5 35 330
5 6 56 792
6 7 84 1,716
7 8 120 3,432
8 9 165 6,435
9 10 220 11,440

10 11 286 19,448
11 12 364 31,824
12 13 455 50,388
13 14 560 77,520
14 15 680 116,280
15 16 816 170,544
16 17 969 245,157
17 18 1,140 346,104
18 19 1,330 480,700
19 20 1,540 657,800
20 21 1,771 888,030
Σ 231 10,626 3,108,105

Table 4.2: Combination Space of Types of Substance Using Friends. Each entry
contains the number of ways a set of n friends can fall into 2, 4, or 8 (i.e. 21, 22, 23)

substance using categories. The number of combinations per n equals
(

n+m−1
n

)
where

m is the number of substance using states; if d is the number of substances then the
number of substance usingstates is m = 2d.
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where i = 1 indicates past three years smoking, j = 1 indicates past year drinking,
and k = 1 indicates ever having used marijuana. So, for example, θ010 refers to the
probability that a friend only drinks alcohol.

Table 4.2 gives us a sense of how much more difficult it is to analyze three sub-
stances jointly. The total number of combinations, required for each probability esti-
mate, expands exponentially per added substance. As expressed earlier, the number
of combinations for two substances given an assumed number of friends n is

(
n+3

n

)
.

This can be generalized to
(

n+m−1
n

)
, or equivalently

(
n+m−1

m−1

)
, where m is the number

possible substance use states, 4 for two substances and 8 for three substances; this
is the general expression for the number of ways, or combinations, n items can fall
into m categories or bins. To make matters more difficult, the Newton-Raphson re-
quires several hundred estimations per iteration for estimating parameters for three
substances jointly. The number of parameters to estimate grows from 1 (for λ) + 1
(for 2 θ states - 1) = 2 in the 1-drug model, to 1+(4−1) = 5 in the 2-drug model, and
1 + (8− 1) = 8 in the 3-drug model, and consequently the number of partial second
derivatives to compute increases quadratically from 22 = 4 to 42 = 16 to 82 = 64.
Estimating a single set of parameters takes a few seconds to a few minutes for one
and two substances. The estimation of parameters covering three substances requires
about 2 hours of computation time on the fastest (3+GHz) servers at our disposal!
For indicator-inclusive or tie-matched likelihoods, we need 16 parameters to cover all
eight sub-populations; this means 162 or 256 partial second derivatives are computed
per estimation step. Due to limitations in available computing power, we have not
performed these latter two estimations as of this time.

The joint population-level estimates for all three substances are:

Friends’ Use
λ θ− θc θa θca θm θcm θam θcam θc θa θm L

3.03 55.1 7.9 6.7 8.7 0.8 1.7 2.8 16.2 34.5 34.5 21.5 -3627
2.94 50.5 7.9 11.3 12.3 0.3 1.1 1.4 15.1 -5141

Adults’ Use
λ θ− θc θa θca θm θcm θam θcam θc θa θm L

4.22 36.4 11.9 19.0 23.7 0.5 0.7 0.8 6.9 43.2 50.5 9.9 -3737

The θ’s are reported as percentages. As with the joint two substance analysis, we
subscript the θ’s with character tokens indicative of a substance combination: ‘−’
= No Substance Use, ‘c’ = smoking only, ‘a’ = drinking only, ‘m’ = marijuana use
only, ‘ca’ = smoking and drinking only, etc. The first line reports estimates of both
λ and θ’s while the second line reports a fit on λ using the population lifetime use
rates (across all substances) as our θ’s; as expected, we achieve a superior fit when
we employ our assumed definitions of “use”. The ego-network findings again mirror
the bimodal pattern of self-use: teens tend to either use all three or abstain from
all three. Outside of those two categories, we see how certain substances seem more
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likely to be used in tandem with others: marijuana in particular is far less likely to be
used on its own, according to both respondent data as well as the inferred parameter
θm. These patterns do not hold quite so closely for relationships with substance using
adults ; there appears to be far less similar use and far less affiliation with marijuana
using adults.6

Next, we infer parameter estimates per age group and obtain:

yAGE λ θ− θc θa θca θm θcm θam θcam L n
12 2.54 81.1 7.5 2.0 3.8 0.3 0.9 0.5 3.9 -521 4072
13 3.00 71.9 7.5 3.4 7.4 0.6 1.2 0.8 7.2 -542 4329
14 3.26 59.0 8.5 6.4 8.2 0.8 1.7 2.2 13.2 -665 4427
15 3.44 49.8 6.9 8.2 9.6 1.2 1.6 3.0 19.7 -620 4400
16 3.66 42.1 9.3 10.1 9.3 1.6 1.9 4.8 20.9 -665 4133
17 3.84 38.7 7.6 10.0 10.7 0.9 2.9 5.0 24.2 -561 4102
|∆θ| 42.4 1.8 8.1 6.9 1.3 2.0 4.5 20.3 -3573

The values in the |∆θ| row, with the exception of ΣL report the differences between
the maximum and minimum percentages of each column, reflecting the change of
representation in the type of substance using friends. While we expect the proportion
of friends who use all three substances (cam) to be larger, in general, than other types
of using friends, the fact that it dwarfs other categories is surprising — in how quickly
it accumulates over time as well as its magnitude at age 17, given that the proportion
of respondents who used all three substances (‘cam’), 12.9% (shown earlier in this
section), is not that much greater than the proportion of respondents expressing
other combinations of use, particularly ‘c’, ‘a’ and ‘cm’, the range of which is 7.7%-
9.5%. Friendship ties apparently gravitate towards those who are ‘cam’ poly-users;
hence, we should expect ‘cam’ users to have the highest count of friends, and this is
confirmed in the next table. However, initiation patterns do not mirror an increase
in concurrent poly-substance initiation,7 suggesting this migration describes current
users’ behavior.

We also notice decreasing rates of single substance users, ‘c’, ‘a’, and ‘m’ between
the ages of 16 and 17. While the migration towards poly-use would likely account for
some of the decrease, it is also likely that with cigarettes ‘c’, prior smokers have ceased
as we pointed out earlier in footnote [1] of this chapter, and returned to the non-use
‘–’ category; θ− drops only 3.4% between 16 and 17 while the drops at every other

6The respondents’ data for joint adults’ use can be found in Table F.5
7The percentages of respondent initiates for all three substances per age groups is:

Age 12 13 14 15 16 17
% init. 0.51 0.53 0.81 0.39 0.15 0.07

While this measure does not capture the total proportion of initiates per age, due to the broad time
interval in which this data was collected, this curvilinear pattern in which poly-use initiation peaks
at age 14 and drops off quickly, is representative of the pattern for the true initiation rates.
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age step is appreciably more. Finally, we see a more even progression of increasing
λ, roughly an increase of 0.2 friends per year, which seems more reasonable than a
progression with uneven jumps, given our large, national sample.

We estimate parameters for each type of respondent:

# of
self Friends Friends’ Use
use λ θ− θc θa θca θm θcm θam θcam L n
− 3.11 75.1 6.0 3.9 5.9 0.5 0.9 1.0 6.7 -1250 14357
c 3.87 52.5 17.0 5.1 9.2 0.4 2.5 1.6 11.7 -342 1960
a 4.16 49.5 6.6 16.7 10.5 0.6 1.1 2.9 12.1 -271 2426

ca 4.35 36.4 10.5 13.4 17.5 0.9 1.0 2.4 17.8 -326 2167
m 4.02 41.2 5.5 4.5 5.3 6.2 4.9 9.6 22.8 -102 277

cm 4.36 39.8 13.4 3.8 4.2 4.0 4.6 4.8 25.3 -140 480
am 4.32 31.3 4.7 9.3 7.6 3.8 2.3 16.3 24.7 -141 505

cam 4.81 22.8 8.3 6.9 7.9 1.9 4.2 7.6 40.4 -370 3291
ΣL -2942

Consistent with earlier analysis on cigarettes, the use-based decomposition outper-
forms the age-based decomposition once again suggesting friends’ use is more associ-
ated with self-use than age. Use-based homophily continues to be present, though the
evidence is not as stark. When we review the parameter estimates for respondents
of use categories ‘c’, ‘a’, ‘ca’, ‘cm’, and ‘am’, excluding non-use ‘−’ and poly-use
‘cam’, we find the third highest friends’ use category is the same as the respondents’
of that same category, with the exceptions for marijuana users. Marijuana use of
course is associated with poly-use of all three; θcam for all self-use categories that
include ‘m’ dominates as the primary friends’ use category. However, for non-‘m’ use
categories, ‘c’, ‘a’, and ‘ca’, the specific combination of self-use is reflected in the pool
of friends, which again suggests specialized substance use homophily. Also, due to
the paucity of certain categories of users, namely ‘m’ and ‘cm’, respondents claim-
ing these combinations of use likely have difficulty finding identically using friends;
hence, we see greater affiliation with overlapping categories, instead. However, some
caution is warranted in making these claims. Since our data is self-reported, there
remains the possibility that respondents were biased in believing their friends used
similar substances to themselves; still, the break in the pattern with marijuana users
suggests that this not entirely the case.

Now, we obtain poly-substance parameter estimates on also adults’ substance use:
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# of
self Adults Adults’ Use
use λa θ− θc θa θca θm θcm θam θcam L
− 4.16 44.1 11.2 17.4 22.7 0.3 0.5 0.5 3.3 -2177
c 4.34 34.0 17.7 17.1 24.0 0.8 0.5 0.1 5.8 -355
a 4.55 29.5 9.5 26.2 26.6 0.4 0.6 0.7 6.4 -373

ca 4.93 26.3 12.3 23.8 28.3 0.7 0.8 0.6 7.3 -371
m 4.43 33.9 7.7 12.9 21.8 1.4 2.1 3.5 16.6 -115

cm 4.47 30.8 14.1 14.0 20.2 0.7 1.6 2.3 16.4 -168
am 4.47 22.1 13.0 22.0 19.3 3.0 0.8 2.3 17.5 -182

cam 5.01 22.6 12.7 18.8 20.5 1.3 2.1 3.1 18.8 -404
ΣL -4146

Firstly, we notice that the λ estimate for acquaintanceship with adults is generally
higher than for adolescents’ friends. This is not surprising given that ‘knowing’ ex-
presses a less restrictive affiliation than friendship. However, the lack of specificity in
‘knowing’ makes it difficult to ascertain the specific types of adults considered by the
respondents: parents, teachers, friends of parents, older siblings, etc. Still, we see, as
we did with friends’ count, the level of association to adults increases monotonically
with age.8 The pattern of association between adolescents and adults is interestingly
different than that between adolescents and their friends. There is less substance use
homophily and more dominance of affiliation to alcohol consuming and both alcohol
consuming and smoking adults, which should not be surprising, since both of these
substances are not stigmatic in the adult world and have a prevalence and visibility
far more than marijuana. Furthermore, adolescents generally do not choose the adults
with whom they associate; hence, we would see far less homophilic tendencies.

8

λ’s Estimated from Friends’ and Adults’ Use of
Tobacco Alcohol Marijuana

Age λ λa λ λa λ λa

12 2.76 4.68 2.43 3.60 1.94 2.33
13 3.25 4.86 2.89 3.81 2.60 2.49
14 3.57 5.10 3.14 4.15 2.69 2.77
15 3.67 5.09 3.38 4.18 2.94 3.03
16 3.98 5.20 3.61 4.23 3.05 3.36
17 4.10 5.19 3.88 4.46 3.25 3.25
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Chapter 5

Prelude to a Dynamic Model

Dynamic modeling represents both the Holy Grail and bane of network analysis.
In theory, the approach attempts to account for subtle dependencies and feedback
effects not captured by static or cross-sectional inference. However, difficulties in
gathering temporal network data and the lack of adequate methodologies have until
recently muted previous attempts to explain the interplay between adolescents’ peer
networks and their substance use. The analyses in this chapter attempt to bridge the
two perspectives by employing the cross-sectional data of the NSDUH to inform the
development of a dynamic model, by isolating age transition dynamics. Specifically,
we focus on how friendship networks grow in the number of substance using friends
through influence (in the form of friends’ initiating) and selection (by distinguishing
between the degree to which users and non-users select using friends). For these
analyses, we employ on ‘ever having used’ a substance, or lifetime use, as the definition
of ‘use’. Despite the implications of this assumption — that is, we cannot model users
who revert to non-use status — we find striking differences between how users and
non-users networks evolve from age 12 to 17.

5.1 Risk of Initiation

In order to understand change in substance use dynamics, we focus on the initiation
stage. Initiates are respondents whose current age (at the time they participated in
the survey) equals that of their age of first use (i.e. CIGTRY, ALCTRY, or MJAGE).
The friends’ use data for initiates of each substance appears as follows:

raw prop.
Friends’ Use None Few Most All None Few Most All
Tobacco 87 394 149 21 0.134 0.605 0.229 0.032
Alcohol 228 633 342 79 0.178 0.494 0.267 0.062
Marijuana 63 344 151 35 0.106 0.580 0.255 0.059
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Again, these data can be deceptive. For instance, we might be inclined to think that
that first time smokers have more smoking friends than do first time alcohol drinkers
have drinking friends due to a higher proportion of first time alcohol expressing ‘None’
of their friends use. However, λ and θ parameter estimation gives us a more accurate
way to describe prevalence rates:

Parameter Estimates for Substance Use Initiation
Substance λi θi σλi

σθi
L ni µi σµi

Tobacco 5.16 0.406 0.205 0.011 -10.18 651 2.10 0.090
Alcohol 4.21 0.446 0.113 0.009 -20.79 1282 1.88 0.056
Marijuana 4.97 0.445 0.202 0.012 -8.95 593 2.21 0.096

The estimates tell us that, while the average initiating smoker indeed has more smok-
ing friends than first time drinkers have drinking friends, in fact, the proportions
are reverse. And, when the parameters are considered jointly, we confirm that the
prevalence of raw number of using friends is least for first alcohol consumers; the dif-
ferences across all three substances are significant.1 For notation, we use lower-case
i to indicate parameters inferred directly from first time user data. We will later use
I to denote to denote subsequent inferences from the primary initiation estimates. If
we examine parameter estimates for first time smokers in each age group, we obtain:2

Parameter Estimates for Tobacco Use Initiation
Age λi θi σλi

σθi
L ni µi σµi

12 4.23 0.416 0.477 0.036 -6.12 75 1.76 0.220
13 5.23 0.376 0.488 0.025 -8.56 123 1.96 0.197
14 6.21 0.420 0.590 0.023 -6.40 129 2.60 0.264
15 5.24 0.407 0.479 0.025 -7.38 123 2.13 0.215
16 5.02 0.467 0.467 0.027 -8.05 111 2.34 0.231
17 5.24 0.336 0.588 0.030 -6.12 89 1.75 0.215

There is considerable overlap in both parameters across the age groups. T -test
significance, at the p < 0.05 level, in the difference between the mean number of
smoking friends at initiation, µi, occurs between age pairs (12,14), (12,13), (14,15),
(12,16), (12,13), (14,17), and (16,17); that is, there is no noticeable pattern. In
general, smoking initiation occurs in the presence of between 1.75 and 2.60 smoking
friends (minimum and maximum µi). With alcohol, the range is 1.44-2.41 and, with
marijuana, it is 1.51-3.09. These ranges are consistent with the pooled population
estimates of mean using friends: the ordering, from least to most, goes alcohol, to-
bacco, and marijuana. Right now, these findings suggest that the circumstances of
initiation are similar across all age groups. However, this claim is conditional on a

1Relevant t-statistics: tca = -57.02, tcm = -20.79, and tam = -62.38. Joint initiation analysis will
not be conducted due to the sparseness of the data.

2Similar results for first time alcohol and marijuana users are Tables G.1 and G.2.
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respondent already having initiated. If we wanted to know the likelihood of initiation
for any given youth, we would need to consider the population of those who did not
initiate.

We can use these initiation parameters to ascertain what the risk of initiation is for
a youth having a particular quantity of substance using friends. If over a given year
there are ni initiates and n0 non-users, then given m smoking friends, the probability
of initiating pI is:

pI(m) =
ni|m

ni|m+ n0|m
Altering the equation to express each sub-population as proportions of the entire
non-using population prior to the initiation of those ni adolescents:

pI(m) ≈ p(yt+1
CIGFLAG = 1|yt

CIGFLAG = 0,m)

=
p(m|λi, θi) · pi

p(m|λi, θi) · pi + p(m|λ0, θ0) · (1− pi)

where pi is the proportion of the non-using population (and, later, age-specific non-
using populations) that initiated, λi and θi are estimated from the initiating sub-
population, and λ0 and θ0 are estimated from the non-using sub-population. While,
in essence, we are trying to measure the probability of a transition from never hav-
ing used a substance to trying it with the lifetime indicator, the first line expresses
an approximation because we treat the data as simultaneously measured at interval
sampling points, when in fact, the dynamics of initiation are much more fluid; not
everyone initiates exactly on the same day of the year. We attempt to account for
this sampling issue by using changes to the FLAG indicator between age categories as
an estimate for the proportion of the population that initiates; the proportion of the
population that indicated initiation in the survey cannot be used because the number
of initiates per age is severely undersampled.3 We assume that distribution of using
friends for the pre-initiation population can be described by weighting and summing

3Given a respondent who initiates at a certain age, if we assume a uniform distribution for the
time between a respondent’s birth date and the NSDUH interview date and a uniform distribution
for the date of initiation, the “first try cigarettes” response item will only capture 25% of the
respondents; for instance, roughly half of those who initiate between 12 and 13 will do so while they
are still 12-year-olds and the NSDUH will pick up only half of those initiates while who are still 12
and miss the half of that group because they have not initiated at the time of the interview, but
will do so before their 13th birthday. We can attempt to correct the NSDUH estimate; however,
we cannot be assured that either distribution is uniform. Still, the data compares closely enough to
obviate some, not all, concern:

12 13 14 15 16 17
pt

i/0.25 0.075 0.116 0.118 0.114 0.108 0.090
pt+1(yCIGFLAG = 1)
− pt(yCIGFLAG = 1) 0.092 0.109 0.118 0.071 0.071
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the coinciding distributions for the non-using population and the initiation popula-
tion. For each category m substance using friends, we can compute the probability
of initiation (e.g. m for tobacco is equivalent nsmoke):

Risk of Substance Use Initiation
Number of Substance Using Friends, m

0 1 2 3 4 5 6
Tobacco 0.018 0.054 0.148 0.345 0.615 0.829 0.936
Alcohol 0.032 0.103 0.283 0.576 0.824 0.941 0.982
Marijuana 0.008 0.041 0.193 0.573 0.883 0.977 0.996

As expected, the risk of initiation increases per using friend; it would be extremely sur-
prising if this was not the case! This generally corroborates other findings on impact
of peer influence on substance use initiation; it is less likely that within the allotted
time frame (between the last birthday and interview date) that a substance-inclined
adolescent sought new friends in such a manner as to produce the distributions ob-
served above. The pattern is also interesting: a sudden increase in risk when the
number of using friends m reaches 2 or 3. These numbers identify which adolescents
would be most affected by changes in the network structure that might alter the
number of using friends and also suggest the conditions under which initiation might
spread more quickly: if all non-using adolescents had only one using friend, the speed
of initiation would differ than if just few of them had an abundant number using
friends; this assertion warrants future investigation. For alcohol and marijuana, the
leap in risk is more pronounced when the number of using friend increases from one
to two; this suggests that these two substances might have different social properties
that make initiation more difficult to resist. These patterns are readily apparent in
Figure 5.1.

While earlier we saw evidence that pointed to similar ego-networks for all initiates
across all age-groups, here we find that in fact age protects against influence and shifts
the risk curve to the right:4

Risk of Tobacco Use Initiation
Number of Smoking Friends, m = nsmoke

Age 0 1 2 3 4 5 6
12 0.026 0.124 0.434 0.806 0.957 0.992 0.998
13 0.022 0.079 0.248 0.558 0.829 0.949 0.986
14 0.013 0.043 0.136 0.356 0.660 0.872 0.960
15 0.020 0.045 0.096 0.194 0.352 0.551 0.735
16 0.017 0.036 0.074 0.147 0.270 0.443 0.631

A 16-year-old with five smoking friends incurs the same risk of initiation as a 12-year-
old with only two smoking friends. This pattern holds for alcohol and marijuana.5

4This finding is corroborated by initiation analysis in Appendix A and host of outside research:
initiation into substance use drops after a peak age of roughly 14 or 15.

5Similar results for alcohol and marijuana are reported in Tables G.3 and G.4.
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Figure 5.1: Risk of Initiation. Solid line ‘c’ denotes probability of trying smoking as
a function of smoking friends; dashed line ‘a’ denotes risk of alcohol initiation; and
dotted line ‘m’, risk of marijuana initiation.

We can even look at the joint distribution and examine the risk per pair of number
of total friends n and number of those friends who use m. In Figure 5.2, we display the
joint posterior distribution for 12-year-old initiates.6 We can see in both the graph
and its source data (relegated to the Appendix) that the influence effects become
diluted when the number of total friends increases holding for a fixed number of
using friends (i.e. number of non-using friends increases).

5.2 Change in Network

5.2.1 Risk of Initiation II

We can now extend our earlier computation of risk of initiation in order to infer how
ego-network composition changes from age to age for each group of non-users and
users; the following equations apply to each group separately so we do not identify
them by a subscript, in order to maintain readability:

p̂t
i = pt

i · st

6The data for this figure appears in Table G.5.
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pt
I(n,m) =

p(n,m|λt
i, θ

t
i) · p̂t

i

p(n,m|λt
i, θ

t
i) · p̂t

i + p(n,m|λt
0, θ

t
0) · (1− p̂t

i)

qt
I0 =

∑
n,m

(
pt

I(n,m) · p(n,m|n 6= m,λt
0, θ

t
0)

p(n 6= m|θt
0, λ

t
0)

)

qt
I1 =

∑
n,m

(
pt

I(n,m) · p(n,m|n > 0,m > 0, λt
1, θ

t
1)

p(n > 0,m > 0|λt
1, θ

t
1)

)

We continue to use the joint distribution for risk of initiation pt
I(n,m) for each age

group, denoted t, while qI0 and qI1 refer the scalar probabilities of initiation for a
friend of a non-smoker and a friend of a smoker, respectively. A non-user will have
a joint n, m friend distribution as defined by p(n,m|λ0, θ0). However, any friend
of this non-smoker must have at least one friend who does not smoke; hence, the
diagonal n = m of the joint distribution is ignored giving us: p(n,m|n 6= m,λ0, θ0).
The friend of a smoker will have at least one friend who does smoke, hence, the first
row and column of the joint distribution is ignored: n > 0 and m > 0. These edited
distributions are appropriately normalized; for instance p(n > 0,m > 0|λt

1, θ
t
1) is the

sum probability for the subsection of the joint probability and equals
∑

n,m p(n,m|n >
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0,m > 0, λt
1, λ

t
1).

Furthermore, we find that the proportion of initiation within each age groups re-
quires modification when used as weights for joint distributions on n and m. This
is not surprising given that the parameters for initiates were estimated without con-
straint and not concurrently fitted to another measure (as we did for earlier models
when we fitted to recency indicators and tie volume). Furthermore, given the smaller
sample sizes for the initiates’ sub-population, it is not surprising that the estimates
will be moderately biased; in this case, they over-estimate the prevalence of using
friends. We correct for this by estimating a scale factor, st, for the age-specific ini-
tiation rate pt

i that allows qI0 and qI1 to sum the original pt
i when weighted by the

respective proportions of use in its sub-population. We display estimates for all three
substances in Table 5.1. σs and Ls refer to how well the scaling factor st applied to
pt

i results in a fit to the proportion of the population which initiated:

Ls(s
t|λt

i, θ
t
i , λ

t
0, θ

t
0, λ

t
1, θ

t
1, (n

t
0, n

t
1)) = Multinom(b(1− pt

i, p
t
i) · ntc|(n

t
0, n

t
1)

nt
· (qt

I0, q
t
I1), s

t)

where nt = nt
0 + nt

1. As we expected, the risk of initiation for friends of non-users is
far less than that of friends of users. The overall initiation risks reflect the prevalence
for each substance; for instance, friends of non-drinkers still have a higher initiation
rate than say friends of smokers or friends of marijuana users.

5.2.2 Transition Parameters

We can now try to estimate some selection parameters, specifically, the degree to
which non-users and users will retain or drop friends who use and when acquiring
new friends, the degree to which they select for those who use. We propose the
following set of change equations that describe what occurs between each advancing
year, t, where t is age of cohort its range is [12,17]. Again, this set of computations
can apply to each of the non-using and using sub-populations or both; hence we omit
the subscript denoting user or non-user sub-population:

θi = qI (prob. of any friend initiating)

µm = λtθt (# of friends who are users)

µi = λt(1− θt)θi (# of non-using friends who initiate)

µr = φ(µm + µi) (# of using friends who are removed)

µλ = λt+1 − (λt − µr) (# of new friends)
or, equivalently,

λt+1 − λt = µλ − µr (same as last eq., change in friends)

µs = ωµλ (# of new friends who use)

λt+1θt+1 ≈ µm + µi − µr + µs (# of using friends at t+ 1)
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Tobacco Initiation Parameters
Age qI0 qI1 pi s σs Ls

12 0.077 0.201 0.092 0.78 0.00163 -3.82
13 0.092 0.175 0.109 0.69 0.00099 -3.93
14 0.099 0.159 0.118 0.60 0.00066 -3.98
15 0.061 0.085 0.071 0.50 0.00078 -3.75
16 0.060 0.081 0.071 0.45 0.00067 -3.71
17 0.065 0.075 0.071 0.47 0.00074 -3.71
µI 0.075 0.129 0.087

Alcohol Initiation Parameters
Age qI0 qI1 pi s σs Ls

12 0.098 0.246 0.115 0.81 0.00138 -3.92
13 0.104 0.196 0.124 0.70 0.00087 -3.99
14 0.120 0.190 0.142 0.60 0.00053 -4.06
15 0.085 0.117 0.099 0.48 0.00049 -3.90
16 0.057 0.078 0.068 0.38 0.00051 -3.69
17 0.062 0.071 0.068 0.40 0.00056 -3.69
µI 0.083 0.165 0.103

Marijuana Initiation Parameters
Age qI0 qI1 pi s σs Ls

12 0.025 0.070 0.030 0.82 0.00562 -3.30
13 0.060 0.118 0.072 0.80 0.00205 -3.74
14 0.083 0.134 0.099 0.75 0.00125 -3.90
15 0.063 0.088 0.074 0.69 0.00140 -3.77
16 0.055 0.075 0.065 0.63 0.00143 -3.68
17 0.060 0.069 0.065 0.67 0.00160 -3.67
µI 0.057 0.144 0.068

Table 5.1: Risk of Initiation for Friends of Users and Non-Users. For each age group,
the probability of initiation for friends of a non-user qI0 and friends of users qI1 are
reported along with the proportion of initiation pi and the required scaling factor s.
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Our unknown key parameters are the selection parameters: φ for the proportion of
using friends that are dropped and ω for the probability that a new friend will be a
user. The knowns are the ego-network composition parameters for the age groups for
which we want to describe transition, λt, θt, λt+1, θt+1, and θi, the probability that
a current friend will initiate, which is equivalent to the qt

I values from Table 5.1. In
the last equation, we know how many friends we have at t + 1, so if we assume to
know the rate of using friends we selected out via φ, then ω is a known. Hence, there
really is only one unknown in these equations (for each age group). Note, it would
be more realistic to allow dropping of both using and non-using friends; however, the
data does not allow us to include this additional degree of freedom.7 This restricts
interpretation on the results, but we can still make comparative assessments about the
degrees of selection among using and non-using respondents. In fact, a simpler version
of the model would omit the dropping of any friends, except for the few instances
when λ drops between ages. However, our risk of initiation parameters often result in
too many friends who initiate between ages; they exceed what we would expect from
the parameters of the subsequent age. We could simply categorize these overshoots
as mis-fits and allow the parameter estimation to reflect this. Or, we introduce a
dropping parameter and achieve a modestly better fit.
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Figure 5.3: Age Specific Curves for Selecting Cigarette Smoking Friends. The φ ex-
presses the proportion of using friends that are dropped and ω expresses the probability
that a new friend is a user. The plot is overlaid in light gray with the contours of the
log-likelihood fits on the centroid parameter coordinate.

7So far I have not managed to converge on solutions for each sub-population (detailed later)
when I include dropping of any kind of friend, but this might change with future attempts and
improvements.
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In Figure 5.3, we display the values of φ and ω involved in the transition for
each age group, denoted by age mod 10 (e.g. 12-year-olds is the ’2’ curve) to the
next age, and for each type of respondent, non-smoker (yCIGFLAG = 0) and smoker
(yCIGFLAG = 1). For each age transition, the equations contain only one unknown
variable; hence, the solutions for dropping and selecting using friends, φ and ω, for
each age transition lie on a line.

So, for example, if we believe the rate that 12-year-olds (in turning 13) acquire
new using friends among all their new friends to be ω = 0.15, then the rate of
their dropping using friends would have to be φ ≈ 0.19. That is, the point (ω =
0.15, φ ≈ 0.19) lies on the ‘2’ curve for non-smokers, yCIGFLAG = 0. The age-specific
curves flatten for age transitions of older respondents, which reflects the increasing
prevalence of smokers; youths gain more and more smoking friends. The curves for
users also exhibit, more or less, a similar flattening. We can use the intersections of
these curves to triangulate specific estimates of φ and ω. For instance, if we only
had data for 12-14 year-olds, we would settle on the intersections of the ’2’ and ’3’
curves to specify the selection parameters. For non-users, the curves intersect at
roughly (ω, φ) ≈ (0.05, 0.07) and for users, (0.25, 0.10). Not surprisingly, users are
selecting more users as friends while non-users appear to be losing using friends, but
this reduction is countered by an initiation rate for friends of non-users (i.e. qI0 from
Table 5.1) that exceeds the dropping rate; hence, we will still see an increase in the
number of using friends even among friends of non-users, which verifies the increases
in the age-specific λ and θ parameters for non-users.

Instead if we wanted a single pair of estimates to describe the dynamic process of
friend selection, we would find the centroid of these curves. We fit to the distribution
surrounding the number of using friends µt+1

m and σt+1
m implicitly expressed by each

curve:

ψt+1 = µm + µi − µr + µs

≈ λt+1θt+1

L(φ, ω|λ,θ,θi) =
16∑

t=12

log[Normal(ψt+1|µt+1
m , σt+1

m )]

and we obtain the following estimates; note, the mean initiation rate for each sub-
population across all age-groups, θi, though not an estimated parameter, is reported
here again for informative purposes:

respondent θi φ ω σφ σω tφ pφ tω pω

never smoked 0.075 0.069 0.048 0.0209 0.0389 3.30 0.001 1.23 0.217
smoked 0.129 0.111 0.361 0.0212 0.0562 5.24 0.000 6.42 0.000

Significant parameter estimates are bold-typed. As we suspected, the initiation rate
for non-smokers exceeds that of dropping using friends; hence, the prevalence of
smoking even among non-using respondents will climb, but not nearly as quickly as
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it does for using respondents whose selection parameter for new friends is nine times
that of non-users!
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Figure 5.4: Age Specific Curves for Selecting Alcohol Consuming Friends. Again,
φ expresses the proportion of alcohol drinking friends who are dropped and ω is the
probability that a new friend drinks alcohol.

We proceed to look at estimates for φ and ω for alcohol and marijuana. In Figure
5.4, we display the appropriate curves. However, the curve for 12-year-old adolescents
who have consumed alcohol (yALCFLAG = 1) does not intersect any of the age curve;
so, we omit it from the calculation of the centroid.

respondent θi φ ω σφ σω tφ pφ tω pω

never drank alc 0.083 0.063 0.025 0.021 0.040 3.00 0.003 0.63 0.532
drank alc 0.165 0.201 0.672 0.271 0.318 0.74 0.742 2.11 0.035

As with tobacco use, we find non-drinkers to drop more drinking friends than gain
and the reverse with drinkers. However, in comparison to smoking, there is more
activity with drinkers in the rate of their friends’ initiation as well as their network
change parameters.

We finally look at marijuana use. In Figure 5.5, as with alcohol drinkers, we have
to ignore the 12-year-old curve for marijuana users since it does not intersect any
other curse within the [0,1] range of ω.

respondent θi φ ω σφ σω tφ pφ tω pω

never used mrj 0.057 0.125 0.122 0.016 0.011 7.81 0.000 11.09 0.000
used mrj 0.144 0.101 0.138 0.038 0.252 2.84 0.004 0.55 0.583

The network change activity is far more sedate than it is for tobacco or alcohol. In
fact, there appears to be an even exchange for non-users. The relative differences in
θi, φ, and ω also speak to the degree in which respondents are embedded
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Figure 5.5: Age-Specific Curves for Selecting Marijuana Using Friends. φ is the
proportion of marijuana using friends who are dropped and ω is the probability for a
gained friend being a marijuana user.

5.3 Comparing Selection/Influence Parameters to

Outside Research

Pearson et al. (2006) examined similar trends in substance use and adolescent net-
works. Their panel social network data were collected in the Teenage Friends and
Lifestyles Study (Michell and Amos, 1997; Pearson and Michell, 2000; Pearson and
West, 2003) and comprised both friendship network and substance use data for a
cohort of 160 students in the West of Scotland. Selection and influence parameters,
which they call homophily and assimilation, were estimated using a co-evolutionary
software package called SIENA (Snijders et al., 2005; Steglich et al., 2006b). Their
estimated parameters are surprisingly similar to ours.

In Table 5.2, we see there is some similarity between the selection/homophily
(ph vs. ω) and influence/assimilation parameters (pa vs pI) despite the substantial
differences in the data and methodology: Scottish vs. American adolescents, panel
cohort vs. cross-sectional age groups, age range of 13-15 vs. 12-17, and sample size
of 160 vs. 25052. The SIENA model reports log-odds ratios which we converted into
probabilities, ph and pa (for homophily and assimilation respectively), to facilitate
comparison. While the ordering of the Pearson/Snijders’ homophily parameter and
the our composite selection parameter, ω, does not quite match across substances, the
magnitudes come close, with the exception of marijuana/cannabis use. The assimi-
lation parameter, however, does indeed reflect our risk of initiation in their orderings
and, also, magnitudes for tobacco and alcohol, but only when compared to the risk
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Selection Parameters Influence Parameters
Pearson/ ... Pearson/ ...
Snijders’ converted Lee’ Snijders’ converted Lee’s
log-odds to selection log-odds to initiation

homophily ph ω assimilation pa pI(m = 4)
smoking 0.42 0.603 0.597 0.39 0.596 0.615
alcohol 0.96 0.723 0.692 1.63 0.836 0.824
marijuana 0.18 0.644 0.509 3.54 0.972 0.883

Table 5.2: Comparing Selection/Initiation Parameters with Pearson/Snijders’ Ho-
mophily/Assimilation. Pearson/Snijders’ homophily and assimilation (i.e. selection
and influence, respectively) parameters (both log-odds and converted probabilities, ph

and pa) are compared to analogous probability parameters. ω is weighted, composite
probability of selecting (both, in and out) similar friends, [{φ0 + (1− φ1)} · 0.5 + (1−
ω0)+ω1]/3, wherein selecting in is given higher priority than selecting out. pI(m = 4)
is shorthand for p(yt+1

xFLAG = 1|yt
xFLAG = 0,m = 4) where x ∈ {CIG, ALC, MRJ} and

denotes the probability of initiation a substance given exactly four using friends.

of initiation under the specific condition of having four using friends; given this re-
strictive condition and also because we do not model how influence effects cessation
of use, the similarity for assimilation/influence is considered weak.

A more precise comparison of assimilation and initiation parameters is possible.
In the SIENA model employed by Pearson and Snijders, changes in respondents’
substance use behavior was modeled by fitting to log-odds coefficients to the panel
data: β0 for a tendency to use (independent of peer influence) and β1 for tendency to
behave similarly as their friends. We calculate the initiation marginal distribution on
m for 13-15 year-old respondents in the NSDUH and estimate similar β coefficients:

Pearson/Snijders’ Lee’s
log odds logit(pI(m)) ≈

tendency assimilation difference β0 + β1 ·m− β1 · (n−m)
β0 β1 β1 − β0 β0 β1 β1 − β0

smoking -3.36 0.39 3.75 -1.82 0.72 2.54
alcohol 0.25 1.63 1.38 -1.38 0.67 2.05
marijuana -1.02 3.54 4.56 -2.33 1.28 3.61

The β coefficients are noticeably different in absolute magnitudes, which is expected
given that we are comparing general use in the Pearson study with initiation of
NSDUH respondents. Still, the quantities exhibit similar patterns. For instance, the
tendency to drink alcohol (independent of influence) is higher than the tendency to
smoke for both Scottish and NSDUH adolescents. Also for both samples, influence
is far more responsible for marijuana use than for the other two substances. The
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Hall/Valente’s Lee’s Smoking Initiation
Smoking Friends |n<12, |n<8, |n<10,

(6th Grade) yAGE = · yAGE = 12 yAGE = 13
vs. Smoking (7th) (n<10, n<14) (n<7, n<9) (n<8, n<11)

Odds-Ratio 27.05 26.98 26.29 25.46
95% C.I. (4.53 - 161.40) (4.50 - 175.48) (2.13 - 109.20) (6.61 - 247.35)

Table 5.3: Comparing Smoking Results to Hall/Valente. Hall/Valente report odds-
ratio fit between proportion of friends who smoke in the 6th grade and a binary in-
dicator of self-smoking in the 7th. A respondent is considered a smoker if s/he has
ever smoked a cigarette. Odds-ratio between proportion of NSDUH friends smoking
and probability of initiation into smoking is directly drawn from the risk of initiation
joint distributions. Definition of ‘smoking’ is identical to that of Hall/Valente.

NSDUH estimates for alcohol use suggest that alcohol initiation occurs less from
peer influence. This finding is not corroborated by Pearson/Snijders, where influence
coefficient for drink alcohol is stronger than it is for smoking; we might consider
cultural differences to account for some of this disparity. When we compare the
magnitudes of tendency to use to assimilation (or influence) for each of the substances,
we find a consistent ordering in how much influence exceeds the tendencies to use, with
alcohol being the least and marijuana the greatest. This ordering corroborates the
earlier findings on selection, ω, in which selection forces accounted for the clustering
of alcohol drinkers more than it did for smoking and marijuana use. Selection was
the least prominent for marijuana use; the converse is demonstrated here: influence
is strongest for marijuana initiation in the NSDUH and also strongest for marijuana
use in the Pearson adolescents.

Hall and Valente (2007) explores the influence/selection mechanism, by following
880 6th graders in six, Los Angeles County middle schools into the 7th grade and mea-
suring the extent of smoking among the respondents’ five best friends and changes in
the respondents’ own use. The extent of smoking in each ego-network is described as
’Selecting Smokers’; that is, the proportion of friends whom the respondent listed as
being smokers (first at 6th grade and then at 7th grade). Their definition of smoking
is identical to the CIGFLAG variable: ever having smoked (lifetime use) qualifies a
respondent as a ‘smoker’. Their reported result, shown in Table 5.3, is an odds-ratio
and modestly matches similar ratios obtained from our joint risk of initiation distri-
bution, but only under the subset of the distribution in which parameters are likely
to predict; extreme parts of the distribution such as having fifteen friends with all
fifteen smoking biases the calculation of an accurate estimate and, so the distribu-
tion is truncated in order to maintain symmetry. Instead of confidence intervals, we
can provide other truncations of the distribution that produce an interval of estima-
tion that closely mirrors the C.I. of Hall and Valente’s empirical results. The mean

89



of odds-ratios produced for the joint distribution from the risk of initiation for 13
year-olds most closely matches the results of Hall and Valente.

Hall/Valente’s Lee’s Smoking Initiation
YSmoking(7th) ∼ logit(pI(n,m, yAGE = . . .)) ∼ β0 + β1logit(m/n)

β0 + β1XFriends(6th) all ages 12 year-olds 13 year-olds
β1 0.29 0.1681 0.1719 0.1622
n,m < 16 0.2394 0.4277 0.3105

In addition to odds-ratios, Hall and Valente supply beta coefficients from a structural
equation model appropriately employing logistic regressions. But here, we see that
the β for predicting the 12 year-olds’ risk of initiation is closest to that of Hall and
Valente’s 6th graders smoking in the 7th grade; but all three quantities are clearly off.
However, when we lift the restriction on the joint distribution, the β for 13 year-olds
almost matches the Hall/Valente β. All these findings should be regarded with some
reservation since it was necessary to employ an unbiasing of the joint distributions.
Still, it is reasonable to ignore regions of the joint distribution that are not likely to
occur and would shift the estimates towards the absurd.

5.4 Sequencing of Covariates

Thus far, we have furthered our knowledge into how adolescents’ use behavior and
their peer networks co-evolve. However, these dynamics cannot be directly altered by
any realistic means; school administrators cannot simply tell students to not smoke or
drink and expect them to comply (especially given the strength of both cultural and
peer influence) nor can administrators exert control over teens’ friendship affiliations.
While the enforcement of punitive measures is a modest deterrent, it does not ap-
pear to significantly impact use levels, given persistent and widespread substance use
among adolescents. Instead, studies seeking to improve intervention and prevention
approaches focus on indirect predictors such as youths’ attitudes towards substance
use by others and also their relationships with their parents (Simons-Morton, 2002).
However, it is essential to empirically confirm that the chain of causality is such that
these indirect covariates precede the changes in self-use and/or friends’ use. If, in-
stead, it is the case that changes in these covariates are the product of the changes in
adolescents’ use behavior and peer group composition — for example, an adolescent’s
relationship with his or her parents is strained following the youth’s initiation into
some substance — then these covariates will be largely useless in informing preven-
tion and intrevention strategies. In this section, we attempt to ascertain the temporal
ordering of these events. This process entails comparing the changes in population-
level estimates of self-use, peer group composition, to changes in the aforementioned
indirect covariates. Admittedly, the analysis at this point is amateur; while a roughly
similar technique exists (i.e. latent growth curve analysis), it has not been found to
produce estimates of latencies.
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We start by looking at an example set of some short time series which are highly
inter-correlated. In Figure 5.6, we have three series sampled at unit time points, t ∈
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Figure 5.6: Example of Lagged Series. Two series #1 and #2 are highly correlated
with series #0, and perfectly correlated when accounting for the lag.

[1,10]. We can see that series #1 and #2 are highly correlated with series #0. We can
compute lagged correlations which involve lags of unit intervals; we would discover
that the original unlagged comparisons fit #0 best. However, we would not uncover
the fact that #1 and #2 are perfectly correlated with #0 but with fractional lags;
#1 precedes #0 by 0.4 (or lag = -0.4) and #2 follows #0 also by 0.4 (or lag = +0.4).
The fractionally lagged series are marked by the gray, dashed lines.

If we assume that changes to these series occur continuously, and not immediately
at the sampling points in time, and we are also justified in suspecting that the com-
pared series are more similar than they appear, we can attempt to infer the extent
of the hypothetical fractional lag by linearly fitting the target series (i.e. #1 or #2)
to an alternate series which both correlates better to the source series (i.e. #0) but
with a fractional lag and, when sampled at the unit intervals, appears identical to
the original target series. We look for a fractionally lagged series that minimizes the
deviations from both its fit to the primary series and sampled points of the observed
series. We employ the following covariates in this analysis:
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Covariate Definition
TALKPAR # parents can you talk to about important issues8

∈ {0 = None, 1 = One, 2 = Two}
FDCIG How many of your friends smoke?

∈ {1 = None, 2 = Few, 3 = Most, 4 = All}
CIGFLAG Have you ever smoked?

∈ {0 = No, 1 = Yes}
YEFPKCIG How do you feel about your friends smoking 1 pack a day?

∈ {1 = Neutral, 2 = Disapprove, 3 = Strongly Disapprove }
YEGPKCIG How do you feel about someone your own age

smoking 1 pack a day?
∈ {1 = Neutral, 2 = Disapprove, 3 = Strongly Disapprove }

Table H.1 reports that the network, parental attachment, and attitudes toward
use covariates, as well as analogous ones for alcohol and marijuana, are found to be
significant predictors of ever having used a substance. The table below displays the
means (s.d.’s will be used but not shown) for the relevant covariates for each age
group:

Age TALKPAR FDCIG CIGFLAG YEFPKCIG YEGPKCIG
12 1.320 1.34 0.114 2.68 2.71
13 1.210 1.56 0.216 2.52 2.55
14 1.100 1.78 0.327 2.37 2.42
15 1.050 1.96 0.437 2.28 2.33
16 0.997 2.09 0.515 2.17 2.23
17 1.000 2.17 0.583 2.10 2.22

The high correlations that already exist between the means of these covariates might
tempt us to bypass this entire analysis. Instead, we will find the results to be surpris-
ingly compelling. We describe the lagged linear fit of one covariate to another, which
is projected to be improved by the unknown lag:

original fit: Y ∼ a0 + a1 ·X
lagged fit: Ylag=x ∼ b0 + b1 ·X

where Ylag=x is that data we would see if there exists a lag of x years. A positive lag
x would suggest that X precedes Y and a negative lag, the converse: Y precedes X.
Using the Newton-Raphson for fits around a series of points with normal errors, we
search for the best lag x and updated coefficients b0 and b1 (i.e. the model with the

8The TALKPAR variable is constructed from the TALKMOM and TALKDAD indicators, which
indicate whether or not a teen discusses serious problems with a parent; this variable is modestly
problematic in that there was no way to control for how many parents are available to the teen.
Other candidate covariates for parental involvement contained in the NSDUH include behaviors that
explicitly originate from the parent: how often the parents tells the respondent how proud they are,
how often they tell the respondent to do homework, etc. These will be considered in future work.
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lag which fits better than the original if one exists). During fitting, we were required
to artificially constrict the standard error around the population mean in order to
achieve convergence. The new lagged curve yl|lag at points xl is computed using the
slope and intercept of the predicting curve y and sampling intervals x:

xl = x + lag

m =
(β0 + β1 · (y2, . . . , yn))− (β0 + β1 · (y1, . . . , yn−1))

(xl
2, . . . , x

l
n)− (xl

1, . . . , x
l
n−1)

b = (β0 + β1 · (y1, . . . , yn−1))−m · (xl
1, . . . , x

l
n−1)

yl =

{
(NA, (x2, . . . , xn) ·m + b)) if lag > 0
((x1, . . . , xn−1) ·m + b,NA) otherwise

L(lag|x,y, β0, β1) =
n∑

i=1

log[Normal(yl
i|yi, s

2)]

where s2 is the constricted standard error, usually by a factor of 0.01. The analysis
comprises fitting all pairs of covariates, in both directions. With the five covariates,
we end up with 20 pairs, enumerated in Table 5.4. The log-likelihood of the original
fit L0 is compared with the fit incurred with the lagged series L1; they are for the
most part, comparable.

Looking at the bold-typed results, 1. and 2., we see that TALKPAR with some lag
is predicted by FDCIG. The lag for TALKPAR ∼ FDCIG is -1.050, meaning a change
in TALKPAR precedes a change in FDCIG by about a year. When we predict in the
opposite direction, we see a positive lag implying that FDCIG follows TALKPAR by
almost a year, which is almost consistent with the first finding. The implication is
that an adolescent’s peer group composition will change about a year after a change
in the level of confidance with his or her parents.

If our data contained strong or perfect orderings, we would obtain not only consis-
tent signs in the lags for each pair of covariates, but also perfect nesting of lags when
certain events occur within the time horizon of others.9 So, if we continue with just
the bold-typed results, and jump to 9. and 10. we see that CIGFLAG follows FDCIG
by about 0.8 years. If we wanted to make a causal statement, which we have some
allowance to do given our earlier findings, we can say that the time between a change
in an adolescent’s peer network composition and when his or her risk of initiation also
changes is just about 8/10ths of a year. Finally, we complete this mini-sequencing
with 3. and 4., where we see that the lag between TALKPAR and CIGFLAG as
either 1.86 or 1.47 years. CIGFLAG follows TALKPAR by over year and a half. So
now we have a consistent ordering, using the average lag for each pair:

TALKPAR → 0.9 yr → FDCIG → 0.775 yr → CIGFLAG
TALKPAR −→−→−→ 1.665 yrs −→−→−→ CIGFLAG

9Some level of nesting is inevitable and expected given this procedure looks for the best correla-
tions.
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Y ∼ X a0 a1 lag=x b0 b1 L1 L0

1.TALKPAR ∼ FDCIG 1.83 -0.40 -1.05 2.17 -0.54 -3.42 -4.11
2.FDCIG ∼ TALKPAR 4.55 -2.46 0.85 4.14 -1.98 -3.26 -3.67
3.TALKPAR ∼ CIGFLAG 1.36 -0.69 -1.86 1.61 -0.97 -3.42 -4.12
4.CIGFLAG ∼ TALKPAR 1.88 -1.36 1.47 1.53 -0.96 -0.85 -0.65
5.TALKPAR ∼ YEFPKCIG -0.23 0.57 -0.20 -0.45 0.66 -3.42 -4.11
6.YEFPKCIG ∼ TALKPAR 0.47 1.69 1.02 0.84 1.27 -3.60 -4.07
7.TALKPAR ∼ YEGPKCIG -0.47 0.66 -0.40 -0.72 0.77 -3.42 -4.11
8.YEGPKCIG ∼ TALKPAR 0.74 1.50 0.45 0.90 1.32 -3.53 -3.97
9.FDCIG ∼ CIGFLAG 1.17 1.77 -0.76 0.96 2.00 -2.97 -3.66
10.CIGFLAG ∼ FDCIG -0.66 0.56 0.80 -0.49 0.51 -0.85 -0.63
11.FDCIG ∼ YEFPKCIG 5.21 -1.44 -0.39 5.48 -1.58 -2.97 -3.66
12.YEFPKCIG ∼ FDCIG 3.61 -0.69 -0.22 3.66 -0.70 -3.28 -4.06
13.FDCIG ∼ YEGPKCIG 5.78 -1.64 0.44 5.55 -1.52 -3.26 -3.66
14.YEGPKCIG ∼ FDCIG 3.51 -0.61 -0.37 3.67 -0.67 -3.22 -3.97
15.CIGFLAG ∼ YEFPKCIG 2.27 -0.81 0.70 2.22 -0.76 -0.85 -0.63
16.YEFPKCIG ∼ CIGFLAG 2.80 -1.22 -1.14 3.00 -1.40 -3.28 -4.07
17.CIGFLAG ∼ YEGPKCIG 2.58 -0.92 0.83 2.39 -0.81 -0.85 -0.63
18.YEGPKCIG ∼ CIGFLAG 2.80 -1.06 -1.17 3.01 -1.31 -3.22 -3.98
19.YEFPKCIG ∼ YEGPKCIG -0.38 1.14 0.60 -0.12 1.00 -3.60 -4.07
20.YEGPKCIG ∼ YEFPKCIG 0.36 0.87 -0.28 0.13 0.98 -3.22 -3.97

Table 5.4: Lagged Fits. The α coefficients are the intercept and slope for each fit
of the means, while the β coefficients arise from a lagged fit. The ‘lag=x’ is key:
the ideal correlation between Y and X is achieved when Y follows X by duration of
lag=x. If this lag is negative, then X follows Y. Both directions are examined and are
expected to produce slightly differing results due to the covariates being on different
scales. The bold-typed pairs are explained first in the text.
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Clearly, these are additive. The upper segment yields 0.9 + .775 = 1.675 yrs, which
closely matches the lag predicted between end point covariates in the lower segment:
1.665. The lags from Table 5.4 are depicted graphically in Figure 5.7. The ar-

Talking to Parents

Smoking Friends (FDCIG)

Ever Smoke

Attitude Friends' Use

Attitude General Smoking

0.85

1.47

1.020.45
0.8

0.21

0.37 1.14

1.17

0.28

Figure 5.7: Ordering Covariates. Covariates are spaced according to an MDS output
using the lags to represent distances. Due to the some imprecision in the calculations
of the MDS, we also display the actual lags, by the length of the arrows and also their
numerical values as labels to the arrows.

rows represent the precedence ordering between pairs of covariates and we observe
a fairly consistent ordering. A change in number of parents to whom the teen talks
(TALKPAR) precedes all other activity, and immediately “affects” attitudes towards
general frequent smoking (YEGPKCIG). This in turn precedes both a change in the
ego-network composition (FDCIG) as well perception of friends’ frequent smoking
(YEFPKCIG); we are unsure of the ordering of these last two covariates. Finally,
the changes in these attitudes are hypothesized to precede a change in respondents’
smoking (CIGFLAG). While we can suppose the effects might occur in reverse order
(e.g. a teen’s smoking behavior strains the relationship with his or her parents), the
analysis suggests that the preponderance of events occurs as stated: changes in teens’
attachment to their parents precedes their involvement with substance using friends
which precedes their initiation. In Figure 5.8, the FDCIG variable is replaced by the
µsmoke, using λ and θ for each age group to generate both the mean and the standard
deviation around that mean. The ordering becomes more linear and the duration
between a change in the number of using friends and actual smoking initiation has
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Figure 5.8: Ordering of Covariates II. Here, friends’ use FDCIG is replaced by µsmoke,
the mean number of smoking friends per cohort.

dropped from 0.80 years to 0.22 years, while the overall time from the change in
parental relations to initiation has increased from 1.47 to 1.66.

Recent work (Simons-Morton, 2007) employs latent growth curve analyses on lon-
gitudinal data and similarly finds that the negative over-time relationship between
parenting practices and adolescent substance use was mediated by the number of
substance-using friends. While the methods employed in that research can assess
significance in the similarities between the slopes of covariate curves, the simplistic
method here does not. On the other hand, those analyses do not report specific
durations of latencies like the ones reported here.
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Chapter 6

Conclusion

6.1 Summary of Findings

In this dissertation, I executed a series of probability models on partial ego-network,
cross-sectional substance use data and extracted estimates of peer use, ultimately, to
quantify the selection and influence mechanisms believed to account for much of the
behavioral and relational dynamics observed in adolescent substance use. The results
have detailed the extent to which influence plays a role, in the form of probabilities of
initiation which increase non-linearly with each additional substance using friend; at a
critical point, usually two friends, the risk climbs, considerably. However, homophilic,
selection forces complement influence in evolving peer groups leading to yet higher
levels of substance use homogeneity. In some cases, for instance with smoking, these
forces are roughly equal, while with other substances, they are not: evidence shows
influence plays a greater role in alcohol and marijuana initiation.

Despite the lack of longitudinal data, these analyses produced some results that
confirm those from studies that do employ longitudinal data; this was achieved largely
due to the sufficient sample size of the NSDUH and a clear pattern of increasing
peer group size and substance use that maintains across periods. However, these
findings warrant a more formal treatment of how data from cross-sections might offer
solutions similar to those derived from better data. Still, this work can be seen
as an argument for valuing cross-sectional data of large samples in order to model
events or behavior that have a monotonic relationship with age. Furthermore, the
starkly indirect network measures, obtained from the simulated complete networks,
mirrored the sudden shift of initiation patterns around the age students enter high
school. While we already know initiation to be dependent on local influence forces, the
network findings suggest that a more overarching structural dynamic is responsible
for how and why initiation drops suddenly around the age of 14.

The methodological steps in this dissertation, some of which are relatively novel
and contributive to network analysis as well as adolescent substance use, can be
summarized as follows:
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• This research set about to add to our understanding adolescent networks using a
novel approach. The Poisson/binomial/multinomial mixture has proven useful
in inferring distributions of both peer group sizes and the extent of substance
use in those groups from ordinal categories of proportions that implicitly cover
the [0,1] interval. The estimates easily confirm the homophilic claims of prior
research: substance use is a dimension along which peer groups can be distin-
guished. Furthermore, the joint poly-substance use analysis points to group
affiliation by specific combinations of substances, and not just by the category
of generic substance use. However, homophilic tendencies are strained for use
combinations that are rare, and hence, not many respondents can find peers
who share the same combinations. Alternatively, any similarity in rare combi-
nations can be due to influence; this research did not examine this possibility.
Furthermore, due to the largely self-reporting nature of the survey, some future
consideration ought to be given to the possibility of bias in thinking friends’ use
is similar to one’s own. Also, we were able to verify some of the joint tobacco
and alcohol results with those of a recent work that employs longitudinal data
and employed ego-network substance use items similar to those of the NSDUH.

• This decomposition of ordinal data required a specification of what a friend “us-
ing” means to an adolescent. The evidence suggests that perceived substance
“use” among friends varies with age. As population level of use becomes more
common, the definition becomes more restrictive. Specifically, the more preva-
lent substances corresponded to more recent levels of actual use to qualify for
perceived “use”. Marijuana use is more stigmatic and less commonly used by
adolescents than tobacco or alcohol, hence, any experience with this substance
qualifies the peer as a “user”.

• The estimates provided distributions of in-group and out-group ties between
sub-populations of users and non-users which are necessary in the construc-
tion an algorithm that generates distributions of complete networks. From
these distributions, graph level measures were calculated demonstrating that
this matching process produces human-like networks, ones that have specific
properties not found in random graphs. While the increasing densities from one
age group to the next could be a source of network cacophony, it turns out that
older adolescent networks exhibit more complex structures.

• The estimates also allow for a calculation of the risk of initiation as a function
of the number of substance using friends. Armed with the knowledge that ego-
network parameters increase monotonically over the ages, I inferred transitions
from one age to the next and, combined with initiation rates, deduced estimates
descriptive of the influence and selection mechanisms. The influence/selection
parameters were found to partly coincide with those of two other studies exam-
ining peer networks and the dynamics of substance use over time.
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• In anticipation of the next step in this research, a final piece of analysis explored
the possibility of a consistent ordering of events, including substance use initia-
tion and changes to potentially causative factors like attitudes towards others’
use as well as attachment to parents. The findings show not only a consistent
ordering, but a specific latency in between changes in states. The latencies
can inform intervention and prevention programs of the pattern and ordering
of changes in an adolescent’s life that will precede initiation, with each change
increasingly raising the risk.

6.2 Limitations

Although the use of partial, cross-sectional network data in this work was a conscious
choice, its limitations and strengths warrant some comment:

• While the ego-network data is limited to only two of the survey years, the mass
of the survey data covers almost two decades, so it remains possible to adjust for
some of the age, period, and cohort effects. Some detailed analysis might reveal
that even the slight differences between the ego-networks collected in 1998 and
1999 might serve as a source for extrapolating changes to network parameters
not just as a function as age but also period and cohort. Furthermore, this
ego-network data is grossly incomplete in that it offers no way of deducing the
strength and duration of the specified friendships. Still, this problem is one of
limited data collection resources and is shared by other studies which collect
large networks.

• My analysis primarily considered time as occurring in discrete intervals, in the
form of the respondent age groups. This would be appropriate if the survey was
administered to all respondents within the same time frame, say a week, and all
respondents had the same birthday. Clearly this is not the case and warrants
some investigation into relaxing this assumption. At the least, some form of
smoothing would slightly alter the trajectories of growth in peer network size
and number of using friends.

• While the use of an ordinal scale for describing peer substance use seems in-
ferior to exact counts of friends and friends who use, it is obvious that, unless
additional steps are taken to induce sufficient contemplation on the friends’ use
response, exact counts will exhibit a noticeable pattern of rounding. Further-
more, any claims to whether this unrestricted ordinal scale is more appropriate
to exact, but truncated network data, as contained in many of the substance use
studies including Add Health, can be laid to rest with further statistical and/or
simulation analysis. While close relationships, such as best friends, can be a
strong source of influence, weaker relationships can be just as instrumental in
the diffusion of behavior (Granovetter, 1973) and can be more likely captured
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by with a broad survey response item, like the NSDUH friends’ use, than a
specific one, such as set of best friends.

• The dropping parameter φ was simplified to model only dropping of using
friends, due to limitations in the data. Instead of simply omitting this com-
ponent, we can introduce it in the form of sensitivity tests on hypothetical sets
of values.

• Often, in friendship-related studies, a distinction is made between close, or
best, friends and generic friends; some research has shown such a distinction to
be relevant to understanding how substance use influence occurs (Kirke, 1996;
Urberg et al., 1997). The NSDUH unfortunately does not allow us to make this
distinction, thereby limiting the findings in this research.

• While some distinction was made in levels of use, between someone who use at
least once and someone who uses on a more regular basis, the transition analysis
did not consider these gradations in use levels. The data will however permit
some investigation into changing levels of use from one age to the next, and this
avenue will be explored in future writings.

6.3 Future Research

• The original goal of this dissertation was a dynamic model of adolescent net-
works and substance use behavior. While some of the work reported here offers
parameters to inform dynamism, the analyses were not executed on populations,
real or synthetic, such as the ones generated by the matching algorithm. The
next phase of the research will infuse dynamism into distributions of matched
networks and we will observe these adolescents’ networks change and grow from
ages 12 to 17.

• Besides fine-tuning the techniques employed here, by delving deeper into the
mechanisms that seem to allow the probability model to work, I can make use
of another data set which I ignored throughout this research process, partly
because in some respects the data is not as suitable for the methods presented
here and partly because of its prior unavailability. However, the sheer size
of Monitoring the Future data obligates me now to take a closer look at its
potential for informing this line of work.

• The treatment of cross-sectional data has its limitations, especially when em-
ployed in the manner that I did. While the investigation of interactions between
age, cohort, and period was suspended due to the lack of fully informative data,
and also to simplify the presentation of these methods, at this stage, it behooves
us to incorporate those effects where ever possible; for instance in the lag anal-
ysis, we can simply omit any under-sampled data items like friends’ use and
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instead include responses to the other items spanning additional survey years.
Furthermore, if we consider the distributions of friendship sizes to be a constant
across periods, we can simply apply the λ estimates as well as the relative θ
differences between using and non-using groups into other periods adjusting the
θ’s to the population (and sub-population) level prevalence rates.

• An additional ordinal use variable asked respondents ‘how many students do
you know use [smoke, drink alcohol, or use marijuana or hash]?’ Preliminary
estimates showed both λ and θ to be significantly higher that those of friends’
use, which is what we would expect. These estimates can be used in constructing
a separate network of weaker ties which can be merged with the friendship
network in constructing a network of affiliations weak and strong ties.

• Ego-network linking was performed with only two groups in mind. However,
inter-group ties between multiple substance-using groups, such as those exam-
ined in joint substance analysis, can be inferred. In fact, Heckathorn (2007)
extends his inter-group tie analysis to multiple groups. While the manner in
which ties are inferred in this work differs from Heckathorn’s, his work demon-
strates that such analysis is tractable with our data.

• Also, the ego-network matching process would surely benefit from any priors
parameters we might glean from pre-existing complete networks of other studies.
For instance, we might learn that the degree of clustering among the using and
non-using sub-populations tend be restricted within a certain interval. We can
update our generation process to reflect this evidence.
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Appendix A

Analysis of Initiation Age and
Subsequent Risk of Persistent Use

We explore the sequence of initiation into cigarette use, alcohol consumption and
marijuana use, and subsequently, assess the effect of early initiation on the persis-
tence of substance use in adulthood. The following steps detail how we estimate the
initiation ages:

1. We estimate the initiation proportion by averaging the probability of initiation.
Due to observed recency effects in which older respondents recall their initiation
age progressively later, we only consider data from respondents who initiated
only a few years prior to their current age. For example, for cigarette use:

p(yCIGTRY = x) =

∑x+5
i=x+1 p(yCIGTRY = x|yAGE = i)

4

The data we employ here appear in Table A.1 at the end of this appendix
chapter.

2. Since teens are oversampled, results from these age groups are likely to be have
less deviation than later age ranges. As such, the estimated distribution fits
consider the variance around the probability estimate from each age group:

σ2
ij = pij · (1− pij)/nij

where i ∈ [1,30] (i.e. range of initiation ages considered) and j ∈ [12,∞) (i.e.
age range of respondents). Hence, the fit will give greater weight to those age
groups that were over-sampled (i.e. teenagers); the s.d. of their probability
estimates will be smaller than those of other age groups.
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Normal dist. Studentized t dist.
mode µ σ L µ σ df L

Tobacco 15 14.86 3.32 -327.97 14.82 3.01 7.03 -68.50
Alcohol 16 15.68 2.99 -298.90 15.62 2.68 4.48 -19.73
Marijuana 16 15.96 2.65 -177.52 15.94 2.47 6.51 -104.56
Cocaine 18 19.37 4.69 -1493.30 19.34 4.37 10.67 -1431.74

We fit both a normal distribution and a Studentized t distribution using the Newton-
Raphson algorithm described in Chapter 2. The estimates from each distribution
corroborate one another, and the sequence of initiation is clear: cigarette smoking
precedes alcohol consumption, which precedes marijuana use, which precedes cocaine
use. These findings are echoed in Elliott et al. (1989). Given that we employed
all survey years to obtain these estimates, the differences in initiation ages between
substances are all significant. Note, however, that the fit for cocaine is comparatively
abysmal due to its skewness to the left, leaving a fat tail to the right. However, a
peak initiation age does not necessarily imply the age at which risk of persistent use
is highest.
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Figure A.1: Probability of Last Month Cigarette Use Given Age of Initiation. On
the left, each line represents the current age of the respondent, labeled by a single
digit which is yAGE mod 10 (e.g. 12 year-olds are represented by the ‘2’ curve and 18
year-olds, by the ‘8’ curve). In the right graph, we plot just one curve for 18 year-olds
with error bars denoting standard deviations around each proportion estimate. Given
the large sample sizes at each point (i.e. > 1000), the confidence intervals would not
be visible. Also, data from respondents whose age equaled their initiation age are not
displayed as last month use often reflects initiation; there would appear an upturn at
the end of all the curves.
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In Figure A.1, we plot, for cigarette smoking, ages of initiation against the prob-
ability that the respondent used in the last month, a proxy for indicating a smoker.
Here, the peaks of each curve lie between ages 9-12. We speculate that this asso-
ciation is not so much enforced by biological differences between younger and older
teens but instead the manner in which their use behavior affects the evolution of
their peer groups and vice versa. The following table lists the number of 18-year-old
respondents who informed last month use at initiation age (right plot):

CIGTRY 6 7 8 9 10 11 12 13 14 15 16 17
n 65 137 226 280 486 559 1539 1676 1716 1940 1788 1163

yCIGTRY = x, yAGE = x+ . . . yAGE = x+ . . .
x +1 +2 +3 +4 +5 +1 +2 +3 +4 +5
1 2 0 2 4 5 24903 26790 26581 25877 25805
2 8 6 7 4 5 24903 26790 26581 25877 25805
3 18 25 23 19 14 24903 26790 26581 25877 25805
4 39 31 38 36 25 24903 26790 26581 25877 25805
5 98 117 88 107 94 24903 26790 26581 25877 25805
6 118 149 125 137 116 24903 26790 26581 25877 25805
7 158 225 222 226 249 24903 26790 26581 25877 25805
8 205 288 337 347 319 24903 26790 26581 25877 25805
9 314 349 419 429 418 24903 26790 26581 25877 25805
10 535 719 793 744 796 24903 26790 26581 25877 25805
11 748 924 892 959 840 24903 26790 26581 25877 25805
12 1505 1837 1961 1983 1964 26790 26581 25877 25805 24558
13 2100 2238 2299 2092 1676 26581 25877 25805 24558 20310
14 2223 2231 2149 1716 1575 25877 25805 24558 20310 18451
15 2159 2236 1940 1747 1711 25805 24558 20310 18451 17736
16 1826 1788 1720 1738 1657 24558 20310 18451 17736 17499
17 467 435 391 387 382 7794 6987 6710 6609 6625
18 328 352 387 373 384 6987 6710 6609 6625 6929
19 173 200 194 177 188 6710 6609 6625 6929 7179
20 133 153 194 152 174 6609 6625 6929 7179 7546

Table A.1: Smoking Initiation Rates Pooled from All Survey Years. The drop in
samples after initiation age x = 16 denotes the under-sampling of adults, ages > 17.
Remember, we do not count same year initiates. Also do due a lumping of adults into
broader age categories after 1997, we use only data on adults prior to that year. We
use 12-16 year-old respondents to determine initiation counts when age of first trying
a cigarette is 11 or earlier.
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Appendix B

Distribution of Friends According
to Data

We evaluate the appropriateness of using the Poisson by fitting it to several empirical
distributions of peer group size. The data appears in Table B.1. The first distribution
comes from data collected in 1987 by Deirdre Kirke, a sociologist, as part of her
study on adolescent substance use in Ireland (Kirke, 1996). The second distribution
comes from an NSDUH response item, asked in the 1979 and 1982 surveys, in which
respondents were asked ‘How many close friends do you have, who live in households?’
(formal name: CLOSFRNS)

While the distributions are roughly similar, we should not expect a close match
given that the Kirke friendship data was collected with greater care and attention
than the NSDUH friendship data. For example, the spike in the NSDUH data where
respondents expressed having ten close friends is clearly due to a rounding effect; the
Kirke data displays no such aberrations. We use a multinomial likelihood to fit the
fourteen categories of tabulated responses, nKirke, on the first fourteen densities of a
Poisson, normalized, with a hypothetical parameter λ. That is, we seek the λ that
produces a distribution that best fits that data:

L(λ = 3.671|(nKirke)) = −50.75

where (nKirke) denotes a single vector containing the fourteen data points. A Pois-
son with mean (and variance) 3.671 friends, best fits the Kirke data; this mean is
almost identical the the mean number of friends of the Kirke distribution: 3.670. For
comparison, a binomial is fit to the data:

L(θ = 0.2823|n = 13, (nKirke)) = −84.98; nθ = 3.67

where n = 13 refers to the maximum possible number of friends in the distribution; the
mean is confirmed to be the same. Comparing L give evidence that friends count for
the Kirke data, and perhaps friendship count data in general, arises more likely from
a Poisson than a binomial. Finally, the negative-binomial distribution is employed to
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Respondents
Number of Friends nKirke % nNSDUH %
None 2 0.7 179 7.0
One 24 9.0 132 5.2
Two 53 19.9 270 10.6
Three 77 28.8 342 13.4
Four 49 18.4 348 13.7
Five 21 7.9 418 16.4
Six 16 6.0 193 7.6
Seven 6 2.2 135 5.3
Eight 6 2.2 76 3.0
Nine 5 1.9 39 1.5
Ten 5 1.9 329 12.9
Eleven 1 0.4 20 0.8
Twelve 0 0.0 48 1.9
Thirteen 2 0.7 15 0.6
Total 267 2544

Table B.1: Distribution of Sizes of Peer Group. The nKirke columns show the tabulation
from the respondents in Kirke’s study. The nNSDUH columns show the distributions of
the “close friends” response item administered in the 1979 and 1982 survey years of
the NSDUH.
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fit an over-dispersed Poisson and provides an even better fit; the mean α
β

is identical
to the means of the other two distributions.

L(α = 16.64, β = 4.53|(nKirke)) = −47.23;
α

β
= 3.67

In Figure B.1, the three distributions, binomial, Poisson and negative binomial, are
compared to the Kirke data; it is not obvious that there is that great a difference in
the fits between the tested distributions.
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Figure B.1: Kirke Friends Distribution. Solid line is the Kirke 1996 data. Dashed
line is the Poisson fit; the dotted line is the binomial fit; and the gray dashed line is
the negative-binomial fit.

In Figure B.2, we see just how much rounding issues are endemic in the NSDUH
close friends data, with clear spiking occurring at 5, 10, 15, 25, 30, etc.1 Furthermore,

1The abnormally higher frequency of responses at multiples of five suggest respondents were
either uncertain in their count of friends or unwilling to determine the exact number and settled for
a normative response. While no other research that addressed this issue was found, Bruine de Bruin
et al. (2000, 2002) examined respondents who settle on 50/50 in evaluating various probabilities of
events. We suspect similar mechanisms are at play when respondents are asked to express or recall
these quantities.
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(a) Entire Sample
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(b) Thirteen Friends or Fewer

Figure B.2: 1979/1982 NSDUH Close Friends Distribution. In the left plot, we show
the weighted distribution of close friends count for all available adolescents of ages
12-17 in the 1979 and 1982 NSDUH survey years; sample size is n = 2949. On the
right, we truncate the distribution and consider only responses of 13 friends or less;
this sub-sample has a size of n = 2544. The dashed line represents the best Poisson
fit while the dotted line, the best binomial.

a sizable proportion of adolescent respondents (∼400 out of 3000) list having more
than 20 close friends. Even when we consider the lack of specificity inherent in the
phrase “close friends”, we suspect that a lack of demand for accuracy is responsible for
the aberration rather than it being the case that this many adolescents have so many
close friends. So, we perform our tests on the first fourteen density points, allowing
us to make some claims of comparison with the Kirke data. For the purposes of
these confirmatory tests, we will retain the spikes as is; we suspect they reflect values
surrounding them, and any fit will reflect that. At least visually, the Poisson appears
to be the better fit.

Poisson: L(λ = 4.93|(n0, . . . , n13)) = −887.46
binomial: L(θ = 0.379|(n0, . . . , n13)) = −1971.85
negative-binomial: L(α = 3.07, β = 0.574|(n0, . . . , n13)) = −407.20

And, in fact, the Poisson substantially outperforms the binomial. The mean of the
binomial is again similar to λ = 4.93: nθ = 4.92. Even with the truncation, the
mean friends here is higher than it was for the Kirke data. We suspect the aforemen-
tioned sources of inaccuracy (esp. the spiking) in the NSDUH data accounts for this
difference.

We can also use the NSDUH close friends data to confirm the pattern of peer
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(b) Cigarette Users Have More Friends

Figure B.3: Number of Friends, as a Function of Age and Smoking. In the left plot,
we demonstrate the number of close friends gradually increasing in older cohorts. In
the right plot, we split the data to those who smoked at some point (solid line) vs.
those who never have (dashed line).

groups growing in size with increasing age and substance use.2 In Figure B.3, we
show the mean number of friends per age group, and their respective confidence
intervals. While the mean number of close friends for at-least-once smokers are higher
than those who never smoked, the overlap in confidence intervals renders the plot
inconclusive. Instead, the following regression analysis reveals that both covariates
are significant in predicting the increasing number of close friends; we consider the
logarithm transformed data to be more accurate as its errors are normally distributed:

Dep. Var nfriends log(nfriends+1)
Intercept 5.079*** 1.539***
Age 0.168ˆ 0.020*
Ever Used 0.591ˆ 0.053ˆ
p 0.021* 0.004**
adj-R2 0.002 0.003
ˆ= p < 0.10, * = p < 0.05, ** = p < 0.01, *** = p < 0001

2While a proper analysis would take age, period, and cohort effects into account, there is little
reason to believe the number of friends would be subject to variation within the roughly ten years
of data required to account of the additional effects.
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Appendix C

Additional Decompositions

Indicator
yCIGFLAG λ θ σλ σθ L n µsmoke

0 3.48 0.198 0.039 0.0025 -314.51 15915 0.70
1 4.43 0.488 0.044 0.0031 -55.43 9135 2.15

ΣL = -369.94

yCIGRC3 λ θ σλ σθ L n µsmoke

0 3.50 0.210 0.037 0.0024 -371.63 17284 0.73
1 4.58 0.513 0.049 0.0033 -29.24 7768 2.35

ΣL = -400.87

yCIGYR λ θ σλ σθ L n µsmoke

0 3.54 0.229 0.033 0.0023 -460.39 19150 0.79
1 4.66 0.551 0.056 0.0037 -17.97 5899 2.56

ΣL = -478.36

yCIGMON λ θ σλ σθ L n µsmoke

0 3.58 0.247 0.031 0.0023 -559.49 20911 0.88
1 4.76 0.607 0.067 0.0043 -12.92 4139 2.90

ΣL = -572.41

Table C.1: Decomposition by Cigarette Use Indicators
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Smoking in ...
Lifetime Past Three Years Past Year Past Month

Age pCIGFLAG pCIGRC3 pCIGYR pCIGFLAG

12 0.121 0.099 0.068 0.042
13 0.213 0.181 0.139 0.078
14 0.322 0.286 0.199 0.126
15 0.440 0.374 0.287 0.198
16 0.512 0.431 0.331 0.247
17 0.582 0.492 0.394 0.307

Table C.2: Age-Specific Proportions for Smoking.

yCIGRC3 yAGE λ̂ θ̂ σλ̂ σθ̂ L n µsmoke

0 12 2.91 0.116 0.101 0.0048 -86.72 3607 0.34
0 13 3.38 0.156 0.095 0.0051 -68.47 3486 0.53
0 14 3.70 0.208 0.091 0.0056 -72.59 3105 0.77
0 15 3.92 0.250 0.092 0.0060 -58.26 2720 0.98
0 16 4.08 0.284 0.096 0.0065 -39.61 2321 1.16
0 17 4.31 0.295 0.106 0.0068 -21.31 2043 1.27
1 12 3.63 0.381 0.185 0.0170 -13.89 394 1.38
1 13 4.79 0.426 0.171 0.0105 -13.46 770 2.04
1 14 4.84 0.473 0.133 0.0081 -10.23 1246 2.29
1 15 4.43 0.520 0.102 0.0074 -10.71 1611 2.30
1 16 4.78 0.532 0.107 0.0068 -13.05 1761 2.54
1 17 4.79 0.566 0.099 0.0063 -17.73 1987 2.71

ΣL -426.03

Table C.3: Estimates for Age and Past Three Years Cigarette Use
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yCIGYR yAGE λ̂ θ̂ σλ̂ σθ̂ L n µsmoke

0 12 2.89 0.122 0.095 0.0049 -87.38 3730 0.36
0 13 3.40 0.166 0.090 0.0051 -78.84 3667 0.55
0 14 3.77 0.230 0.082 0.0053 -97.43 3487 0.86
0 15 3.93 0.269 0.083 0.0057 -64.70 3098 1.05
0 16 4.16 0.300 0.088 0.0060 -43.07 2732 1.26
0 17 4.38 0.317 0.095 0.0062 -32.95 2439 1.38
1 12 3.83 0.414 0.228 0.0199 -13.35 270 1.60
1 13 4.96 0.454 0.201 0.0117 -10.32 589 2.25
1 14 4.74 0.514 0.152 0.0098 -9.94 864 2.43
1 15 4.49 0.557 0.117 0.0083 -10.41 1235 2.51
1 16 4.90 0.573 0.123 0.0076 -11.58 1351 2.82
1 17 4.87 0.601 0.111 0.0069 -14.09 1592 2.92

ΣL -474.06

Table C.4: Estimates for Age and Past Year Cigarette Use

yCIGMON yAGE λ̂ θ̂ σλ̂ σθ̂ L n µsmoke

0 12 2.88 0.128 0.091 0.0049 -91.35 3833 0.37
0 13 3.41 0.182 0.082 0.0050 -91.24 3922 0.63
0 14 3.77 0.250 0.075 0.0052 -117.23 3803 0.94
0 15 4.00 0.283 0.077 0.0053 -67.97 3487 1.15
0 16 4.22 0.320 0.082 0.0056 -60.76 3077 1.33
0 17 4.45 0.332 0.089 0.0057 -40.91 2788 1.49
1 12 4.51 0.479 0.331 0.0229 -8.33 168 2.16
1 13 4.89 0.514 0.255 0.0155 -9.89 333 2.52
1 14 4.58 0.560 0.180 0.0123 -10.41 548 2.57
1 15 4.71 0.630 0.146 0.0095 -10.43 843 3.00
1 16 4.87 0.613 0.139 0.0087 -9.97 1004 3.00
1 17 4.99 0.648 0.127 0.0076 -13.40 1242 3.23

ΣL -531.89

Table C.5: Estimates for Age and Past Month Cigarette Use
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Appendix D

Additional Results for
Ego-Network Matching
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(a) 13-year-olds (b) 14-year-olds

(c) 15-year-olds (d) 16-year-olds

Figure D.1: Sample Networks for 13, 14, 15, and 16 year-olds. Simulated, ego-network
matched populations of 100 12-16 year-olds are displayed. The following recency of
use indicator variables distinguish perceived smokers from non-smokers, respectively
for each age-group: CIGFLAG (12), CIGFLAG (13), CIGRC3 (14), CIGRC3 (15),
CIGRC3 (16), and CIGYR (17). The respective proportions of use are 0.21, 0.29,
0.37, 0.43, and 0.39. Dark colored circles represent cigarette smokers.
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(a) 13-year-olds (b) 14-year-olds

(c) 15-year-olds (d) 16-year-olds

Figure D.2: Closeness Between Nodes for 13-16 year-olds. The geodesics (shortest
paths) between all non-isolated nodes (in the main component) to all others appear
in shades of gray; lighter color indicates higher closeness. The dashed lines denote
the sub-population partition between non-smokers, left and below the partitions, and
smokers, to the right and above the partitions. The axes differ slightly due to there
being differing number of isolates per age sub-population. The graph is undirected
hence the distances and plot are symmetric.
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Appendix E

Auxiliary Results for Linear Model

SEX CIGRC3 AGE λ θ µsmoke L n
0 0 12 3.08 0.109 0.34 -59.00 1765
0 0 13 3.37 0.151 0.51 -30.51 1688
0 0 14 3.76 0.202 0.76 -32.78 1477
0 0 15 3.90 0.260 1.01 -33.82 1316
0 0 16 4.04 0.297 1.20 -25.85 1186
0 0 17 4.02 0.306 1.23 -14.54 1069
0 1 12 3.21 0.432 1.38 -12.46 165
0 1 13 4.57 0.433 1.98 -12.26 376
0 1 14 4.83 0.513 2.48 -12.55 637
0 1 15 4.89 0.532 2.60 -9.49 798
0 1 16 4.79 0.544 2.61 -11.23 850
0 1 17 4.53 0.595 2.69 -11.17 948
1 0 12 2.77 0.121 0.33 -39.82 1841
1 0 13 3.38 0.162 0.55 -45.61 1799
1 0 14 3.66 0.213 0.78 -48.50 1628
1 0 15 3.93 0.241 0.95 -32.96 1404
1 0 16 4.12 0.271 1.11 -21.32 1136
1 0 17 4.69 0.284 1.33 -16.41 974
1 1 12 4.04 0.342 1.38 -9.25 230
1 1 13 5.04 0.420 2.11 -8.97 394
1 1 14 4.93 0.428 2.11 -10.84 609
1 1 15 4.05 0.509 2.06 -9.73 814
1 1 16 4.79 0.520 2.49 -10.40 909
1 1 17 5.11 0.539 2.75 -17.99 1039

Table E.1: Parameter Estimates for Sex, Age, and Past Three Years Cigarette Use
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SEX CIGRC3 AGE σλ σθ σµsmoke

0 0 12 0.155 0.00663 0.0148
0 0 13 0.140 0.00730 0.0192
0 0 14 0.136 0.00803 0.0266
0 0 15 0.128 0.00871 0.0342
0 0 16 0.130 0.00916 0.0409
0 0 17 0.135 0.00970 0.0442
0 1 12 0.244 0.02805 0.1155
0 1 13 0.230 0.01535 0.1076
0 1 14 0.182 0.01127 0.1002
0 1 15 0.164 0.00995 0.0947
0 1 16 0.153 0.00972 0.0894
0 1 17 0.132 0.00932 0.0861
1 0 12 0.132 0.00701 0.0146
1 0 13 0.130 0.00718 0.0196
1 0 14 0.122 0.00780 0.0261
1 0 15 0.131 0.00833 0.0317
1 0 16 0.142 0.00922 0.0404
1 0 17 0.168 0.00949 0.0498
1 1 12 0.278 0.02097 0.1025
1 1 13 0.254 0.01430 0.1145
1 1 14 0.198 0.01161 0.0923
1 1 15 0.131 0.01095 0.0738
1 1 16 0.150 0.00946 0.0849
1 1 17 0.151 0.00853 0.0862

Table E.2: σ’s for Sex, Age, and Past Three Years Cigarette Use
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Appendix F

Additional Results from Joint
Analysis

Have You Ever Consumed Alcohol in ...
Past Past Past

Lifetime 3 Yrs Year Month Recency
Intercept -8.758*** -8.993*** -8.978*** -9.326*** -8.882***

(0.159) (0.160) (0.168) (0.215) (0.145)

Is Male 0.099* 0.102* 0.036 0.178* 0.123**
(0.031) (0.031) (0.032) (0.039) (0.028)

Age 0.361*** 0.373*** 0.355*** 0.323*** 0.344***
(0.010) (0.010) (0.011) (0.013) (0.009)

Friends’ Use 1.116*** 1.123*** 1.128*** 1.093*** 1.106***
(0.022) (0.022) (0.022) (0.025) (0.019)

Adults’ Use 0.378*** 0.371*** 0.328*** 0.214*** 0.321***
(0.020) (0.020) (0.021) (0.025) (0.018)

n 24733 24733 24733 24733 24733
Pseudo-R2 0.397 0.401 0.386 0.315 0.361
p-value 0.000 0.000 0.000 0.000 0.000
AIC 24791 24692 23377 17473 46068
BIC 24832 24732 23418 17513 46133

Table F.1: Alcohol Consumption: Logistic and Ordinal Regressions
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Have You Ever Used Marijuana in ...
Past Past Past

Lifetime 3 Yrs Year Month Recency
Intercept -11.571*** -11.399*** -10.735*** -10.557*** -11.469***

(0.226) (0.227) (0.244) (0.318) (0.213)

Is Male 0.265*** 0.251*** 0.236** 0.283** 0.268***
(0.041) (0.041) (0.044) (0.056) (0.038)

Age 0.418*** 0.403*** 0.333*** 0.266*** 0.384***
(0.014) (0.014) (0.015) (0.020) (0.013)

Friends’ Use 1.378*** 1.387*** 1.439*** 1.417*** 1.398***
(0.028) (0.028) (0.030) (0.035) (0.026)

Adults’ Use 0.743*** 0.743*** 0.703*** 0.657*** 0.698***
(0.032) (0.032) (0.034) (0.040) (0.029)

n 24526 24526 24526 24526 24526
Pseudo-R2 0.443 0.441 0.425 0.379 0.383
p-value 0.000 0.000 0.000 0.000 0.000
AIC 15887 15756 13698 9036 25983
BIC 15927 15796 13738 9077 26048

Table F.2: Marijuana Use: Logistic and Ordinal Regressions.

Alcohol Consumption in ...
Lifetime Past Three Years Past Year Past Month

Age pALCFLAG pALCRC3 pALCYR pALCFLAG

12 0.107 0.097 0.064 0.025
13 0.222 0.212 0.163 0.066
14 0.346 0.332 0.277 0.131
15 0.489 0.479 0.417 0.233
16 0.588 0.576 0.496 0.275
17 0.655 0.649 0.564 0.341

Table F.3: Age-Specific Proportion for Alcohol Consumption
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Marijuana Use in ...
Lifetime Past Three Years Past Year Past Month

Age pMRJFLAG pMRJRC3 pMRJYR pMRJFLAG

12 0.022 0.021 0.018 0.006
13 0.052 0.051 0.043 0.024
14 0.124 0.122 0.098 0.056
15 0.223 0.218 0.184 0.102
16 0.297 0.290 0.235 0.121
17 0.362 0.350 0.274 0.157

Table F.4: Age-Specific Proportion for Marijuana Use

yFDMJ = None yFDMJ = Few
yFDALC = yFDALC =

yFDCIG None Few Most All None Few Most All
None 10.58 2.98 0.90 0.17 0.11 0.25 0.08 0.02
Few 4.75 23.41 14.11 2.65 0.30 5.15 4.80 0.84
Most 0.93 4.97 4.41 1.39 0.08 3.09 6.41 1.69
All 0.17 0.33 0.28 0.19 0.01 0.21 0.42 0.20

yFDMJ = Most yFDMJ = All
yFDALC = yFDALC =

yFDCIG None Few Most All None Few Most All
None 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.02
Few 0.02 0.17 0.32 0.11 0.01 0.13 0.08 0.13
Most 0.01 0.15 1.42 0.29 0.01 0.06 0.07 0.14
All 0.00 0.05 0.23 0.25 0.02 0.02 0.02 0.34

Table F.5: Joint Substance Adults’ Use.
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Joint Results for Tobacco and Alcohol:

yAGE λ θ00 θ10 θ01 θ11 L n µCIG µALC

12 2.60 0.820 0.080 0.024 0.076 -269.94 3972 0.41 0.26
13 3.08 0.730 0.085 0.041 0.145 -319.34 4225 0.71 0.57
14 3.37 0.603 0.098 0.083 0.216 -354.59 4317 1.06 1.01
15 3.55 0.517 0.082 0.107 0.294 -238.68 4296 1.33 1.42
16 3.84 0.447 0.106 0.143 0.304 -258.60 4059 1.57 1.72
17 4.03 0.404 0.101 0.145 0.350 -205.10 4015 1.82 2.00

Joint Results for Tobacco and Marijuana:

yAGE λ θ00 θ10 θ01 θ11 L n µCIG µMRJ

12 2.58 0.833 0.111 0.008 0.048 -336.26 3975 0.41 0.14
13 3.09 0.761 0.144 0.013 0.082 -334.28 4219 0.70 0.29
14 3.29 0.660 0.164 0.029 0.146 -439.28 4317 1.02 0.58
15 3.44 0.582 0.164 0.041 0.213 -377.02 4300 1.30 0.87
16 3.61 0.518 0.188 0.064 0.230 -414.04 4051 1.51 1.06
17 3.74 0.484 0.184 0.060 0.272 -316.56 4016 1.70 1.24

Joint Results for Alcohol and Marijuana:

yAGE λ θ00 θ10 θ01 θ11 L n µALC µMRJ

12 2.29 0.879 0.062 0.013 0.047 -232.85 3979 0.25 0.14
13 2.83 0.786 0.111 0.019 0.084 -337.80 4226 0.55 0.29
14 3.01 0.663 0.151 0.025 0.161 -355.74 4305 0.94 0.56
15 3.26 0.558 0.179 0.029 0.234 -345.36 4293 1.35 0.86
16 3.44 0.506 0.196 0.036 0.262 -341.68 4048 1.57 1.02
17 3.65 0.461 0.206 0.039 0.294 -307.38 4020 1.83 1.22

Table F.6: Age-Specific Results for Friends’ Joint Two Substance Use.

121



Appendix G

Additional Results for Risk of
Initiation

Age λi θi σλi
σθi

L ni µi σµi

12 4.28 0.373 0.503 0.0360 -5.81 74 1.60 0.204
13 4.34 0.334 0.347 0.0233 -6.74 173 1.44 0.125
14 3.97 0.443 0.229 0.0193 -7.98 276 1.76 0.111
15 4.65 0.519 0.244 0.0164 -8.10 315 2.41 0.137
16 4.12 0.428 0.249 0.0196 -7.82 257 1.76 0.117
17 4.40 0.461 0.307 0.0220 -7.36 188 2.03 0.154

Table G.1: Alcohol Initiation by Age

Age λi θi σλi
σθi

L ni µi σµi

12 4.99 0.358 1.192 0.0659 -3.00 19 1.76 0.468
13 5.07 0.300 0.638 0.0333 -5.32 75 1.51 0.203
14 5.18 0.510 0.461 0.0249 -6.27 121 2.64 0.255
15 4.27 0.406 0.342 0.0252 -6.97 151 1.73 0.154
16 6.04 0.512 0.560 0.0226 -6.18 126 3.09 0.300
17 5.80 0.441 0.596 0.0260 -5.75 103 2.56 0.277

Table G.2: Marijuana Initiation by Age
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Number of Alcohol Drinking Friends, m = ndrink

Age 0 1 2 3 4 5 6
12 0.031 0.218 0.711 0.956 0.995 0.999 1.000
13 0.047 0.154 0.403 0.714 0.903 0.972 0.992
14 0.051 0.130 0.290 0.528 0.754 0.894 0.959
15 0.022 0.062 0.162 0.363 0.627 0.832 0.936
16 0.031 0.056 0.101 0.173 0.282 0.424 0.580

Table G.3: Risk of Alcohol Initiation by Age

Number of Marijuana Smoking Friends, m = nmrj

Age 0 1 2 3 4 5 6
12 0.006 0.085 0.598 0.960 0.997 1.000 1.000
13 0.021 0.122 0.471 0.851 0.974 0.996 0.999
14 0.012 0.072 0.336 0.769 0.956 0.993 0.999
15 0.024 0.071 0.191 0.420 0.690 0.873 0.955
16 0.006 0.028 0.126 0.416 0.778 0.945 0.988

Table G.4: Risk of Marijuana Initiation by Age

0 1 2 3 4 5 6
0 0.022 0.000 0.000 0.000 0.000 0.000 0.000
1 0.021 0.110 0.000 0.000 0.000 0.000 0.000
2 0.020 0.105 0.400 0.000 0.000 0.000 0.000
3 0.019 0.100 0.388 0.783 0.000 0.000 0.000
4 0.018 0.096 0.376 0.774 0.951 0.000 0.000
5 0.017 0.092 0.365 0.765 0.949 0.991 0.000
6 0.017 0.088 0.353 0.756 0.946 0.990 0.998
7 0.016 0.084 0.342 0.747 0.944 0.990 0.998
8 0.015 0.080 0.331 0.738 0.941 0.989 0.998
9 0.014 0.077 0.320 0.728 0.938 0.989 0.998

10 0.014 0.073 0.310 0.718 0.935 0.988 0.998
11 0.013 0.070 0.299 0.708 0.932 0.987 0.998
12 0.012 0.067 0.289 0.698 0.929 0.987 0.998
13 0.012 0.064 0.279 0.687 0.926 0.986 0.998
14 0.011 0.061 0.269 0.676 0.922 0.985 0.997
15 0.011 0.058 0.259 0.666 0.919 0.985 0.997

Table G.5: Joint Risk of Cigarette Initiation for 12 Year-Olds Given n and m
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Appendix H

Additional Results for Sequencing
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Have You Ever ... ?
Smoked Drunk Alcohol Used Marijuana

(CIGFLAG) (ALCFLAG) (MRJFLAG)

Intercept -5.465*** -6.773*** -7.677***
(0.180) (0.178) (0.263)

Is Male 0.116** 0.040 0.215***
(0.032) (0.033) (0.045)

Age 0.307*** 0.364*** 0.393***
(0.010) (0.011) (0.016)

Talking to Parents -0.344*** -0.320*** -0.304***
(0.020) (0.020) (0.028)

Friends’ Use 0.878*** 0.944*** 1.017***
(0.024) (0.023) (0.031)

Adults’ Use 0.293*** 0.351*** 0.584***
(0.024) (0.020) (0.035)

Attitide Towards -0.201*** -0.068* -0.420***
Friends’ Use (0.024) (0.026) (0.032)

Attitude Towards -0.489*** -0.444*** -0.691***
Own Age Use (0.023) (0.026) (0.032)

n 24402 24267 24083
Pseudo-R2 0.392 0.432 0.524
p 0.000 0.000 0.000
AIC 23770 23316 13176
BIC 23810 23357 13216

Table H.1: Predicting Use with Parental Attachment and Attitudes. The attitude
towards use variables vary across the substances. For cigarette smoking, it refers to
smoking at least one pack a day; for alcohol consumption, it refers to others’ drinking
alcohol daily; and for marijuana use, it refers to others’ ever having used marijuana.
In just the 1998 survey year, respondents are also asked about their attitudes towards
others’ marijuana use once a month; however, that model underperforms the one
presented here.
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Appendix I

Age, Period, and Cohorts

Survey Age of Respondent, yAGE

Year 12 13 14 15 16 17
1979 0.339 0.499 0.481 0.571 0.606 0.741
1982 0.260 0.394 0.428 0.514 0.627 0.692
1985 0.253 0.312 0.455 0.504 0.579 0.599
1988 0.186 0.263 0.426 0.452 0.524 0.601
1990 0.169 0.247 0.394 0.434 0.516 0.609
1991 0.165 0.268 0.334 0.426 0.493 0.573
1992 0.141 0.229 0.305 0.411 0.468 0.490
1993 0.152 0.218 0.305 0.420 0.467 0.522
1994 0.154 0.269 0.318 0.419 0.485 0.489
1995 0.142 0.253 0.371 0.482 0.470 0.581
1996 0.154 0.207 0.303 0.443 0.501 0.551
1997 0.139 0.257 0.332 0.457 0.528 0.597
1998 0.128 0.209 0.300 0.442 0.503 0.584
1999 0.114 0.216 0.344 0.439 0.519 0.580
2000 0.103 0.187 0.292 0.435 0.503 0.558
2001 0.098 0.175 0.288 0.404 0.485 0.544
2002 0.087 0.182 0.298 0.399 0.481 0.570
2003 0.081 0.153 0.260 0.379 0.461 0.542

Table I.1: Lifetime Cigarette Use for All Survey Years
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Survey Ages of Transition
Year 12-13 13-14 14-15 15-16 16-17
1990 0.078 0.146 0.041 0.081 0.093
1991 0.103 0.066 0.092 0.067 0.080
1992 0.088 0.075 0.107 0.057 0.022
1993 0.065 0.087 0.115 0.047 0.055
1994 0.115 0.049 0.100 0.066 0.004
1995 0.111 0.117 0.111 -0.012 0.111
1996 0.053 0.096 0.140 0.058 0.050
1997 0.119 0.074 0.125 0.071 0.069
1998 0.081 0.092 0.141 0.062 0.081
1999 0.103 0.127 0.095 0.080 0.062
2000 0.084 0.105 0.143 0.068 0.055
2001 0.077 0.113 0.116 0.082 0.058
2002 0.095 0.116 0.101 0.082 0.089
2003 0.072 0.107 0.120 0.082 0.081
µi 0.089 0.098 0.110 0.064 0.065
σi 0.020 0.026 0.026 0.024 0.028

Table I.2: Initiation Rates for Cigarette Use. Initiation rates are calculated for cohorts
across pairs of years. There are no adjacent survey years prior to 1990.
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