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METRIC INFERENCE FOR SOCIAL NETWORKS

David Banks Kathleen Carley

Carnegie Mellon University Camegie Mellon University

Abstract: Using a natural metric on the space of networks, we define a probability
measure for network-valued random variables. This measure is indexed by two
parameters, which are interpretable as a location parameter and a dispersion
parameter. From this structure, one can develop maximum likelihood estimates,
hypothesis tests and confidence regions, all in the context of independent and
identically distributed networks. The value of this perspective is illustrated
through application to portions of the friendship cognitive social structure data
gathered by Krackhardt (1987).
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1. Introduction

Some researchers in social networks are beginning to move from the
analysis of single networks to the analysis of random samples of networks. In
looking at multiple networks, issues arise such as the extent to which these
networks are similar, and the estimation of the central or consensus network.
For example, imagine that one is interested in locating the shared or common
perception of the informal communication network in an organization. This
shared perception could be located by asking each individual in the
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122 D. Banks and K. Carley

organization to identify all pairs of colleagues whom the respondent believes
interacts with whom, and then locating the common perceived ties. Follow-
ing this procedure, the researcher would locate a set of networks, one gen-
erated by each individual in the organization. Such methods have been used
by Krackhardt and Porter (1985) and Krackhardt (1987) to generate cognitive
social networks. Given this set of networks, we want to locate a common
central network and assess the variation among the respondents’ perceptions.
In this paper, we use a metric to induce a tractable family of probability
measures on the set of networks. Researchers can then use standard statisti-
cal methods to estimate measures of location and variation.

Our procedures are designed for networks in which vertices (nodes) are
labeled and the edges (links) may or may not be directed. The term graph is
usually reserved to networks in which all edges are undistinguished
(unweighted and undirected), but in some resecarch communities the term
graph is used even when edges are distinguished. In this paper we use the
term network and graph interchangeably; our application targets a problem in
social network theory, but our methods derive from graph theoretic considera-
tions, leading to a collision of terminology.

Network-valued random variables arise in many settings. Social net-
work research is one arena, and early formulations of such problems were
undertaken by Moreno (1934), Festinger (1949), Katz (1947, 1953) and Katz
and Powell (1955). Statistical investigation of random networks remains
active;: Knoke and Kuklinski (1982) provide an elementary introduction to
some topics in this area, and Fienberg, Meyer, and Wasserman (1985) survey
more technical literature in the statistical analysis of such data. Frank (1989)
also reviews the area and points out the need for multiparametric models for
random networks. Our work describes such a model, using a parameteriza-
tion that resembles more standard statistical applications.

To frame this paper in the context of previous work, we develop a sta-
tistical model and the associated analysis for a sample of n random variables
defined over the set of all networks on m labeled vertices. Our attention is
upon estimation and hypothesis tests regarding the central network and the
dispersion of the data; these quantities are analogous to the mean vector and
covariance matrix of a sample of random vectors.

We will use a metric to induce a tractable family of probability meas-
ures on networks. Topics related to this technique have been considered in
three distinct literatures: mathematics, sociology, and statistics. The
mathematical work has focused attention on only three probability models
(cf. Bollob4s 1985, Ch. 2; Palmer 1985, Ch. 2). These models are useful in
developing existence proofs and identifying certain kinds of asymptotic
behavior, but they are insufficiently rich for statistical modeling — in particu-

lar, they lack parameters that determine the center and dispersion of the
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measure. Regarding metrization in this literature, Margush (1982) derives
optimality properties for a metric on the set of tree-valued graphs, but this
result was not implemented in a probabilistic context, and did not lead to for-
mal inference.

The sociological literature tends to be either very abstract or very
applied. At the theoretical end, there is a large literature on metrics for
posets, beginning with a seminal paper by Boorman and Olivier (1973).
Since some posets correspond to certain classes of graphs or hypergraphs
(such as n-trees and phylogenetic trees), this work bears on the metrization of
graph-valued random variables. Barthélemy, Leclerc, and Monjardet (1986)
offer a general review of these methods, and Day (1986) gives a succinct sur-
vey of recent literature. In particular, Jardine and Sibson (1971, Ch. 5) dis-
cuss metrics on sets of relations, and Hubert and Arabie (1985) consider
methods for comparing partitions of sets; both examine the symmetric
difference metric that is of central interest in this paper. Although the ostensi-
ble goal of all these efforts is to allow practitioners to use data to make infer-
ences in problems of comparison and consensus among classifications, the
work in this area has not been developed in terms of estimates, hypotheses,
and test statistics.

The applied literature in sociology is driven by people who are attempt-
ing to understand particular datasets or types of datasets. For example, Car-
ley (1984, 1986) examined changes in students’ cognitive maps (networks of
concepts) over time as they went about the process of selecting a new tutor
for their living group (hereafter, this will be referred to as the Carley Tutor
dataset). To compare these conceptual networks and to locate the network
that was common to all, Carley employed the notion of ‘‘facts’’ (see also Car-
ley 1988). A fact is defined as two vertices and the edge between them. Car-
ley then defined the similarity of two networks according to their intersection
— the network formed of all facts that the two separate networks have in
common. The common (or central) network was estimated by the set of facts
found in the intersection of a specified percentage! of the sample networks.

Statisticians have addressed random networks in very standard situa-
tions. Holland and Leinhardt (1981), Fienberg, Meyer, and Wasserman
(1985), Frank and Strauss (1986), Wasserman (1987), Wong (1987), and
Strauss and Ikeda (1989) have all developed probability models and analyses
for social network data, usually in the context of the loglinear model. These

1. When this percentage is 50%, the method yields the maximum likelihood estimate for the
central network under the probability model we propose.
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studies have typically focused on only a single network, rather than a sample
of networks, with emphasis on accurate modeling of individual interactions
(however, the methodology could be extended to i.i.d. samples). Log-linear
models are often, though they need not be, elaborate models with many
parameters and can obscure inference on the two parameters (center and
dispersion) targeted by the procedures we describe in Section 2. In contrast,
Bloemena (1964), Capobianco (1970), and Frank (1971, 1988) discuss
methods that explicitly address samples of random graphs. Those authors’
perspective matches that of our paper, and it is surprising that more work in
this area has not been done. Section 2 relates our approach to the most per-
tinent models.

Using the methods developed in Section 2, Section 3 reexamines por-
tions of the data collected by Krackhardt (1987) and available through
UCINET (MacEvoy and Freeman 1988). These methods discover several
interesting features of the data, and we illustrate a range of hypothesis tests
and confidence regions. Section 4 draws a few conclusions about the theory
and the application.

2. Methodology

We want to make statistical inferences about network-valued random
variables. Our strategy is to define a natural metric on the set of networks and
use it to induce an interpretable family of probability measures. This strategy
enables us to appropriate an arsenal of statistical techniques whose applica-
tion is almost automatic.

Let G,, denote the set of all networks on m distinct vertices which have
undistinguished (unweighted) edges and no loops. (Loops are edges that con-
nect a vertex to itself; our applications exclude that situation, but the method
we describe could be extended very generally.) Such networks are commonly
called graphs. Elements of G,, include the edgeless graph, the complete
graph, and all inlermediate possibilities.

Let IR denote the real numbers. Recall that a functiond: G,, XG,, & R
metrizes G,, if and only if for all networks g,, 82,83 € Gy,

1. d(g.1.82)=0iffg; =g,
2. d(gi.82)=d(g281)
3. d(g1.82)<d(g1,83) +d(g;3,82).

The function d is called a metric, and (G,,,d) is called a metric space.

One can define many possible metrics on the set of networks with m
vertices. In a particular application, the metric should reflect a sense of dis-
tance that honors the context of the data. However, the symmetric difference
metric on sets, also known as the Kemeny metric (1959), is broadly
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applicable and enables more tractable analyses. In this paper, that is the only
metric used.

Heuristically, the symmetric difference metric simply counts the
number of discrepant edges between two networks on the same vertex set. A
computationally convenient specialization of this metric to our application
uses the fact that any network g € G,, is uniquely characterized by its adja-
cency matrix G = [/;;(g)], where

1 if ] j i
Ig) = 0 clsa:edgelinksvel'ticesumd] ng )

All m x m matrices whose entries are elements of {0,1} can be considered
adjacency matrices. Excluding matrices that have ones on the diagonal, there
is a one-to-one correspondence between symmetric adjacency matrices and
the networks in G,,. (Nonzero diagonal entries in G indicate loops. Digraphs
have a similar representation, except that superdiagonal and subdiagonal
entries indicate direction. Both cases are discussed at the end of this section.)

Let G;,G; be the adjacency matrices of 8,82 € G,,. Define the sym-
metric difference metric on networks by

d@g.82) = % tr [(G; - G)*] )

where tr [ -] denotes the trace of a matrix; i.e., the sum of the diagonal ele-
ments. This function counts the number of edge discrepancies between g;
and g,.

The metric d is the Hamming metric (1950, 1980), used in information
theory. The networks in G, can be viewed as the vertices of an r-

dimensional hypercube, where r = ['g ] . From this perspective, the distance

between networks is just the Hamming distance between the sequences of
zeroes and ones that identify corresponding hypercube vertices. A particular
vertex with a given binary sequence indicates the network with edges deter-
mined by the ones and non-edges by the zeroes in the sequence. It follows
that G,, contains 2" networks.

Given the metric, we can mimic Mallows’s method (1957) for setting
probabilities on the set of permutations. For networks, this approach yields
the probability measure H(g *, ©), defined by

Py .olg]=c(0)e 65 VgeG,. @)

where g‘ € G,, is the central network (or mode of the distribution), ¢ is a
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dispersion parameter and c (o) is a normalizing constant that ensures the pro-
bability of the sample space is unity. Heuristically, g* is a central value
parameter (analogous to the mean of a distribution), and ¢ is a scale parame-
ter (analogous to the inverse of the standard deviation). These parameters
index the family of probability measures {H(g*,0)}. When ¢ =0, all net-
works are equiprobable.

There are many variations of the model in (3) that might be considered;
e.g., one could square the distance, or use a mixture of such models, or allow
the probability to change as a function of the distance other than the exponen-
tial. Each of these may be appropriate in a given context, but closed form
expressions for key estimates are not generally available. We will develop
the analysis for the most tractable model and note that the only barrier to a
wider range of plausible models is the availability of computational
resources.

Proposition 1: The normalizing constant does not depend on g*.

Proof: Necessarily, the normalizing constant satisfies

1 _ -od(g,g")
e 35;, e (€3]
= s r e-d
AN
=(1+e9".

The penultimate step follows by counting the number of networks in G,, that
are exactly k edge-changes distant from an arbitrary central network g*; the
last step is obtained from the binomial theorem. This result holds even when
c=0. =

Other measures for random graphs (networks) have been previously
proposed. Mathematicians use three basic families (cf. Bollob4ds 1985, Ch.
2), but these models are insufficiently rich for some statistical applications.
From the perspective of this paper, their chief deficiency is the lack of a
unique central graph and a dispersion parameter to control the degree of pro-
bability concentration about the central graph. The family of measures
{H(g", 0)} automatically avoids these limitations, as would any similar fam-
ily developed from a different metrization than the one defined by (2).
Although this metric seems most appropriate for the applications described in
this paper, we note that different metrics, corresponding to alternative topolo-
gies or senses of nearness, enable very flexible generalizations of the analysis
undertaken here.
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More directly pertinent are the probability models discussed by Frank
and Strauss (1986) and by Holland and Leinhardt (1981). The former is
developed in Strauss and Ikeda ( 1990), and the latter is extended in Wasser-
man (1987), Wasserman and Anderson (1987), Wasserman and Galaskiewicz
(1984), Iacobucci and Wasserman (1986), and Fienberg, Meyer and Wasser-
man (1985). Wang and Wong (1987) and Wong (1987) have also done
relevant work on Holland and Leinhardt’s model. In principle, these models
could be used to analyze multiple networks, although there has not yet been
any effort in that direction.

Frank and Strauss (1986) used the Hammersley-Clifford theorem to
show that all probability models for undirected random graphs can be written
in the form

Pplgl=cexp[Y, oy] Vge Gy )
Acy

where ¢ is a normalizing constant and oy, is a nonzero constant iff A is a
clique of the nonrandom dependence graph D. In this context, the nodes of D
are all possible edges on m vertices; a clique in D is a subset of the vertex set
of D that is either a singleton set or has the property that all pairs of elements
are connected by edges in D. The D determines the dependence structure
between random edges; if D connects a specific pair of edges, then those
edges in g are conditionally dependent given the other edges in g. Frank and
Strauss proceed to define a class of random models called Markov graphs;
these correspond to a special sparse structure in the dependence graph D (i.e.,
the adjacency matrix of D has ones in a few particular locations and zeroes
everywhere else).

In this setting, the Holland and Leinhardt P model is a submodel of the
version of (5) that describes directed graphs. The p, model and subsequent
developments of it correspond to assuming the dependency graph D to be
edgeless (i.e., the adjacency matrix consists of zeroes), while imposing a spe-
cial structure on the o4 terms. This result follows from the stochastic
independence of different dyads. Work in this area has focused on building
log-linear models that describe the probability that a particular edge occurs,
as a function of characteristics of the vertex and its neighbors.

From this perspective, the model described in this paper also entails an
edgeless dependence graph. Equating the representation in (5) with the form
given in (3), one finds that the probability that an edge or a non-edge in a ran-
dom network g agrees with the corresponding edge or non-edge in g' is
a+ e“’)“, and this is independent of the presence or absence of all other
edges. Thus the model we discuss is especially appropriate whenever the
data can be regarded as deriving from a true network 8 * that is measured with
independent, edgewise error.



128 D. Banks and K. Carley

Proposition 2: Under the model in (3), the dependence graph D is edgeless.

Proof: Without loss of generality, assume that g‘ is the edgeless graph; also,
let g be a graph with k + 2 edges, two of which are e; and e;. We show that
the joint probability of edges e; and e, conditional on the other edges in g, is
not the product of the marginal probabilities of e and e, each conditional on
the other edges in g. Clearly,

e-(k+2)o
e-ko + 2e-(k+l)c + e-(k+2)o
-20

Ple and e, | the remaining k edges] =

(4
(A +e°R’

and
Ple, | the remaining k edges] Ple, | the remaining k edges]
e~®+10 4 p~k+20 2
e*0 4 2~U+1)0 4 k4200

e-26

T (1 +edpR

These quantities are equal; all edges are thus conditionally independent. By
definition, D is edgeless. ®

Proceeding now to data analysis, suppose one observes gy,...,8 @
random sample of networks with distribution H(g*,6), where g° and o are
unknown. In this framework, we find that we can develop many of the usual
tools of statistical inquiry.

Estimation
Following the conventional strategy for maximum likelihood estima-
tion, we find the log-likelihood function of the sample as

Lig*.0)=nlogc(c) -6 ¥ d(gi.g"). ©

i=]

We seek the estimates (g * &) that maximize this quantity.
For any value of G, it is clear that (6) is maximized in g * by2
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g =argmingeq, Y, d@i8"). )
i=1

The quantity ¥, d(g;.8 *) is called the remoteness function, and the solutions
of (7) are called medians (cf. Barthélemy and Monjardet 1981, 1988). Similar
estimators were derived in the context of trees by Margush (1982), Margush
and McMorris (1981), Barthélemy and McMorris (1986), and McMorris
(1990). These works did not focus upon statistical inference, and only
McMorris uses an explicit probability model; that model describes consensus
in voters’ rankings, and extends work by Young (1988) and Condorcet (1785).

For the metric considered in, this paper, the median can be found by
majority rule; i.e., an edge is in g if and only if it is present in more than
50% of the observed networks (the usual non-uniqueness problem may arise
when n is even).? This result is standard in minimizing the remoteness func-
tion under this metric, with early work going back to Condorcet (1785). For
other metrics, the solution is more complicated and can become computation-
ally intensive. Barthélemy and Monjardet (1988) give a careful survey of the
issues in this area, together with new results for specific applications. In
many cases, steepest descent search of the network space yields a practical
solution for alternative metrics.

To find &, differentiate (6) with respect to G, set this to zero, and solve
for 6. We obtain the solution

! 2 d(gii)
1-(m) 2., g8 )

6=-1 ®)

Thus the estimate of ¢ can be foung analytically, once a majority rule calcu-
lation has developed the estimate g .

Goodness-of-Fit

The easiest method for assessing the validity of the family {H(g * o)}
in a given application depends upon the chi-squared test pioneered by Pear-
son (1900). Unfortunately, the parameter g° is discrete, and thus conven-
tional asymptotic theory, in which parameters take values over a vector

2. The argmin function returns the value of the index set which minimizes the argument.

3. Krackhardt (1987) refers to the central network, when it is derived from socio-cognitive
structures, as the consensus structure. Carley (1984) refers to it as the majority intersection.
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space, does not apply. This deficiency prevents the use of alternative
methods for assessing goodness-of-fit, such as a likelihood ratio test, but does
not preclude a conservative version of the chi-squared test. The procedure for
employing the chi-squared test consists of the following five steps:

1. Use the data to find maximum likelihood estimates §‘ and G.

2. Partition G, into a relatively small number of regions Ry, ... Ry,
such that the expected numbers of observations in each region
under the fitted null model are approximately equal. Denote the
expected value of region R; by E;.

3. Count O;, the number of sample networks observed in region R;.

4. Calculate the test statistic

2
XZ - i (O'TE') . (9)
i=l i

5. Compare the test statistic to the value in a chi-squared table having
P — 2 degrees of freedom and some appropriate o level, such as .05.
If the test statistic is larger, then one has evidence that the model is
incorrect.

We employ this procedure in Section 3.

We emphasize that the underlying assumptions for this test are not fully
met. In particular, it is unclear how the degrees of freedom described in Step
5 above should be adjusted to account for the estimation of the central net-
work by g . If that parameter lay in a linear space, then we would subtract a
degree of freedom for each dimension of that space; however, a network-
valued parameter does not lie in a linear space, and thus classical theory does
not apply (cf. Cramér 1961, Ch. 30.3). We suggest not subtracting any
degrees of freedom for estimating the central network; then the degrees of
freedom for the null distribution will be large, and the test will be conserva-
tive.

In general, assessing goodness-of-fit for social network data is very
difficult. The discreteness of the parameter space prevented Frank and Strauss
(1986) from examining the fit of their Markov graph model, and similar prob-
lems can arise in evaluating the p; model. Holland and Leinhardt (1981)
applied an ad hoc test based on triad counts but found that their example
dataset exhibited very bad fit. Subsequent authors have largely employed
tests of simple versions of the p; model against more complicated p, ver-
sions, but this practice does not bear on the appropriateness of the basic
model. Fienberg, Meyer, and Wasserman (1985) identify this problem as a
key area for future research.

e I

8 aiven

o pATME L e e e

CR NI

S s e —— %



Metric Inference for Social Networks 131

Confidence Regions
Confidence regions on the parameters are fundamentally important, but

there is no immediately available theoretical prescription for determining

these. Instead, we propose the use of either the parametric bootstrap or the
nonparametric bootstrap; these are easily implemented computer-intensive.
procedures which automatically extend to the treatment of more complicated
functions of the parameters. The parametric bootstrap makes heavy use of
the model for the data. The nonparametric bootstrap is more generally appli-
cable but tends to give confidence regions with larger volumes.

The parametric bootstrap, described in Efron (1982), uses the original
sample to assess the standard errors in one’s estimates. Operationally, one
proceeds as follows:

1. Use the sample of random petworks gy, - . -18n to find the max-
imum likelihood estimates g and &. Draw a random sample of size
n from the distribution with these parameter values. Denote the
new random resample by iy, . . . ,hn.

2. Using the resample Ay, . . . ,hn, apply the maximum likelihood pro-

cedure to estimate the center and dispersion by (2 '6). This esti-
mate takes values in G, X R*, where we take IR* to denote the
non-negative numbers.

3. Repeat the first two steps B times, for B about 1000. (Efron and
Tibshirani 1986 discuss heuristics for determining B.) Record the
estimates for each repetition; denote the estimate corresponding (0
the i-th resample by (8; ,6).

4. Find the smallest volume in G,y X IR* that contains 100(1 — )% of
the B resampled estimates to get the bootstrap approximation to the
desired confidence region.

The more cOMmOon nonparametric percentile bootstrap proceeds exactly as
above, except that in the first step, hi,...,h, is drawn at random with
replacement from gi,...+&n- A more thorough discussion of bootstrap
methods, properties, and performance appears in Banks (1989).

The previous steps raise some theoretical points. The first concerns the
determination of the minimum volume region V=V, xVg, defined by the
Cartesian product of a set V; € G, and Vs c R*. The generalized volume
of any such product is ab, where a is the cardinality of V, and b = Iv. dx.
The volume must be minimized over regions V that attain the desired
confidence; i.e.,

P s
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Ak A

B
100(1-0)BS Y ¥ WG 6)ldo (10)

i=1 geG,

where Iy[ -] is an indicator function equal to zero unless the argument lies in
V, in which case it takes the value one.

This joint minimization can be extremely difficult. Often it is easier to
find a region that satisfies (10), and thus is an approximate 100(1 — )%
confidence region, but which does not quite attain the minimum possible
volume. .A natural strategy is to require that the region have the form
{g:d(g, g ) S 8); if this volume is still too large, one can ask that the region
contain g and all networks between 2 and a set of , specified networks
whee g is, defined to lie between 2 and g** if

gg “) d@ ,g) +dG, g'"). (This equality is equivalent to
g ng cg cg ug , where the network is identified with its edge set.)
More elaborate methods are also available that sometimes employ more com-
plicated bootstrap methodologies.

The second theoretical issue is that the primary interest may not be
g*,0), but rather some functional G(g »O). For example, for a confidence
region on 8", we use the functional 0 *,0)= =g°. More generally, we might
require the functional to pick out a subnetwork of g * corresponding to certain
vertices of particular interest, or evaluate the average vertex degree, or cap-
ture some other feature of the central network and the dispersion. Such gen-
eralizations are immediate, since the maximum likelihood estimate of the
functional is just the functional of the maximum likelihood estimates (cf.
Lehmann 1983, p. 112). Therefore we can proceed as indicated through Step
4 and then find the image of the points (g,0) in the confidence region under
the mapping induced by 6. Again, with greater effort we may obtain regions
of slightly smaller volume.

Hypothesis Testing

If the union of the regions specified in the null and alternative
hypothesis is the entire space, then the duality between confidence regions
and hypothesis tests enables direct use of the previous bootstrap method.
Specifically, suppose we want to test

H,:(g°,0) € 6 versus Hy:(g*,0) ¢ © an

where ©9 € G, X IR*. Then we pick the desired form of the confidence
region (either the difficult minimum volume region or one of the more tract-
able approximations), gather the sample, and set the bootstrap confidence
region of size o If the intersection of the bootstrap confidence region with

SR
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©, is empty, then we can reject the null hypothesis at level a.. The same stra-
tegy generalizes immediately to functionals of (g *,0).

Powerful alternatives to the approximate bootstrap test are available in
two serendipitously common applications. We note that these tests have
meaningful interpretations even when the the postulated model in (3) fails to
hold. In the first case, we want to test

H,:0=0versus Hy:g* = goand 6 > 0. (12)

The null hypothesis corresponds to uniform measure over the set of graphs
(and thus no graph is the unique central graph); the alternative specifies non-
uniform probabilities and a specific central graph. Under the null hypothesis,
all networks are equally likely, and so the probability that a given observation
is k units distant from g¢ has binomial distribution Bin(r, .5). For an indepen-
dent sample g, . . . .&»., the reproductive property of the binomial distribution
ensures that (under the null hypothesis) the sum of the distances has binomial
distribution Bin(nr, .5).

Let the test statistic be s=X"-; d(gi.g0)- It is straightforward to show
that this selection gives a likelihood ratio test under our model, but the pro-
cedure is applicable far more generally. Since s directly measures the degree
of concentration of the sample about the network go specified in the alterna-
tive, then a test based on s should work well (though not optimally) for any
model for the alternative in which go is the true mode and the probability
mass function is monotone with respect to distance from go. The significance
probability p of such a test is

p=3% (7] (13)

j=0

This test depends only upon the null distribution and thus provides meaning-
ful information even when our model is not posited in the analysis. Small
values of p indicate that the sample is highly improbable when the null
hypothesis is true.

The second common application is to test

H,:0=0versusHy:6>0, 14).

which is equivalent to testing whether all networks are equally likely.
Although this can be handled by the bootstrap procedure, a probably superior
approximate test, avoiding pitfalls pointed out by Fisher and Hall (1990), is
based upon a U-statistic (cf. Randles and Wolfe 1979, Ch. 3). A U-statistic is
the average of dependent quantities; for a sample g1, . . - .8 define
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Ugr-...e0= (5] T dengp. (15)

icj

Although one can show that the terms in the sum are pairwise independent,
the triangle inequality implies that the entire collection is not mutually
independent. Under the null hypothesis, standard U-statistic derivations
show that this statistic is asymptotically normal with mean r/2 and variance
r/2n(n —1). Under the alternative, the asymptotic distribution is shifted to
the left, thus enabling the usual machinery of hypothesis testing; we reject the
null hypothesis if and only if

U(gl!--ﬂgn)_é

‘Jr/2n(n -1

where z, is the appropriate critical value from a standard normal table for a
level o test.

<Zq (16)

Extensions to Directed Networks and Networks with Loops

The methods and results described so far extend immediately to the
case of directed networks (commonly, digraphs) with loops permitted or not.
Specifically:

1.  If the data have directed edges but loops are excluded, then replace r
by m(m — 1) throughout the preceding discussion. Let G, denote the
set of loopless directed networks on m vertices, and use the metric

d*(31.82) =t [(G1 - G3)T (G - Gy)l. an

2. If the data have directed edges and loops are allowed, then replace r
by m? and use the metric d*.

3. If the data have undirected edges and loops are allowed, then replace
rby (m? + m) /2 and use the metric defined in

d**(g1,82) = % tl(G — G2)*) + tr[(Diag(G, ~ G3))?] (18)

where Diag[ - ] denotes the diagonal matrix whose diagonal values
agree with those of the matrix argument.

It is easy to verify that these variants of the original metric are metrics upon
the corresponding set of networks; the key is to note that each variant simply
counts the number of discrepancies between any two elements of the set. All
the theoretical properties developed previously apply to these cases, and the
proofs are entirely straightforward modifications of the ones already stated.
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Section 3 examines one dataset that consists of directed networks with
loops prohibited, to illustrate implementational details in applying and gen-
eralizing the methodology we have discussed.

3. Example — Krackhardt’s Friendship Cognitive-Social Structure Data

The example we consider is drawn from the data set described in
Krackhardt (1987), who collected what he refers to as cognitive social struc-
ture data for 21 managers in Silicon Systems, a high-tech computer consult-
ing firm. The cognitive social structure data was obtained as part of a larger
study on the effect of the perception of network structure on individual
behavior. Several different network measures were collected including both
friendship and advice based cognitive social structures.

To illustrate our methodology we will focus on only the friendship cog-
nitive social structure. These data are of the form F; where i is the sender of
the friendship tie, j the receiver, and k the perceiver. These data consist of 21
networks, one for each of the 21 managers, such that each network is that
manager’s perception of who interacts with whom among the 21 managers.
These networks include the manager’s perceptions about his or her own
friendship relations and the friendship relations among the other managers.
The random network thus consists of nodes that are managers, and directed
edges indicating perceived friendship relations. The 21 digraphs are avail-
able as krackfr.dat in UCINET (MacEvoy and Freeman 1988), a respository
of social science data.

Step 1: Locate the central network.

Using all 21 digraphs, the majority rule algorithm finds that the max-
imum likelihood estimate of the central network for friendship has the adja-
cency matrix shown in Figure 1. This central network represents the “‘social
cognition’’; the perceptions about friendships among group members that are
shared by members of the group. For these data, it happens that the estimate
is unique. The central friendship network is sparse, many individuals (43 per-
cent) appear to have no friends within the organization
(1,6,7,10,11,13,15,16,10), and of the eleven friendship ties only six represent
symmetric relationships (2-21,4-12,5-19). As to this latter point, Carley
(1991) has argued that asymmetric ties are a natural result of interactions
being based on relative similarity; they are part of the underlying structure
and should not be viewed as errors in the data collection process.

The sum of the distances from each sample network to the estimated
central network, g , is 713, and the estimate from (8) is & = 2.431. Notice
that we have used r = m(m — 1), or 420, since the networks are directed
graphs without loops.

-
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Figure 1. Central Network for Friendship Socio-Cognitive Structure using all 21 Matrices.

Step 2: Perform a goodness-of-fit test.

There are many ways we could partition the space of networks, but a natural
division is based upon distance from the estimated central network. We form
four subsets (or cells), consisting of networks that are 0 to 29 units away from
2 . those that are 30 to 33 units away, those that are 34 to 37 units away, and
all those that are further. We chose to make four subsets since: (a) fewer
than three would preclude any degrees of freedom for a conservative chi-
squared goodness-of-fit test, (b) the larger the number of cells, the greater the
ability of a residual analysis of discrepancies between observed and expected
cell counts to detect patterns of ill-fit; e.g., increasingly poor fit as one moves
away from the central graph; and (c) more than four reduces the expected
numbers of networks in each subset below the levels needed to obtain an
approximate chi-squared distribution when the model is correct. Conditional
on the number of subsets, we chose the cutpoints on the distance scale to
obtain expected proportions that were as nearly equal as possible; ceteris
paribus, this choice tends to maximize the power while improving the accu-
racy of the chi-squared approximation.

IR e

i rem—— e g w—an

i AN

P s e N



Metric Inference for Social Networks 137

Under the null model with the fitted parameter values, the expected
proportions in the four cells are 215, 262, 264, .258, respectively. Thus the
expected numbers of sample networks in each cell are 4.52, 5.51, 5.55, and
5.41. The corresponding observed numbers are 10, 0, 3, and 8, so standard
calculation shows that the chi-squared goodness-of-fit test statistic is 14.57,
with a significance probability less than .001 (regardless of whether the con-
servative test with p —2 = 2 degrees of freedom, or the less conservative test
with p —3 =1 degrees of freedom, is used). A residual analysis of cell
discrepancies shows that a model with both a greater peak and a heavier-tail
is required. In other words, most of the sample ‘‘clusters’’ tightly around the
central network, but a significant fraction of the observations are very distant.
We will return to this point later.

Step 3: Locate the confidence region.

The next step in the analysis is to place a confidence region upon the
central network and/or the dispersion parameter. Since the model does not fit,
we use the nonparametric strategy and illustrate the case in which the param-
eter of interest is 8(g*, ) = g, as mentioned at the end of the discussion of
confidence regions in Section 2. The implementation is based on B = 1000
bootstrap resamples and exactly conforms to the four-step bootstrap algo-
rithm described previously (sampling, of course, from gy,....8, tO Obtain
the nonparametric bootstrap rather than the parametric bootstrap). Since we
are dealing with networks, the confidence region is a set of networks within a
given distance from the estimated central network. The distances for the
90%, 95% and 99% confidence regions are 13, 15, and 19, respectively. In
Figure 2, the central network and the networks for those six individuals
(2,3,8,9,18, and 20) whose networks lie within the 99% confidence region are
displayed. The identification number of the manager whose network is being
displayed is printed within an oval. To aid the reader visually, those portions
of the managers’ networks (nodes and edges) that are part of the central net-
work are emboldened in Figure 2. The networks of these individuals are of
particular interest socially, as their networks could arguably equal the
unknown central network. The perception of the friendship relations held by
these individuals is the closest to the social cognition. In this sense, they can
be thought of as the keepers of the cultural truth.

An Aside: Contrasting Social and Individual Perception

It is interesting to compare this shared or social perception with the
individuals’ perception. To do so, we can compare the central network with
the individually perceived network which contains an edge (i.e., friendship
relation) from manager i to manager j just in the case that i perceives that i
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Figure 3. Individually Perceived Friendship Network.

sends a friendship tie to j. The resultant individually perceived friendship
network is shown in Figure 3.

Contrasting Figures 1 and 3 provides insight into the difference
between the friendship network as generally perceived by members of the
group and the friendship network as defined by the individual. We see that
the shared perception of who is friends with whom does not necessarily equal
the set of dyads that consider themselves friends. The distance between the
central network and the individually perceived network is 93. This distance
is largely attributable to the fact that the individually perceived network is
more dense (contains more edges) and contains all but one of the edges in the
central network. This missing edge is that from Manager 9 to Manager 5. It
is only in this one case that the society at large sees a friendship between two
individuals where neither of the individuals involved considers the other as a
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friend. For the most part, individuals claim friendships that are not perceived
by the group at large. The fact that the individually perceived friendship net-
work is more dense than the central network is to be expected. The larger the
number of individuals who must agree for an edge to be included in a graph,
the smaller the number of edges that occur. In this case, for the network in
Figure 3, only one person must agree for an edge to occur, but for the network
in Figure 1, at least 11 individuals must agree for an edge to occur.

That the two networks differ invalidates neither the procedure for locat-
ing the central network nor the use of the central network as a measure of the
underlying structure. The two networks are different types of perceptions of
the friendship network. Individuals vary in their willingness to ascribe such
relations as friendship. The number of links in each manager’s network and
the number of claims of friendship by each manager are listed in Table 1.
Note that Manager 9 is quite exclusive, perceives little friendship among oth-
ers and does not claim friendship to any other managers; however, Manager
11 is quite inclusive, perceiving both a large number of friendship ties among
others and claiming thirteen friendships to other managers (Figure 3). Since
the central network (Figure 1) contains an edge only if the majority agree to
it, the central network can be thought of as filtering these individual
differences in perception. Relationships strong enough to be observed by
many, despite the opinion of the participants (such as that between Managers
9 and 5) appear in the central network, but relationships that are observed
only by the participants are dropped. For example, Manager 17 claims 18
friendships (Figure 3), only one of which, that to 21 (Figure 1), is observed by
the majority of the other organizational members. The central network is thus
a socially robust representation of the underlying friendship network.

In Table 1 the distance of each manager’s network from the central net-
work is displayed, with the managers ordered by distance. The average dis-
tance from the central network is 33.95 with a standard deviation of 19.88.
Five managers (1,5,19,11,7) stand out as almost or more than one standard
deviation further from the central network than the average manager.

The responses of these managers appear different in kind from their col-
leagues’. Actor 7 was the chief executive officer. Referring to Table 1, we see
that Manager 7 is the furthest from the central network and that Manager 7
perceives more friendship ties than any other manager. Four other managers
(1, 5, 11, and 19) also give networks with very large numbers of connections.
This kind of systematic structure is commonly found in social network
analysis (cf. Bernard and Killworth 1977; Bernard, Killworth and Sailer
1984; Romney and Faust 1982).

We now reapply our analysis to the 16 *‘normal’’ cases, excluding the
five distinctly different high-connectivity cases. Let us refer to the 16 *‘nor-
mal’’ cases as insiders and the five high-connectivity cases as outsiders. First
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Table 1.
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we find the central network for friendship ties between all 21 managers, using
only the digraphs of the sixtesn insiders. This network can be thought of as
the insiders’ view of the organization. Then we consider the central network
for the friendship ties between just the insiders using just the insiders’
digraphs. This network can be thought of as the insiders’ view of the insiders.

Insiders’ view of the organization.

We recompute the central network after leaving out the digraphs for the
five individuals whose digraphs are furthest from the central network. Doing
so produces the estimate shown in Figure 4. Using the majority rule algo-
rithm, we find that the maximum likelihood estimate of the central network
g is not unique; there are four solutions that maximize the likelihood. One
solution has all of the friendship ties shown in Figure 4, another adds the tie
8-4, a third adds 9-5, and the fourth has both 8-4 and 9-5. Contrasting Figures
1 and 4 we see that they differ only in that the friendship ties 17-21 and 18-2
occur in Figure 1 and not Figure 4, and tie 1-12 occurs only in Figure 4. The
ties 17-21 and 18-2 are perceived by less than 45 percent of the insiders (six
and seven respectively) but are known by all five outsiders. These ties can be
thought of as serving to anchor the outsiders’ perception of the friendship net-
work to the insiders’ perception. Indeed, the central graph formed from just
the five outsiders’ digraphs includes all the friendship ties in Figure 1 and
several others besides. In contrast, the tie 1-12 is perceived by a majority of
the insiders (9) but only by one outsider (Manager 1). And the central net-
work for the insiders (Figure 4) contains only this tie in addition to those in
the central graph for the entire organization (Figure 1).

For this reduced dataset we once again determine whether the models
fits. In this case 6 = 2.792 and the sum of the distances from the central net-
work is 388. (Note that the sum of the distances from each sample network to
the estimated central network does not depend upon which of the four loca-
tion estimates is chosen.) Once again, we partition the space of networks
according to distance from the central network. The first subset contains net-
works that are O to 21 units away from the central network, the second con-
tains those between 22 and 24 units distant, the third those between 25 and 27
units distant, and all others are in the fourth subset. Under the null model
with the fitted parameter values, the expected proportions in the four cells are
289, 243, 224 and .244, respectively. The corresponding expected numbers
of sample networks in each subset are 4.63, 3.89, 3.58, and 3.90, and the
observed numbers are 8, 1, 1, and 6. Standard calculation shows that the chi-
squared goodness-of-fit test statistic is 7.609, with a significance probability
less than .025 with p —2 = 2 degrees of freedom (and .010 with p - 3=1
degrees of freedom). Without the outsiders, the fit of the model is improved,
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Figure 5. Central Network for Insider’s View of Insiders.

although the data still suggest a large peak and heavy tails. Using the non-
parametric bootstrap procedure to determine the confidence region on the
central network reveals that the distances for the 90%, 95%, and 99%
confidence region are, respectively, 7, 8, and 12. This finding is a much
tighter confidence region than was observed for the full data set. Only three
of the individual's networks fall within the region prescribed by this
confidence interval, Managers 3, 8, and 9.

Insiders’ view of insiders.

Now let us consider the insiders’ view of just the insiders. To do so, we
compute the central network for the 16 digraphs formed by eliminating the
five digraphs for the outsiders, and eliminating from each of the remaining
sixteen digraphs the rows/columns associated with these five outsiders. The
resulting central network is displayed in Figure 5. In this case, the majority
rule algorithm finds that the maximum likelihood estimate of the central net-
work is not unique. The two solutions differ in that one has all the ties shown
in Figure 5, but the other does not have edge 8-4. In the following illustra-
tions, it is sometimes convenient to assume that the estimate is unique; when
that happens, we shall use the first estimate.



P

144 D. Banks and K. Carley

The sum of the distances from each sample network to the estimated
central network does not depend upon which of the two location estimates is
chosen. In either case, the total distance to either g is 182, so the estimate
from (12) is 6 = 3.001. Here m = 16 and we use r = m(m — 1) = 240, since
we have directed graphs without loops.

Partitioning the space of networks according to distance from the cen-
tral network, we find that the first subset contains networks whose distance is
9 or less; the second subset has those with distance 10 or 11, the third those
with distance 12 or 13, and the fourth consists of all other networks. Under
the null model with the fitted parameter values, the expected proportions in
the four subsets are .296, .238, .216, and .250, respectively. The expected
numbers of sample networks in each cell are 4.73, 3.81, 3.45 and 4.00, and
the corresponding observed numbers are 6, 2, 2, and 6. We find that the chi-
squared goodness-of-fit test statistic is 2.809, with significance probability of
.25 for the conservative test with 2 degrees of freedom, or .1 for the test with
1 degree of freedom. In either case, the model appears to give a reasonable
description of the insiders’ view of the insiders.

Although we find no basis to reject the model, examination of the devi-
ations in the cells with increasing distance suggests that even for just the
insiders’ view of the insiders, the exponential function in (3) still gives a
model that tends to be too light-tailed and insufficiently peaked for these data.
The simplest explanation is that this regularity is spurious, since the test did
not reject the model; however, given that the context of the problem, a
core/periphery phenomenon may be operating. That is, even among the insid-
ers, people on the fringes of the social and power centers may have a different
perspective on the friendship relations. For future work, there is probably
value in generalizing the exponential function used in this paper to capture
such behavior. An alternative explanation for the deviations is that they
partly reflect the non-uniqueness of the estimated central graph.

To gain further insight into this issue, we place a joint confidence
region upon the central network and the dispersion parameter. Since the
model fits, this approach can be accomplished using either a parametric or a
nonparametric bootstrap. The nonparametric bootstrap drew 1000 resamples
of size 16 equiprobably from the observed data., Fo:' the j-th resample, we
calculated (X;, Y;), where X; is the distance d* (g; , g ) between the resample
estimate and the center of the empirical distribution, and ¥; is the estimated
spread 6,- obtained from the j-th resample. This procedure gave 1000 random
vectors whose empirical cumulative distribution approximates the bootstrap
distribution.

Finding the smallest joint confidence region in this situation is compu-
tationally difficult. Instead, we find a normal theory approximation to this
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smallest possible confidence region. To do so, we first note that although a
Q-Q plot indicates that the ¥; follow a normal distribution reasonably well,
the X; tend to ‘‘cluster’’ near zero and have long tails. A standard normaliz-
ing transformauon in such cases is to replace X; by W;=1/(1 +X;) (cf.
Weisberg 1980, Ch. 6, for details and alternative transformanons) We then
find the sample means and covariance matrix:

[ ] [34122

s | 5% swr] _ .0565 .0060
swr s§ |~ [.0060 .0204

From multivariate normal theory, we know that if a p-variate vector V is nor-
mally distributed with mean p and covariance matrix X, and if we estimate T
by S with a sample of size N, then

N-p+1 AT o ~
—’% V-7 SV = fi) ~ Fpnpar
In this application, we have N = 1000 and p = 2.
As a result, the approximate 100(1 — a)% joint confidence region on
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For a 95% confidence region, we find that F3 999,95 = 3.00. The area of this
ellipse is .6299.

The parametric bootstrap is very similar in execution. Since it uses
information about the structure of the model, it tends to produce confidence
regions that have less volume than those produced by the nonparametric
bootstrap. We ook 1000 resamples from the hypothesized model (3) with the
fitted values g and G estimated from the data. For the J-th resample, we cal-
culated X; and Y;; to a marked but lesser degree than hefore, the Q-Q plot
supported the use of the normalizing transformation that sends X;to W;. We
thus recapitulate the previous approximation, which led to the conﬁdence
region described in (19); the differences now are that

.9847 s = | -0080 .0009
2.8407 .0009 .0041
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We find that the 95% confidence region on (g*,0) has area .1066, which is
appreciably smaller than the area for the nonparametric bootstrap and
emphasizes the advantage of this technique when the model is correct.

Using the nonparametric bootstrap procedure to determine the
confidence region on the central graph reveals that the distances for the 90%,
95%, and 99% confidence region are, respectively, 4, 5, and 6. The
confidence region is again tighter than those previously located. In this case,
five of the individuals’ networks fall within the region prescribed by this
confidence interval, Managers 2, 3, 8, 9, and 18. When considering only the
insiders’ view of insiders, we see that only the network of Manager 20 no
longer falls within the confidence region. This set of analyses suggests that
there is a central perception or a cultural consensus, and that individuals
2,3,8,9, and 18 are representative of this consensual view.

4. Conclusion

The model proposed in this paper enables researchers to frame testable
hypotheses about network-valued random variables. The parameterization of
the model is attractive in that the parameters correspond to interpretable pro-
perties. Using the methods described, large portions of standard statistical
theory extend naturally to these applications. These include maximum likeli-
hood estimation, hypothesis testing, confidence regions, and goodness-of-fit
tests.

The metric strategy we discuss can be generalized in many ways. One
approach is to consider mixtures of models of the kind we discussed to cap-
ture multimodality in the data. Also, we could use a different metric designed
to capture some contextually pertinent topology, or design a metric space that
is restricted to an interesting class of networks, such as trees. In most appli-
cations, we would probably want to tailor the analysis to the situation at hand.

To illustrate the potential of our methods, we -reexamined a dataset
from Krackhardt (1987), finding several interesting features. Although the
intention was not to undertake a comprehensive analysis of this very complex
data set, our simple tools did discover interpretable structure that comple-
ments and supports the conclusions of the original investigators. For
Krackhardt’s data, after some exploratory analysis, our model gave a good
description of the data and led to both a point estimate of the central network
and a confidence region upon that parameter. Although not of fundamental
interest, similar results were obtained for the dispersion parameter.

It appears that this perspective on social network data has two major
advantages for many situations. First, it leads to a simple mathematical
description of such data. This description corresponds to a practical parame-
terization of the problem, using the center of the data and variation around it.
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Second, the formulation is tightly connected to conventional statistical infer-
ence for data that take values in a Euclidean space. Therefore it is nearly
automatic to apply a wide range of standard statistical tools. Whenever the
goodness-of-fit test we propose supports the applicability of our model to the
data, then the methods developed are nearly ideal.
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