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Autonomous Agents
and Emergent Behavior
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A computational organization theory is the articulation of an organization theory in
the form of a computer program. We describe an example of this approach to
studying organizational phenomena through the use of simulated autonomous
intelligent agents, present a detailed description of such a model, and demonstrate
the application through a series of experiments conducted with the model. The
model, called Plural-Soar, represents a partial instantiation of a cognitively moti-
vated theory that views organizational behavior as emergent behavior from the
collective interaction of intelligent agents over time, and that causal interpretations
of certain organizational phenomena must be based on theoretically sufficient
models of individual deliberation. We examine the individual and collective behav-
ior of the agents under varying conditions of agent capabilities defined by their
communication and memory properties. Thirty separate simulations with homoge-
neous agent groups were run varying agent type, group size, and number of items
in the order list an agent acquires. The goal of the simulation experiment was to
examine how fundamental properties of individual coordination (communication
and memory) affected individual and group productivity and coordination efforts
under different task properties (group size and order size). The specific results
indicate that the length of the item list enhances performance for one to three agent
groups, but with larger groups memory effects dominate. Communication capa-
bilities led to an increase in idle time and undesirable collective behavior. The
general conclusion is that there are subtle and complex interactions between agent
capabilities and task properties that can restrict the generality of the results, and
that computational modeling can provide insight into those interactions.
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1. INTRODUCTION

Organizations are comprised of individual agents. Organization theory attempts
to explain the behavior of individual agents and groups of agents within the
context of an organization, and also the aggregate behavior of organizations
with respect to their environment [1]. Research in organization theory has taken
many perspectives and has incorporated a wide variety of methods, where the
variation may be determined by factors such as the unit, time frame, or level of
analysis of the researchers [2]. Researchers studying the (macroeconomic) be-
havior of an organization in a global market over a 10-year period employ
different theories, methods, and data than do researchers studying the (psycho-
logical) behavior of an organization of individuals working together for one hour
to solve a particular problem.

A recurring issue, however, in organization research is how to account for
the role played by the individual agents which comprise it; that is, to what extent
is it necessary to have an understanding of individual behavior to account for
organizational phenomena. Gioia and Sims [3] comment on the situation:

At their essence organizations are products of the thought and action of their
members. Yet organizations also seem to take on a life of their own. An apparent
paradox is thus created. For some, organizations are entities guided by thinking
individuals who shape the actions of the organization. For others, the distinction
between organizations and their members is blurred enough that treating the
two as independent entities is problematic. (p. 1)

On one hand, individual agents are characterized in organization theory by
their inherent functional limits. Simon [4] has argued influentially for an alterna-
tive to the rational expectations model of individual agent decision making,
bounded rationality, where individual agents do not (indeed, cannot) consis-
tently engage in optimal search, but incorporate aspiration levels below opti-
mality to yield satisficing behavior. A corollary to this thesis involves the concept
of procedural rationality in which the rationality of an agent’s behavior is deter-
mined situationally by the particular decisions to be made by an agent and the
computational mechanisms (limited knowledge and processing capabilities) an
agent can bring to bear in making those decisions [5,6]. Thus, even if an agent’s
goals were consistent with rational expectations, the functional limits of the
agent would invariably constrain deliberation and choice except under the most
simple decision contexts. As such, bounded rationality has directly or indirectly
influenced a variety of organization theorists [7,8,9].

On the other hand, three developments have precipitated another look at
the role of the individual agent in organization theory. First, there has been a
general, sometimes subtle, movement toward linking macro/group/social phe-
nomena with individual behavior. This has occurred in sociology and social
psychology [10-14] as well as in aspects of organization theory itself [15-17].
This tension seems to be, in part, similar to the duality (and the many attempts
at unification) in physics where general relativity speaks to large-scale events
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and predictions, while quantum mechanics addresses the mechanisms on ex-
tremely small scales [18]. Yet, as Simon [19] has suggested, if we elect to align
our views within a perspective from natural science, perhaps our alignment
should be with biology and not with physics. People are not particles, organiza-
tions are not planets, and markets are not solar systems. Biologically influenced
views of organizational development, evolution, and mortality borrow terms
and concepts from behavioral, evolutionary, molecular biology, and ecology
[20-22]. But these are views based on analogy and metaphor, and not directly
derivative from those biologies. People are not genes, organizations are not
organisms, and markets are not nature. Is this a problem? The search for a
resolution of the Large and the Small is both diverse and interesting. This article
derives from this movement and seeks to link the micro to the macro.

A second development concerns advances in cognitive science which have
generated models of individual deliberation and decision making that go well
beyond the constraints of bounded rationality [23,24]. The focus has moved
from determining how decisions are made within a particular situation, to how
decisions are made within a particular architecture, given specific knowledge
within a particular situation. As Simon and Kaplan [25] define it:

The fundamental design specifications of an information-processing system are
called its architecture. The components of the architecture represent the underly-
ing physical structures but only abstractly . . . . The amount of detail incorpo-
rated in an architecture depends on what questions it seeks to answer, as well as
how the system under study is actually structured. (p. 7)

The nature of the architecture determines physical, organizational, and
processing constraints on deliberation at some level of abstraction. Thus, deci-
sions and knowledge are investigated within the context of a specific and
unchanging architecture that remains constant. In addition, the nature of the
particular architecture proposes specific hypotheses on the nature of delibera-
tion and how those hypotheses interact with the knowledge and decisions
made. As will be explained in Section 3, the specific architecture we selected
permits comparisons about cognitive deliberation effort across agents and tasks.

Although various components of cognitive science perspectives have crept
into the jargon of organizational researchers and theorists [26,27], none have
incorporated a broad cognitive model as the fundamental component of an
organization theory. For many macro-level organization theories, such a model
is largely irrelevant, given their theoretical goals and level of abstraction. For
other theorists, models of human deliberation are essential as their views are
based on assumptions of how humans reason and how that reasoning ensues
within the context of an organization. Yet, even such microtheorists tend not to
use cognitive models of general intelligence. In this paper we take advantage of
a specific cognitive model of general intelligence and examine the organization
as a collection of intelligent agents.

Third, as in science in general, there is a broad and increasing incorporation
of modeling and theory development through computer simulation. The use of

hs —
- . i b et - A—J




Foeare e

W

LU

44 M. ]. PRIETULA AND K. M. CARLEY

simulation in organization science is not new. Simulations have had a significant
impact on organizational theory [28-30] and have been used to investigate issues
such as organizational learning and turnover [15,31], firm structure and organi-
zational decision making [32-35], and social structures [36]. However, our re-
search differs from these in two ways. First, we simulate an organization
through the distinct simulation of the individual agents comprising the organiza-
tion. Second, the cognitive sophistication of simulated agents we employ is higher
than most and is an instantiation of an architecture representing a general,
unified theory of cognition. Though interesting work on organizational theory
has been influenced by the cognitive or Al analogies [37], we directly include a
theory of human deliberation. The specific theory we incorporate is that pro-
posed by Newell [38] and realized in a cognitive simulation called Soar [39].

In this article we begin to explore aspects linking group phenomena with
individual behavior. The type of organizational theory underlying this approach
is called a computational organization theory in that a theory of organizational
behavior can be articulated and investigated (in whole or in part) through the
construction of an assemblage of intercommunicating computer-simulated
agents. In the program lies the theory. The specific theory that we employ,
ACTS theory [40] argues that the fundamental component (and thus foundation
of causal interpretation) of organizational behavior resides with the appreciation
(and therefore specification) of a goal-directed, but cognitively restricted, social-
ly situated intelligent agent capable of learning and communication with a
dynamic organizational environment. Implicit in this perspective is a strong
proposal: The architectural mechanisms by which individual agents perform
organizational tasks are precisely the same mechanisms by which they perform
all cognitive tasks requiring deliberation. The cognitive mechanisms the agents
bring to bear on the task do not change, rather, the environment (i.e., the task,
the socio-organizational setting) and the agent’s responses to the environment
(i.e., application and acquisition of knowledge) changes. Organizational behav-
ior is thus viewed as emergent behavior—the collective patterns of individual
agents acting (and interacting) within the structure of a specific organizational
environment and in the context of performing tasks.

As the properties of the individual agent (e.g., individual goals, knowledge,
preferences, model of the situation), the properties of the task (e.g., prescribed
goals, task structure), and organizational environment (e.g., organizational
structure, communication structure, social setting) impose constraints on indi-
vidual and, therefore, collective behavior, it is important to understand (and,
ideally, manipulate) those properties in order to understand and explain how
they account for variation of group phenomena.! The emergent behavior of even
small groups can be difficult to explain causally, as Schelling [41] points out:

1 There are, of course, organizational or group tasks in which the properties of the individual
agents do not matter and when certain collective patterns cannot be altered. For example, consider
Schelling’s [41] descriptions of “musical chairs” and “trying to get rid of Canadian quarters.” In the
former, one person will always be left chairless when the music stops. With the latter, each
individual agent can, at some time, pass the quarters on to another individual, but the collective
cannot “‘pass them on”—they still remain in the system. Thus, it is important to understand how
task and socio-organizational constraints interact with agent properties as well as research goals. An
observation that has not gone unnoticed in cognitive psychology [42,43].
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And sometimes the results are surprising. Sometimes they are not easily
guessed. Sometimes the analysis is difficult. Sometimes it is inconclusive. But
even inconclusive analysis can warn against jumping to conclusions about
individual intentions from observations of aggregates, or jumping to conclu-
sions about the behavior of aggregates from what one knows or can guess about
individual intentions. (p. 14)

This, in effect, is a reductionist approach to understanding how aggregates
of individual agents can account for collective behavior. Prediction and explana-
tion are the grails of a scientific endeavor; furthermore, the corresponding
theory must be commensurate with the prediction and explanation in scale and
scope. That is, if a theory is proposed (or ascribed to) which attributes as the
causal mechanism of group (organization) behavior to properties of individual
agents, one should ensure that the theory (as well as any investigative methods)
encompasses the particulars (and the variations) of the relevant properties of
individual agents. In other words, the explanation cannot be applied to a finer
resolution than the theory or the data.? But the micro and macro perspectives are
not in opposition, as Staw [17] observes:

reductionism is not just a way to pick up additional variance missed by macro-
scopic models. Psychological theories can strengthen and add theoretical subs-
tance to macro models by providing the underlying rationale or missing process
mechanism. This conclusion does not deny the utility of macro models, but
simply recognizes them as an interim solution. (p. 810)

The psychological theory we engage for the individual model of deliberation
is information processing theory, a perspective somewhat familiar to organiza-
tion science [46]. However, as we have noted, we rely on what is called a
“unified theory of cognition”—a general theory which posits a minimal set of
plausible, coherent mechanisms that can account for a variety of cognitive
phenomena, such as problem solving, decision making, memory, learning,
language, perception, and attention.

The importance of a unified theory of an intelligent agent for organizational
science is two-fold. First, an agent placed in an organizational (group) situation
is faced with a set of constraints (goals, tasks) in which a broad set of cognitive
phenomena may be required. The hypotheses often actually investigated in
organizational research of individual agents are not those of an agent’s cognitive
architecture, but of an agent’s architectural responses to a real (or experimentally
constructed) socio-organizational setting. For example, manipulations to the
agent’s environment (e.g., method of intercommunication, organizational struc-
ture of the group, task assignments, goal specificity, cooperation levels) are
made and subsequent behavioral (or attitudinal) variables are examined. What a
unified theory brings to the table is a theoretical explanation of how those

2In addition, there are experimental implications. In many studies, individual behaviors (or
properties) are inferred from an analysis of group data, rather than from detailed observations of
individuals. Such inferences can potentially lead to misleading and incorrect attributions and causal
explanations [44,45].
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responses may occur and what they might be. Are the responses the result of
deliberate selection from the agents or are the agents constrained by critical
aspects of the task (or their architecture or knowledge, or other agents’ architec-
tures or knowledge)? In a sense, it provides a strong theoretical constraint on the
specification of agent-cognitive alternatives, thus permitting somewhat more
control on the investigative degrees of freedom to explain behavior.

Further unified theories are sufficiently complex that they typically need to
be realized as a computer program. Thus utilization of a unified theory automat-
ically puts us in the realm of computational theories. The articulation of the
theory in the form of a computer program affords a formalism and methodology
which imposes a rigor and discipline proven useful in cognitive science and
many other disciplines—the simulation of complex systems [47].

Of interest is how organizational environment changes affect the behaviors
of the individual agents and how such changes alter emergent organizational
(collective) activity. Thus, explanations of collective action arise out of investigat-
ing the intersection of the environment properties (the task and the socio-
organizational setting, which may include communicating with, and reasoning
about, other agents) and the agent properties (e.g., architectural properties,
knowledge, preferences). Tasks and socio-organizational settings can operate to
severely restrict the behavior available to an agent and, in effect, the type of agent
it becomes in a particular situation. Thus even though the complexities of model-
ing human problem solving are enormous, the requisite components of model-
ing a human in a restricted task and socio-organizational situation are much less
so. What is important is accounting for the fundamental regularities of the
cognitive architecture, the nature of the knowledge available within the architec-
ture, and the environmental constraints (task, socio-organizational) imposed on
the behavioral alternatives in a particular setting.

The rest of the article is organized as follows. First, we describe the nature of
the agents’ organizational environment, as the organizational environment is
essential in interpreting behavior [48,5]. The task involves agents iteratively
retrieving orders to fill and searching a warehouse for the specific items. The
organizational setting involves individual agents which act independently or
cooperatively (a specific, but simple, manipulation controlling the agents’ ability
to communicate with each other). Next we describe the architectural substrate
on which we built our individual agent models, Soar. Following this, we define
the individual agent models and task simulation, Plural-Soar. We then examine
the behavior of the Plural-Soar model under 30 different simulation studies
where we systematically varied three parameters: the number of agents partici-
pating in the task, the number of items on the list an agent is to retrieve, and the
capability of the agents to memorize locations of items and to communicate with
other agents. We conclude by discussing the implications of the research for
organization science.

2. THE TASK ENVIRONMENT: A WAREHOUSE

The Plural-Soar task environment is called the warehouse task [49]. Figure 1
presents the configuration of the warehouse. The warehouse is organized as a
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Figure 1. The warehouse task.

row of stacks of items. Agents queue up at a special stack (called the Order-Stack)
to obtain an order and then proceed to search for the item or items listed on the
order. An agent can “see” the contents of a stack only when it is at the specific
stack location. When an agent finds an item on the list, the agent removes it
from the stack (which may involve intermediate steps of removing other items
stacked on it) and places it on the conveyor belt. When an agent has found all of
the items listed on that order, the agent returns to the Order-Stack to obtain
another order. Agents at the same location (i.e., the Order-Stack or an Item-
Stack) cannot interact with the stack at the same time; rather, a first-in, first-out
(FIFO) queue discipline is enforced (but agents in the queue can still “see” the
items in the stack). Agents can manipulate stacks; they are allowed to move
items from an Item-Stack to the stack on its immediate left or right without
interference. There are no other physical constraints on agent movement (i.e.,
there is no other congestion in the model).

Agents can be configured to have a task memory and a communication
capability.® if an agent has a task memory (or memory for short), it can remember
the contents (i.e., the items) of any stack it encounters directly. When an agent
does not know where a particular item is located, it engages in a brute force,
uninformed, systematic search through the warehouse. With a memory, an
agent may obtain an order and immediately determine through recall the ex-
pected location of an item. If an agent has the ability to communicate, it can ask
other agents if they know where a particular item is located, or respond to

* We use the term task memory to denote the knowledge about the task/situation that the agent
can recall once it physically changes its position or once time has elapsed. Task memory is a
parameter we vary in our simulation experiments. It should not be confused with working memory or
long-term memory or preference memory, which are parts of the underlying architecture of all agents in
our study.
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Table 1
Plural-Soar Warehouse Parameters

Parameter How Parameler Was Varied
Memory Agent may have memoary of stack contents it visits or no memory of the stack
Agent have memory of questions it was asked if it can communicate
g Communication Agent may communicate (ask, answer) with other Agents or not
Advice Preference An Agent may believe its own item memory over any communication

An Agent may believe communcation or its own memory indifferently

Order List Number of items listed on an order was varied (T and 3 items per order).
Number The number of Agents in the Warehouse was varied (1 to 5 agents).
Number of Stacks The number of stacks in the warehouse was kept constant (10).

Number of Items The number of items in the warehouse was kept constant (30).

The number of requested items was kept constant (15).

WAREHOUSE

Distribution of ltems| The initial distribution of items in the warehouse was kept constant.

another agent’s request for location information. As an agent may obtain an
order and determine, through asking, the expected location of an item, commu-
nication should reduce search effort.

Table 1 illustrates the key parameters that were varied in Plural-Soar.
Though the warehouse task and the agents are simple, they collectively provide
a rich environment in which to begin to model and examine important issues
arising when organizations of autonomous, intelligent agents interact. By re-
stricting the complexity of the task and the agents, the relationship between task
properties and agent capabilities can be systematically explored from either an
organizational perspective (e.g., coordination schemes, reward structures, orga-
nizational structures, group size, communication links, assignment respon-
sibilities) or an individual perspective (e. 8., knowledge, trust, strategies, memo-
ry, motivation). The key issue we focus on is that representational fidelity for the
organization arises from the configuration of an organization comprised of
individual agents each based on a general model of intelligence—Soar.

3. SOAR: THE BASE-LEVEL INTELLIGENT ARCHITECTURE

The fundamental architecture underlying Plural-Soar is Soar [39]. Soar is an
architecture capable of exhibiting a broad range of cognitive phenomena, such as
problem solving, decision making, memory, learning, language, perception,
and attention [50]. Soar provides simple representational and control mecha-
nisms that can be applied universally and recursively in a problem-solving task.
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The power of soar is derived from its flexibility and, if directed to do so, its
ability to modify its own behavior (i.e., learn).* We briefly describe Soar so that
the reader can see the cognitive basis underlying the organizational agents in
Plural-Soar.

At its heart, Soar is a physical symbol processing system [52]. A physical
symbol processing system (or symbol system for short) is one which has the
capacity to access, manipulate, associate, and impose systematic structure on
symbols in order to build representational, interpretable symbolic structures.> A
symbol system is equivalent to a universal computational system and, if proper-
ly designed, could satisfy the necessary and sufficient conditions for a generally
intelligent agent as it affords the capacity to generate arbitrary response func-
tions to the demands of the environment and the agent’s perception of the
environment [55]. The problem, of course, resides in the determination of what
constitutes a “proper design.” How can a system use symbols in a systematic
and organized form such that general intelligence may be exhibited? In part, the
design of an artifact is strongly influenced by the constraints imposed on aspects
of its form or function. For Soar, two of the dominant constraints are [56]:

1. The number of distinct architectural mechanisms should be minimized.
2. All decisions are made through a combination of relevant knowledge at
runtime.

The simplicity (and generality) of the architectural mechanisms and the
context sensitivity in the application of knowledge within those mechanisms
afford Soar important flexibility in its ability to adapt to complex problem-
solving tasks—a strong theme in cognitive science [57]. The overall behavior of a
Soar program can be described succinctly: the selection and application of
operators to states within particular problem spaces to achieve goals. The problem
space is the primary organizational structure of all knowledge in Soar. Goals are
the primary reason for the existence of problem spaces; that is, problem spaces
arise because goals cannot be directly resolved with the knowledge (as opera-
tors) contained within them. All problems spaces have an associated state which
is a (possibly complexly linked) set of information represented as objects-
attribute-value constructs. Within a problem space, operators manipulate that
state until it matches a predetermined pattern defining the achievement of the
goal and the resulting termination of that particular problem space.

¢ We will not describe Soar’s learning mechanism in detail, as Plural-Soar was directed not to
learn in the simulation experiments reported in this article. Details of Soar’s learning mechanism can
be found in [51].

* By establishing the fundamental processing system as symbolic, two goals are accomplished.
First, the theory is grounded in a probable physical medium governed by laws of physical behavior.
Second, the form of the system approximates the power of a Turing machine [53] in its flexibility and
breadth of possible behaviors (subject to physical constraints), thus accounting for characteristic
phenomena such as memory, perception, and behavioral adaptations. One alternative to this
symbolic perspective is the somewhat more passive and lower-level connectionist approach. How-
ever, as Harnad [54] points out, it can be demonstrated that connectionist functionality is realized as
a special case of a symbol system.
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If Soar has difficulty in selecting or applying operators in a problem space
(e.g., several operators are possible, but it is not clear which one is best), an
impasse occurs indicating that the knowledge in the problem space is insufficient
to resolve the goal. When an impasse occurs, Soar automatically generates a new
goal (to resolve that impasse) and invokes (or creates) a new problem space.
Subsequent impasses will result in subsequent (embedded) goals and problem
spaces. In many cases, the user may define the major problem spaces in terms of
the task and provide knowledge to resolve “task-relat ” impasses as part of the
design of the knowledge base. Regardless of the reason, if any impasse occurs,
the Soar architecture handles subgoaling and problem space bookkeeping auto-
matically.

The characterization of a task in terms of goals, problem spaces, states, and
operators is not new in cognitive science [58] and one such approach is called the
Problem Space Computational Model (PSCM [59]). The realization of a PSCM
into a Soar representation requires the translation of the specific PSCM into a set
of Soar productions. Soar productions look like basic forward-chaining produc-
tions, but have a strict individual syntax and role which link the productions to
components of the Soar architecture.® One consequence of this translation is that
there is not a one-to-one correspondence between operators as defined at the
PSCM level and operators as defined at the Soar level—several Soar productions
must be written to realize a PSCM operator. The reason for this is that there are
several types of decisions that must be made when one, for example, ““applies an
operator” and Soar bases its representation at a more refined level to address
those decisions.

Accordingly, there are six basic production types that are used when build-
ing a Soar model (see figure 2). Problem space proposal productions are those
which detect the conditions under which a new (different) problem space should
be tried. Initial state proposal productions define the initial state of a problem
space (when it is invoked) in terms of an arbitrarily complex set of list structures
representing objects of interest for that space. The state contains information
which is global to the task (generally a subset of the overall task representation)
as well as information local to the particular problem space. Desired state detection
productions define the goal state of the problem space and monitor the state to
see if the goal has been achieved. Generally, within a problem space there may
be either (a) multiple operators or (b) multiple instantiations of a single operator
(or both) that may be useful to transform the initial state to the desired state.
Consequently, Soar makes an explicit distinction between proposing, selecting,
and implementing operators which change the problem state. Operator proposal
productions monitor the state of the problem space and, when appropriate, fire

s Forward-chaining production systems are based on the “if <antecedent> then <action>"
construct. If certain <antecedent> conditions hold, then <action> statements are engaged. There is
a basic constraint that no production construct can directly reference any other production; rather,
coordinated execution is based on all productions monitoring the same globally accessible data
structure, called a blackboard or working memory, which holds the state variables to which the
productions respond via their <antecedent> conditions and to which changes are made via their
<action> statements [60].
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Figure 2. Problem spaces and Soar constructs.

to suggest specific operators to be considered. All potential proposals are made
in parallel. Once these have been proposed, operator selection productions review
and evaluate the proposals to see if one operator is preferred over the others. If
one operator is selected, then operator implementation productions specific to that
operator execute the particular manipulations to the state.” Table 2 presents
examples of the six production types used in Plural-Soar as well as their English
interpretation.®

7 Note that if the set of operator selection productions fails to generate an unambiguous operator
to implement, an impasse occurs and a new problem space is proposed and entered in a search for
knowledge which can distinguish between the operators and thus resolve the impasse.

¢In Soar 5.2 productions (the version of Soar used for this simulation), a symbol in brackets
(e.g., <0>) is a pointer if it follows an identifier (e.g., “operator <0>), and an identifier for a specific
object if it is in the identifier field (i.e., the second field) of an augmentation [e.g., (operator <0>)].
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There are three basic “memories” in the Soar architecture: long-term, work-
ing, and preference memories. First, there is long-term (or permanent) memory.
All knowledge in long-term memory is encoded as if-then productions of the
types just described. Each production in Soar has rigid left-hand side con-
straints: It must contain references to only goals, problem spaces, operators,
states, or state augmentations. Knowledge in long-term memory is cued (acti-
vated) by matching the left-hand side pattern of the productions to the objects in
working memory. Unlike most forward-chaining production systems, in Soar
there is no conflict resolution—all long-term memory productions that match
objects in working memory fire in parallel.

Second, there is working memory. All knowledge in working memory is
represented as augmentations. An augmentation is an object (object-attribute-
value triplet) with associated preference for that object. Working memory
houses the temporary knowledge that represents the state unfolding as
problem-solving ensues.

Third, there is a preference memory. When a long-term memory production
fires, it does not change working memory directly; rather, the right-hand side of
the production proposes preferences for changes which are kept in a preference
memory. Soar then evaluates the preferences in preference memory and makes
the change decisions according to the results of the evaluation. Changes to
working memory are made only after all the preferences for a particular context
have been evaluated.

The basic control cycle of soar is called a decision cycle and involves an
elaboration phase and a decision phase.® In the elaboration phase, all relevant
long-term memory productions are instantiated and the preferences for changes
in working memory that do not involve any context objects (i.e., operators,
states, or problem spaces) are processed immediately, such as those that pro-
pose operators or compare operator proposals. If the preference processing
results in changes to be made to working memory elements (e.g., add or delete),
the changes are then made. Such memory changes may trigger additional long-
term memory productions, which would then trigger additional changes to
working memory elements. This instantiation-decision loop continues until no
more long-term memory productions can be fired—the system has reached
quiescence. After soar has reached quiescence in the elaboration phase, the
decision phase is entered where decisions (via the production preferences) regard-
ing the context objects (operators, states, or problem spaces) are made. As a
result of the decision phase, impasses and subgoals may be created or resolved,
as selections for problem spaces, operators, and states can occur.

* In traces of its behavior, Soar reports activity in terms of decision cycles and the decision cycleis
the metric of deliberation effort for Soar programs. Thus, when comparing two agents or two Soar
programs, the number of decision cycles it takes to complete a task directly reflects the deliberation
effort brought to bear in task solutions. The more decision cycles an agent or program takes, the
more reasoning effort it has used in solving the problem.
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The augmentations in working memory represent the fundamental state of
the system and trigger potentially appropriate knowledge from long term mem-
ory. Every augmentation in working memory has a unique symbol which is its
identifier. An augmentation for an object is given as:

(<object-class> <object-identifier> " <attribute,-name> <attribute,-value>
" <attribute,-name> <attribute,-value>

" <attributey-name> <attribute,-value=>)

where the <object-class> describes the particular type of object, such as the
goal, problem space, state, operator, or user-defined object in the state ex-
pressed as a constant, and the <object-identifier> is a unique identifier which
determines the object to which one is referring. The <attribute,-name> is
generally any user-defined name for an attribute attached to a state (e.g., "name,
"status, “top-of-stack) while the value for that attribute is defined via the <attribute-
value>, which can be either a constant (e.g., “name top-goal) or an <object-
identifier> (e.g., “state <s>), where <s> is a symbol that links the attribute name
“state to another augmentation in working memory. Constants permit augmentations to
have specific values that reflect attribute-value pairs of interest in the problem space (e.g.,
"name Agent1). Object-identifiers permit dynamically defined links between augmenta-
tions that can reflect flexible and complex relationships between objects (e.g., "top-of-
stack <item>) or general between-object constraints on pattern matching in the left-hand
side of rules (e.g., linking a goal object with a state object with an operator object).

Summarizing, Soar is a forward-chaining, symbolic production system that casts all
tasks as a collection of interacting problem spaces with associated goals, states, and
operators. Within a problem space, operators are applied to states in pursuit of goals.
When specific types of difficulties arise in that pursuit, an impasse occurs and Soar
generates a new goal (and associated problem space) to resolve the impasse. If directed to
learn, Soar generates chunks as it resolves impasses. Chunks are productions created and
added to long-term memory that link desired results of deliberation to working memory
elements that led to preferences for the result. Most often, chunks are created in the
context of a particular subgoal and problem space; however, chunks are created whenever
a state is modified, which may involve changing preferences for any context objects (e. g,
goals, operators, problem spaces) that are in consideration.

4. PLURAL-SOAR: A TASK-LEVEL KNOWLEDGE MODEL

The Plural-Soar model is comprised of the core Soar architecture with Common
LISP routines to enable interagent communication between programs across the
Ethernet. Each Plural-Soar agent is realized by a set of 125 Soar productions
which define five basic task problem spaces and the relevant operators within
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each problem space (see Figure 3). In Figure 3, problem spaces are denoted by
the ovals, and the operators are indicated by operators emanating from the
problem spaces. The (comparatively) low number of productions reflect an
important aspect of cognitive economy realized by the Soar architecture—the
semantics of task performance are defined by the task productions, but the
semantics of architectural performance underlying the application of the task
knowledge are in the purview of the Soar control mechanism and are not a
component of the task knowledge.

The Soar architecture, in the form of the techniques it brings (e.g., goals,
problem spaces, automatic subgoaling, chunking), handles much of what is
minimally required in driving a general problem-solving (and learning) system.
In the parlance of cognitive psychology, Soar’s architecture affords a fundamen-
tal set of “weak methods” [61] that are universal, but not powerful within the
context of a particular knowledge domain. The user defines particular task-
specific knowledge that allows Soar to solve problems in a particular domain.
The extent to which Soar relies on the weak methods alone, or can craft stronger,
domain-specific search control depends on how the problem is specified to the
Soar architecture. Thus, the user needs only to focus on domain knowledge
representations and not on the control mechanism itself.

Warehouse-Task

hsk-Queation

—

Answar-Question

Go-To-Location
Take-Orders Manipulate-Stack

Take-Order Move-Agent Move-Item Remove-Item

Figure 3. Agent problem spaces and operators.
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4.1 Problem Spaces and Operators

The five problem spaces defining an agent reflect a specific (though not neces-
sarily unique) decomposition of the warehouse task from the agent’s perspec-
tive. In this case, all agents have the same fundamental representation, initial
knowledge, and basic capabilities. For any given agent, Top is the top-level
problem space proposed for doing the task and determining if the task is
completed. This space is the first problem space invoked and components are set
up in the Top state to handle such initializations and monitoring as: bookkeep-
ing of moves and other statistics, establishing a basic agent preference for
moving to the right when doing an uninformed search for an item in the
warehouse, and creating an augmentation which indicates that there are orders
to take for the agent and that the agent currently has no orders. In Top, the
warehouse operator is proposed to do the overall task of fulfilling all of the
orders. However, there is initially no knowledge in working memory to directly
implement the warehouse operator. This causes an impasse to occur (the
warehouse operator could not be directly applied) and the Warehouse problem
space to be proposed.

The Warehouse problem space is the main problem space for actually imple-
menting the behavior of an agent. In the Warehouse problem space is the
agent’s basic state: a mental model of the warehouse task environment; the basic
knowledge for deciding what actions to take in the warehouse; the operators
which select and implement those decisions; the capabilities for memory and
interagent communication (if the particular agent has these capabilities); and the
desired state. The desired state (i.e., goal), from the agent’s perspective, is to
have “completely filled the order it is working on and no more orders available."”’

The mental model of the warehouse is comprised of static, dynamic, and
statistical augmentations. Static augmentations are those representations of the
state that are presumed stable, such as, the agent’s name as well as the names of
the other agents, and the locations of the Conveyor, Order-Stack, and Item-
Stacks in the warehouse. Dynamic augmentations are those components of the
mental model which change over time according to events, such as, if the agent
is holding an order, whether the agent believes that there are more orders to
take, whether or not an agent has asked (or answered) a question, the particular
item the agent is seeking in the warehouse, and the particular direction (left,
right) the agent should move using an uninformed search for that item.

Statistical augmentations keep running totals of the agent’s moves, orders
taken, items moved, time waiting, questions asked, and answers provided. In
addition, an agent may have two memory capabilities: the capability of mem-
orizing the items in the stacks it encounters and the capability of memorizing
questions it has been asked by other agents.

There are six operators available in the Warehouse problem space:

1. Take-Orders. At the Order-Stack, get an order (or list of orders) from the
stack to process.
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2. Go-To-Location. Go to a specific location (Item-Stack) to either take an
item from the stack or to manipulate the stack to access an item.

3. Manipulate-Stack. At a particular Item-Stack, obtain a desired item from
the stack by moving interceding items to adjacent stacks.

4. Ask-Question. Ask other agents if they know where a particular item is
located.

5. Answer-Question. Respond to other agents’ questions about the location
of a particular item.

6. Wait. Skip a turn because an operator cannot be implemented (generally
because the agent is in a queue waiting to access either the Order-Stack or
an Item-Stack).

In service of these operators, each agent is equipped with two primary input
functions and two primary output functions which are Lisp routines that permit
data to be passed between the state representations (i.e., agent’s mental model)
and the external (to Soar) environment. The two input functions are perceive-
location and listen-communication. Perceive-location permits an agent to perceive
its current location and surroundings, such as the items in a given Item-Stack (if
it is immediately adjacent to that stack) and the “on top of” relationships
between the items on the stack, and any agents in a queue in front of an Item-
Stack (and the agent’s relative location in that queue). Listen-communication
permits an agent to hear if any other agent is addressing it with either a question
about the location of a certain item or offering an answer to one the agent’s own
requests for item location information. The two output functions are move and
speak. Mouve is general in the sense that it can move either the agent itself in the
warehouse, move items of an Item-Stack where the agent is located, or acquire
an item from the Order-Stack. Speak broadcasts a specific question to another
agent (or agents) regarding the location of a specific item, or answering a
question from another agent regarding the location of a specific item.

In the Warehouse problem space, there is enough knowledge to directly
propose, select, and implement the Wait, Ask-Question, and Answer-Question
operators, as these were viewed as basically straightforward operators which
required little deliberation effort or variance in their proposals or implementa-
tions. The Wait operator is proposed when the agent is in a queue for either the
Item-Stack or the Order-Stack, and keeps a running total of how many times
(cycles) it was proposed. The Ask-Question operator can be proposed in two
ways (expressed here in English rather than Soar syntax):

If the agent is at the Order-Stack and the agent has an item to retrieve,
Then propose to ask all agents if they know the location of the item.

If an agent is at an Item Stack, and was motivated to go there through either its
own memory or through communication with another agent, and the item is not
at the Item-Stack,

Then propose to ask all agents if they know the location of the item.
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The Answer-Question operator is proposed as follows:

If another agent has asked a question regarding an item, and the agent is at an
Item-Stack, and the item of the question is in the Item-Stack,
Then propose to answer the agent regarding the location of the item.

The implementation of the Wait, Ask-Question, and Answer-Question op-
erators are essentially the adjustments of specific augmentations in the state
and, in the case of the latter two operators, the direct invocation of the relevant
input/output (I/O) support functions.

On the other hand, the primary effort and deliberation complexity was seen
to be in the Go-To-Location, Take-Orders, and Manipulate-Stack operators; con-
sequently, these were implemented in their own problem spaces. The Go-To-
Location problem space can be proposed under several situations, such as the
following:

If the agent does not have an jtem to retrieve, and the agent is not at the Order-
Stack,
Then propose to go to the Order-Stack.

If the agent has an item to retrieve and the location of the item is known in the
agent’s memory,
Then propose to go to that location,

If the agent has an item to retrieve and the location of that item has been
communicated by another agent,
Then propose to go to that location,

The Go-To-Location problem space has one operator: Move-Agent, which
simply moves an agent one stack either left or right. Repeated invocation of this

(i.e., was exploring the Item-Stack for a particular item). An agent that is
“moving by”” an Item-Stack to a specific location (and not intentionally exploring
Item-Stacks), does memorize any Item-Stacks it passes en route to its specific
location goal. Finally, perception dominates memory; that is, previously gener-
ated knowledge about an Item-Stack is removed from memory when an agent
re-encounters the Item-Stack.

The Take-Orders problem space is proposed under the following condition:

If the agent does not have an item to retrieve, and the agent is at the Order-
Stack, and there are no agents in front of the agent,
Then propose to take an order from the Order-Stack.
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There is one operator in the Take-Orders problem space: Take-Orders. If the
agent does not have an order and there are orders on the Order-Stack, then the
item on the top of the Order-Stack is taken by the agent. When this is accom-
plished, that item is removed from the Order-Stack and a count is updated on
how many times the agent has taken a new order. The Manipulate-Stack
problem space is proposed under the following condition:

If the agent has an item to retrieve and the agent is at an Item-Stack and there are
no agents in front of it
Then propose to manipulate the Item-Stack.

There are two operators in the Manipulate-Stack problem space: Move-item
and Remove-ltem. These two operators are themselves proposed under differing
conditions. The Move-Iitem operator is proposed when the item the agent is
looking for is not on the top of the Item-Stack. When this occurs, the agent first
tries to move the topmost item to the stack on the right, but if there is no stack
there, the agent will move it to the stack on the left. When the agent eventually
reaches the desired item, it proposes the Remove-ltem operator, which removes
the item from the Item-Stack and places it on the Conveyor.

Finally, there is an important type of knowledge implemented in the
Warehouse problem space called search control knowledge which will guide, under
certain conditions, the selection of operators and problem spaces. There are
three general conditions which would invoke this warehouse-task search control
knowledge. First, there may be multiple operators proposed and one should be
preferred over the other in a particular situation. Recall from Section 2 that
operators are proposed, but the actual selection is accomplished through an
analysis of the preferences active for the operator. An example of this type of
search control would be:

If there are acceptable preferences for two different proposed Go-To-Location
operators and one was generated from memory or communication and one was
generated for a brute force (i.e., uninformed) search,

Then prefer the farmer operator over the latter.

Search control knowledge is used to address the difficulties which may arise
when an agent is provided with information that will lead to conflicting goals.
Search control is accomplished by predefining a set of preferences and the
conditions under which those preferences operator. Setting preferences is a way
of imposing social, cultural, and organizational norms on the agent and also a
way of characterizing personality types. For example, in Plural-Soar we gave the
agents a “lazy” personality. That is, as shown in the prior production, the
agents had as a part of their long-term memory a preference for going to
locations that had a chance of containing the items (based on socially communi-
cated or direct experiential knowledge) rather than doing a brute-force, un-
informed search.
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When the agent has a particular item it is to retrieve, and has no knowledge
of where it may be, it engages in a default brute-force search which system-
atically proceeds left to right across the set of Item-Stacks. Memory of where an
item may have been seen, or whether an agent has communicated that it knows
where an item is, both dominate the absence of knowledge. In effect, the agent
trusts its own memory and information from other agents equally.

Second, multiple operators may be proposed, but it really does not matter
which one to select; that is, it is not a problem and should not lead to an
impasse. Random selection would be an acceptable tactic. An example of this
type of search control would be:

If there are acceptable preferences for two different proposed Answer-Question
operators,
Then be indifferent to the choice.

What this search control knowledge permits is multiple operators (i.e.,
answers) to be generated in response to a question. For example, an agent may
have a list of items (rather than a single item) that it asks about. If another agent
knows where more than one of those items is, multiple (and different) Answer-
Question operators will be proposed. This knowledge allows that activity and
does not require significant deliberation for answering questions.

Finally, there may be situations in which proposed operators should be
rejected. For example this type of search control might be employed when an
operator has completed its task:

If an Ask-Question operator has been proposed and that question has been
asked,
Then reject the selection of the operator.

As was noted, various productions play Soar-specific roles in implementing
task-specific knowledge and constructs such as the task operators described in this
section. Furthermore, such constructs may be coded (realized) in many Soar
productions. The Soar-specific roles reflect the fundamental components of the
architecture described in Section 3—problem space proposal, initial state pro-
posal, desired state detection, operator proposal, operator selection, and opera-
tor implementation.

4.2 Example Traces

The dynamic nature of the individual and aggregate agent behaviors can be
shown through selections of actual (though abbreviated) traces of Plural-Soar
runs. Figures 4 through 7 present traces of two agents, X and Y, in a two-agent
organization where each agent has both memory and communication capa-
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0 G: Gl

1 p: P2 (TOP-PS)

2 S: S4 (TOP-STATE)

List: ((AaBC) (DEF) (G HI) (JKL) (MNO))
Location: 0 1 2 3 e o 10
Stacks: (QQ I) (0O A Q) (EQJ) ¢+ |[(F QQ
Agents @ (Y X) NIL NIL NIL LI NIL
C. belt

Initially the agent has no order list,
but believes that there are orders to take
O: 010 (WAREHOUSE)
==>G: Gl11 (OPERATOR NO-CHANGE)

P: P12 (WAREHOUSE-PS)

§: S4 (TOP-STATE)

0: 013 (TAKE-ORDERS)

==>G: G17 (OPERATOR NO-CHANGE)

p: P18 (TAKE-ORDERS-PS)

10 §: S4 (TOP-STATE)
11 O: 019 (TAKE-ORDER) <= Agent X takes order list (A B C)

oo W

Order: A

Taking order

List: ((DEF) (GH I) (J KL (MN 0))

Location: 0 1 2 3 o 0 10
stacks: Q1 (0 AQ (EQ I =+ (FQ Q)
Agents @ (Y X) NIL NIL NIL LI A NIL
C. belt :

12 0: 020 (ASK-QUESTION)

Hey Y, do you know where C is? <— Agent X immediately asks for help
13 0: 021 (ASK-QUESTION)

Hey Y, do you know where B is?

14 0: 022 (ASK-QUESTION)

Hey Y, do you know where A is?

15 0: 023 (GO-TO-LOCATION)

16 ==>G: G32 (OPERATOR NO-CHANGE)

17 p: P33 (GO-TO-LOCATION-PS)

18 §: S4 (TOP-STATE)

19 O: 036 (MOVE-AGENT) <— Agent X begins search for items (A B C)
Moving agent right: 0 -->1

Listc: ((DEF) (GHTI (J KLY (MNO)

Location: 0 1 2 3 LIS 10
Stacks: (Q Q0 I) (O A Q) (EQJ) *+ ¢+ (FQ Q)
Agents H (Y) (X) NIL NIL o o o NIL
C. belt :

Figure 4. Plural-Soar trace, Agent X's perspective (decision cycles: 0-19).

bilities. Each agent takes an order containing, three items from the Order-Stack,
then must locate the items on the order and place them on the Conveyor. We
will work through these traces to illustrate a Plural-Soar model in action.

In Figure 4, each numbered line in the trace reflects a Plural-Soar “‘decision”
(i.e., internal deliberated event or proposed external event, such as a physical
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0 G: Gl
1 P: P2 (TOP-PS)
2 §: S4 (TOP-STATE)

List: ((ARBC) (DEF) (GH I) (KL (MNO))
Location: 0 1 2 3 LI 10
Stacks: QoIn (O A Q) (EQ J) L I (FQQ)
Agents (Y X) NIL NIL NIL LA A NIL
C. belt :

Initially the agent has no order list,
but believes that there are orders to take
3 0: 010 (WAREHOUSE)

4 ==>G: Gl1 (OPERATOR NO-CHANGE)

5 P: P12 (WAREHOUSE-PS)

6 S: S4 (TOP-STATE)

7 O: 013 (WAIT) «~— Agent Y waiting for Agent X to iemve Order Quaue
8 0: 014 (wWaIT)

9 O: 015 (WAIT)

10 O: 016 (WAIT)

11 0: 017 (WAIT)

12 0: 019 (WAIT)

13 O: 020 (WAIT)

14 O: 022 (WAIT)

15 0: 024 (WAIT)

16 0: 026 (WAIT)

17 O: 027 (WAIT)

18 0: 028 (WAIT)

19 O: 029 (TAKE-ORDERS) <— Agent X has ieft the Order Queue
20 ==>G: G33 (OPERATOR NO-CHANGE)

21 P: P34 (TAKE-ORDERS-PS)

22 S: 84 (TOP~STATE)

23 0: 035 (TAKE-ORDER) «<— Agent Y takes order |ist (DEF)
Order: D

Order: E

Order: F

Taking order

List: ((GHI) (JKUL) (M N O))

Location: 0 1 2 3 L 10
Stacks: (QQ I (O A Q) (EQJ) « o« « (p Q Q)
Agents : (Y X) NIL NIL NIL ¢ o . NIL
C. belt

Figure 5. Plural-Sour trace, Agent Y’s perspective (decision cycles: 0-23).

movement) resulting from a specific decision cycle. ! Therefore, Figure 4 pre-
sents the first 19 decision cycles of a Plural-Soar run generated from Agent X's

¥ The Plural-Soar model presumes that the proposal of external physical events (e, 8., move-
left, move-right, ask-a-question) are indeed carried out without difficulty or interference (other than
that handled by the agent). Consequently, the internal deliberations resulting in proposed external
operators are taken as surrogates for physical behavior. Thus, counting the number of times the
agent proposed to move left is taken as equivalent to the number of times the actual physical event
occurred. How the external and internal perspectives are resolved in Soar is described by [62].
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»

24 O: 036 (ASK-QUESTION)
Hey X, do you know where D is? <— Agent Y Immediately asks for halp
25 O: 037 (ASK-QUESTION)
Hey X, do you know where E is?
26 O: 038 (ASK-QUESTION)
Hey X, do you know where F is?
27 O: 039 (GO-TO-LOCATION)
28 ==>G: G48 (OPERATOR NO-CHANGE)
29 P: P49 (GO-TO-LOCATION-PS)
30 S: S4 (TOP-STATE)
31 0: 050 (MOVE-AGENT) <— Agent Y begins search for ltems (DEF)
Moving agent right: 0 --> 1
Moving agent right: 1 --> 2

- . 37 0: 076 (GO-TO-LOCATION)
38 ==>G: G78 (OPERATOR NO-CHANGE)
39 P: P79 (GO-TO-LOCATION-PS)
40 S: S4 (TOP-STATE)
X tells me that E is at location 3 «<— Agent X recalls question Agent Y
41 O: 083 (MOVE-AGENT) ssked about “E" and finds It at
Moving agent .right: 2 --> 3 Item-Stack 3
42 O: 032 (wa1T) <— Agent Y waits for Agent X st ltem-Stack 3
43 O: 093 (WAIT)
44 O: 094 (WAIT)
45 0: 095 (MANIPULATE-STACK) «— Agent X has left ltem-Stack 3
46 ==>G: G99 (OPERATOR NO-CHANGE)

‘ X tells me that D is at location 4 «<— Agent X answers another question
47 P: P100 (MANIPULATE-STACK-PS)
48 S: S4 (TOP-STATE)
49 O: 0103 (REMOVE-ITEM)
Moving item E onto conveyer belt <— Agent Y moves “E" to the beit
List: ((GHI) (JKL) (MNO))
Location: 0 1 2 3 LI 10
Stacks: QoI (O AQ) QJ) » « « (FQQ
Agents : NIL NIL (Y) * o » NIL
C. belt : AE

Figure 6. Plural-Soar trace, Agent Y’s perspective (decision cycles: 24-49).

perspective. Other nonnumbered lines reflect events of specific productions
which have fired in a particular decision cycle (the one immediately prior to it)
that involve printing additional output (e.g., the state of the stacks, location of
the agents, and so forth). Each of the numbered (decision cycle) entries is coded
according to whether it is showing the active goal (G), problem space (P), state
(S), or operator (O). These are the only types of constructs defined in Soar, so
these are the only constructs reflected on the trace.
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303 O: 0826 (MANIPULATE-STACK)
304 ==>G: G829 (OPERATOR NO-CHANGE)

305 P: P830 (MANIPULATE-STACK-PS)
306 S: S4 (TOP-STATE)
307 O: 0831 (REMOVE-ITEM) <~ Agent Y moves item “O” to belt

Moving item O onto conveyer belt
No more items on list.

List: NIL

Location: 0 1 2 3 LI 10
Stacks: (QQQ) Q) (Q) * ¢ o (Q Q)
Agents : X NIL (Y) NIL « o o NIL
C. belt : AEDBCF IJHKLGNMO

308 O: 0837 (GO~TO-LOCATION)

309 ==>G: G838 (OPERATOR NO-CHANGE)

310 P: P839 (GO-TO-LOCATION-PS)

311 S: S4 (TOP-STATE)

312 O: 0841 (MOVE-AGENT)

Moving agent left: 1 <-- 2

List: NIL

Location: 0 1 2 3 ¢ o . 10
Stacks: (Q Q Q) Q) Q) =« = - (Q Q)
Agents : X {Y) NIL NIL » o o NIL
C. belt : AEDBCFIJHKLGNMO

313 O: 0848 (MOVE-AGENT)

Moving agent left: 0 <-- 1
There are no more orders in warehouse <— No More ltems: Done!

Task statistics: <— Summary Statistics for Agent Y
Agent movements: 56
Item movements: 20
Orders taken: 3
Questions asked: 3
Questions answered: 1
Cycles waited: 16

Figure 7. Plural-Soar trace, Agent Y’s perspective (last decision cycles).

In Figure 4, Plural-Soar begins with a general overall goal (G1), the specifica-
tion of the TOP problem space (P2), the top-level state (TOP-STATE) where
initializations of the warehouse configuration occur. In this configuration, Loca-
tion 0 is the Order-Stack and the List is the list of items to be retrieved by the
agents. Note that this is a “list of lists” where each sublist is the object retrieved
by an agent via the Take-Orders operator; therefore, when an agent gets an
order from the Order-Stack in this case, it specifies three items to retrieve (i.e.,
the first order list contains the items A, B, C). The remaining Locations are the
addresses of the Item-Stacks, and the Stacks line notes the items in the stacks at
a particular Location. There are two agents in this run (X, Y) and they are both
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initially located at the Order-Stack. There are no items initially on the Conveyor
belt.

On the fourth decision cycle, the warehouse operator is proposed. How-
ever, as was described in the previous section, the knowledge to implement that
operator is not in the problem space, so an impasse occurs and a subgoal is
created to resolve that impasse (indicated by the indented arrow = =>). This
results in a new problem space being proposed at decision cycle 5 (Warehouse).
Eventually, the agent invokes the Take-Orders operator while in the Take-
Orders problem space, and the first list is acquired (A, B, C) on decision cycle 11
and the new state of the system is printed. Once the agent has acquired the
order, search control proposes that asking is preferable to searching, so the
agent asks the other agent if it knows where the items are located (decision
cycles 12-14) then proceeds (as no responses occurred) to engage in an un-
informed, exhaustive search and moves to the nearest Item-Stack (decision
cycle 19).

The abbreviated trace of Agent Y on the same problem (i.e., running at the
same time) is given in Figures 5, 6 and 7. The first observation is the obvious
series of Wait operators from decisions cycles 7-18. The reason for this is that
Agent Y is in the Order-Stack queue behind Agent X. Meanwhile Agent X is, in
addition to the basic set-up time and order taking and adjustments, asking if
Agent Y knows were the items are, while still in the queue, thus effectively
blocking Agent Y’s progress. At decision cycle 19, Agent Y (Figure 5) can now
propose to take an order from the Order-Stack as Agent X (Figure 4) must have
moved out of the way. Agent Y acquires the list (D, E, F) and the resulting
change to the Warehouse state is shown. Note that the displayed state of the
Warehouse is the “true” state in that it includes all changes made by all other
agents and the current state (location) of all other agents.

As Agent Y has the same capabilities and preferences as Agent X, Agent Y
initially asks Agent X whether it is has seen any of the items on its list (Figure 6,
decision cycles 24-26). Agent Y has a memory, but as it has not yet visited any of
the Item-Stacks, it has no idea where any items are located. If it did know (or
think it knew), it would not ask the question (see the prior section on search
control). No answer is forthcoming, so it proposes to do an exhaustive (unin-
formed) search starting at the nearest Item-Stack (Stack 1) and then moves to
Item-Stack 2. While at Item-Stack 2, Agent Y receives a message from Agent X
telling is that one of its requested items (ltem E) was seen at Location 3, so Agent
Y moves to Location 3. The search now changes from an uninformed search to
an informed search. However, Agent Y encounters Agent X still at Location 3, so
it has to wait (Figure 6, decision cycles 42-44) before it can begin to manipulate
the stack (decision cycle 45). Agent X has moved to Location 4 and has seen
another item on Agent Y’s requested list and tells Agent Y about it. However,
Agent Y is focused on obtaining Item E and moves it immediately (as it is on the
top of the Item-Stack at Location 3) to the Conveyor, where Agent X has already
placed Item A (when it was at Location 2).

Both agents continue to search, communicate, and acquire new orders from
the Order-Stack. The end of the task is shown starting with Agent Y at decision
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cycle 307 (see Figure 7) when it moves the last item on its order to the Conveyor
(Item 0) and returns to the Order-Stack (Figure 7, decision cycles 308-313).
Agent X is already at the Order-Stack, but Agent Y soon discovers that there are
no more lists on the Order-Stack to obtain. The task is completed.

Upon completion (all orders are filled), Plural-Soar prints statistics based on
the particular agent it is modeling. For this problem, the relevant statistics for
both agents are the following:

Agent Y:

Agent movements: 56
tem movements: 20
Orders taken: 3
Questions asked: 3
Questions answered: 1
Cycles waited: 16

Agent X:

Agent movements: 32
ltem movements: 18
Orders taken: 2
Questions asked: 3
Questions answered: 2
Cycles waited: 0

In this case, it lists the number of “physical movements” of the agents (Y =
56, X = 32), the number of times the agents moved items “out of the way” to get
to a specific item (Y = 20, X = 18), the number of order lists agents obtained
from the Order-Stack (Y = 3, X = 2), the number of times the agents asked
questions about specific items (Y = 3, X = 3), the number of times agents were
asked where a specific item was and it knew (Y =1, X = 2), and the total
number of decision cycles the agents had to wait (Y = 16, X = 0). Other data can
be obtained from the detailed traces of the individual programs running on the
different machines distributed across the Ethernet.

In conclusion, Plural-Soar is a group of distributed, intelligent autonomous
Soar agents which have memory capabilities, deliberation capabilities, and com-
munication capabilities. The task they are performing is one of search within a
warehouse for specific items to retrieve. Each agent is realized as a separate Soar
program residing on its own workstation and all communication and perception
of the primary warehouse state (i.e., making the actual moves and perceiving
the actual warehouse states) is handled over the Ethernet. As there is only one,
centralized “external warehouse”’ representation for the set of agents (i.e., one
particular location on the Ethernet), the coordination of all updates and repre-
sentational fidelity across the set of agents is easily controlled. Thus, it is easy to
vary the number of agents, the capabilities of agents (e.g., communicative or
not), and the nature of the warehouse (e.g., number of Item-Stack, distribution
of items across the Item-Stacks, nature of the orders on the Order-Stack). In the
next section, we describe a study which investigated specific variations and their
effect on both individual and group performance.




68 M. J. PRIETULA AND K. M. CARLEY
5. SIMULATION STUDIES

A set of 30 simulations was conducted to examine how changes in fundamental
properties of individual agents and task properties can lead to variations in
emergent individual and group behaviors. The simulations explored the effects
of three types of agents, five organizational sizes, and two types of order
assignments. The three types of agents were: a Basic Agent (with no item location
or communication capability), a Memory Agent with an item location memory,
and a Communicating Agent with an item location memory plus the ability to
communicate (including the ability to memorize communications to it). The
third parameter varied was the number of items on the specific item list retrieved
by an agent. When an agent takes an order from an Order-Stack, it is literally a
list of items to access in the warehouse. We put either one or three items on the
list. The total number of items was held constant under both conditions—15.
Thus, in the first conditions the Order-Stack initially has a stack of 15 item lists,
while in the latter conditions the Order-Stack has a stack of five item lists. No
items were duplicated on the stack or within a list.

Regarding agent capabilities, the first two types of agents (Basic, Memory)
reflect a difference in a fundamental capability of an agent—its short-term
memory for the task. An agent with a (task) memory of item locations may be
considered fundamentally different from an agent that does not have such a
memory. Essentially, this additional capability enhances the individual capa-
bility, and, possibly, the individual productivity of each agent. However, these
agents are similar in that neither can communicate to any other agent. The
physical coordination mechanisms for these two types of agents are the same
(and minimal): FIFO queue at the Order-Stack, parallel search and retrieval of
items (with FIFO queues at the Item-Stacks). Thus, the only physical coordina-
tion mechanisms are located at the point of assignment (Order-Stack) and the
points of activity (accessing the Item-Stacks). Furthermore, these coordination
mechanisms are inflexible, deterministic, and externally imposed by the specific
task constraints. However, the cultural coordination schemes are different.
Agents with memory and agents with communication capabilities have addi-
tional cultural constraints in that they prefer to search their memory and com-
municate before they search the warehouse for each new item.

These agents will proceed as a collection of individual agents each attempt-
ing to pursue its private (and privately known) goal(s) and use its experience (as
memory) in pursuit of its own goals. Lacking a communication capability, these
agents cannot generate a communication-based coordination scheme for their
collective behavior as they have no mechanism to exchange information. The
addition of a communication capability (with a location memory) permits a given
agent to share its experience and, consequently, a simple cultural coordination
scheme for search is generated through the preferred mechanism to ask where
an item is located and to answer if it knows where an item is located when asked.
Thus, a given agent’s perception and memory is functionally distributed
throughout the set of communicative agents in the warehouse.
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The organizational size was varied from one to five agents for each type of
agent, a reasonable span for studies of small group behavior [63,64]. For each
organizational configuration, all agents had equivalent capabilities. No organiza-
tions were configured with a heterogeneous group of agents.

Finally, the warehouse configuration consisted of ten Item-Stacks, as previ-
ously shown in Figure 1, with three items on each stack. No items appearing on
the Order-Stack were duplicated in the warehouse and all requested items were
in the warehouse (i.e., no missing items). Therefore, the content of the ware-
house consisted of 15 items to be retrieved as specified on the Order-Stack and
15 interference (nonrequested) items. The assignment of the 30 items to the 10
stacks was random and held constant across all conditions. For all studies,
agents initially faced the same initial warehouse configuration.

5.1 Method and Procedure

For each individual simulation, an organization of Plural-Soar agents was config-
ured on a set of dedicated individual workstations (Digital Equipment Corpora-
tion 3100s) such that each agent ran on a single machine. All agents were
connected via an Ethernet and accessed the Warehouse (and communicated
with each other) through shared files on a distinguished machine which coordi-
nated access and updates. Program traces and statistics were kept at the individ-
ual agent level (by the agent) and collected after each simulation. As was noted,
30 such simulations were conducted. Although this was not a stochastic study,
minor random components were introduced in terms of arrival timings through
network and specific machine timings.

5.2 Results and Discussion

The general results of the study are summarized in Table 3. A commonly
encountered observation for typical, repetitive, noninterdependent organiza-
tional tasks is that as the size (i.e., the number of agents available to do the task)
of the organization increases, the total time it takes to do the task declines, but at
a decreasing rate [65]. In Figure 8, the total time taken for each task run was
determined by the maximum time (in terms of total decision cycles) for any
agent in the particular organization where B is a basic agent, BL is an agent with
location (task) memory, and BLC is an agent with memory and communication
(each type of agent handling either one or three items per order). Thus, BL3
describes the agents with memory only (no communication) that handle order
lists with three items per order. As expected, there is an overall general decline
in the total time as the number of agents increases for the task. However, as the
size of the organization increases beyond three agents, the benefits are not as
pronounced and interaction effects emerge when the different agent types are
reviewed.

With a minimal number of agents (one or two agents), Basic Agents (no
memory or communication capability) with single-item lists (one item per order)
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Table 3.
Summary of major results.

Performance Measure

General Findings for Organizational Performance Measure

Total Time

Physical Effort

Total Organizational

Effort

Organizational Effort
Saved

Absolute Gain
in Effort

Best performing group: Memory agents with 3-item list.

Worst performing group: Memory/Communicating agents with
1-item list.

Decreases as organizational size increases.

3-item list length generally results in lower total time.

Best performing groups: Memory, Basic agents with 3-item list.

Worst performing group: Memory with 1-item list.

Total organizational physical effort decreases with increasing item list
length.

Avera%te physical effort per agent decreases with organizational size.

Average physical effort per agent decreases with large item list
length.

Best performing group: Basic agents with 3-item list.

Worst performing group: Memory/Communicating agents with
1-item list.

Increases as organizational size increases.

Reduced by increasing item list length.

Best performing group: Memory/Communicating agents with 3-item
list

Worst performing group: Basic agents with 1-item list.

Increases with item-list length.

Increases with agent complexity (Memory/Communication).

Best performing group: Memory/Communicating agents with 3-item
list

Worst performing group: Basic agents with l-item List.
Increases with agent complexity (Memory/Communication).

Time (as Effort) to Complete Task

T L] T T

1 2 3 4 S 6

Number of Agents

Figure 8. Total task time decreases as the organizational size increases.
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take the longest time to complete the task. Agents with single-item lists that
have memory and communication (for the two-agent condition'’) capabilities

Thus, for a small group of agents which process their orders one at a time,
memory seems to account for the fundamental decrease in total task time, with

pronounced as with the agents processing single-item lists.

The reasons for these results can be determined by examining the interac-
tion between agent capability and search within the context of the particular task
environment. It is beneficial to have a memory, as this incrementally reduces the
need to proceed back to the Order-Stack. Referring to the Warehouse configura-
tion (prior Figure 1), consider two separate single-agent situations with Agents
BL1 and BL3 which can take one- or three-item lists respectively from the Order-
Stack. The first three items on the stack are A, B, and C. Agent BL1 takes the list,
(A), and Agent BL3 takes the list, (A B C). Agent BL1 proceeds to Item-Stack 1,
notes items Q and I there, then moves to Item-Stack 2 and finds item A. Agent
BL3 removes item A to the Conveyor, then returns to the Order-Stack to retrieve

for Agent BL3 starting at decision cycle 101:

101 ==>G: G254 (OPERATOR NO-CHANGE)

102 P: P255 (TAKE-ORDERS-PS)

103 S: 84 (TOP-STATE)

104 O: 0256 (T AKE-ORDER) « Agent BL3 gets next order list.
Order: F

Order: E

Order: D

Oh, | remember item E in location 3
Oh, | remember item D in location 4

Agent BL 3 recalls that it has seen two of the items before (items E and D),
then proceeds directly to those locations. On the other hand, when Agent BL1

" Note that a single agent ““organization” does not communicate, so the location memory and
communication capabilities are equivalent for these conditions.

Bakd i A 2 .
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takes its next order list, (B), it simply begins another brute-force search and
cannot exploit memory until the fourth item list, (D), is retrieved from the
Order-Stack—almost 60 decision cycles later than Agent BL3. Furthermore, as it
only can take on item, Agent BL1’s memory is under utilized—it notes only the
location of item D:

167 = =>G: G431 (OPERATOR NO-CHANGE
168 P: P432 (TAKE-ORDERS-PS)

169 S: 84 (TOP-SKATE)

170 0O: 0433 (TAKE-ORDER)

Order: D

Oh, | remember item D in location 4

Agent BL1 then proceeds to Item-Stack 4. Given that memory assists agents
with single-item lists, why is there not a strong equivalent effect for three-item
list agents in equivalent organizational sizes (one to three agents)? Agents
without memory capabilities can only rely on brute-force search. List length
contributes to a reduction not only in the set-up cost for a search (i.e., the return
to the Order-Stack), but also adds a measure of randomness which may benefit
the agent for particular item distributions (i.e., the search will start at different
locations in the Warehouse). Therefore, it may be the case that the particular
distribution of items in the Warehouse did not permit the differences between
the two types of agents to emerge.

When all five agents are involved, the situation changes. Item list length
dominates the effect of memory, and memory capability dominates the effect of
communication. In fact, an organization comprised of five BLC agents (using
either single-item or three-item lists) takes longer to complete the task than all
other types of agents. Consequently, the total ask time is reduced by adding
agents, increasing the order processing list size, and providing a location memo-
ry (with effects augmented with certain interactions), but not by adding a
communication capability. Furthermore, the incremental benefit of communica-
tion can actually be negative as the group size grows beyond three agents.

Insight into these latter results can be obtained by examining the collective
behavior of the agents and the particular task characteristics. We first examined
the patterns of physical effort (i.e., agent and item movements only) in terms of
two metrics: organizational (physical) effort and average agent (physical) effort.
In Figure 9 the total organizational physical effort exerted by the set of agents shows
that the dominant effect of item list length on physical effort. Thus, regardless of
agent capability or organizational size, the number of total physical movements
required by the organization to accomplish the task was largely determined by
the number of items on the order list available to the agents. In Figure 10, the
graph of average physical effort per agent shows these constant effort requirements
are distributed among agents as the number of agents in the task increase—as
the number of agents in the organization increases, the required physical effort
of each agent decreases.
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Figure 9. Item list length conditions determine two organizational physical effort levels.
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However, there is more to the story than that. We define total organizational
effort as the total number of decision cycles expended by the set of agents
comprising the organization in the performance of a task. An examination of the
total organizational effort indicates that there is a collective cost of adding agents
to the task (Figure 11), an organizational finding reported in software develop-
ment [66]. It appears, then, that item list length is the main effect, with addition-
al effort being proportionally added with the number of organizational agents.
The more agents, the more total effort. Furthermore, there appears to be an
interaction between agent capabilities and organizational size on total organiza-
tional effort—agents that can communicate seem to incur a comparatively larger
additional effort. This additional organizational organizational effort (beyond
the requisite physical effort) could be considered as organizational cost.

What is the source of these costs? The main area where additional effort
costs are incurred is found when the idle time is examined. In this task, idle time
occurs when an agent proceeds to either an Item-Stack or an Order-Stack and
encounters another agent in the way, whereupon the agent waits until access to
the stack is unencumbered. Figure 12 shows the average idle time per agent for
each organization. Note that when there are five agents in the organization,
having the “busiest” set of agents, indicated in Figure 12 (three-item lists, no
location memory, no communication capability), does not guarantee having the
“most effective” set of agents, shown in prior Figure 8 (three-item lists, location
memory) in terms of the reduction in total task time. Adding agents to the task
increases the idle time.

The idle times, however, are not distributed equally across agent types. The
largest idle times are found with the communicating agents. One behavioral
preference with this model is that agents prefer to ask where an item is, if it does
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Figure 11. Total organizational effort increases as the organization size increases.
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Figure 12. Average idle time increases as the size of the organization increases.

not know, rather than search. Thus when a communicating agent is at the
Order-Stack, it acquires its order and promptly asks the other agents if they
know where the items are located (recall Figure 4). Perhaps more importantly,
such idle time delays the other agents from searching the Warehouse and
encountering Item-Stacks to memorize. As a consequence, and perhaps further
exacerbated by the low number of items to be retrieved, communicating agents
are not that effective as the number of agents increase. This is apparent when
the average number of questions asked by the agents is compared to the avera ge
number of answers (see Figure 13). As more communicating agents are placed in
the organization, more questions are asked. However, the average number of
qQuestions answered does not grow nearly as fast because (a) the idle time
increases as the queue length to the Order-Stack grows, thus keeping the agents
from seeing the Warehouse, and (b) the distribution of the items in the Ware-
house affects whether agents have seen them or not.

There is another item list length effect, with more questions being asked by
the agents with longer lists and the answers supplied are somewhat more stable
(Figure 13). More questions asked by the longer list length agents occur for two
primary reasons. First, there is a larger “constant” in that agents immediately
ask if any other agent knows where an item is located, so agents with larger lists
initially would ask more questions. A second reason actually demonstrates an
advantage of memory for the single-item list agents. A given single-itemn agent
will access only one item in the Order-Stack, but ask only one question for each
agent. Thus, this agent can get to the Warehouse quicker and begin to search. As
the agent searches, and depending on the location of the items, it memorizes the
contents of the Item-Stacks it approaches. When the agent returns to the Order-
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Figure 13. Average questions asked increases with organizational size, but average
questions answered does not.

Stack, it may recall where it has seen the item, and does not require a question to
be asked. As there are 15 items to be processed, five agents with single-item lists
will return to the Order-Stack on the average of three times, while five agents
who have three-item lists will not have to return at all.

We see what may be a boundary effect emerging with four- and five-agent
organizational sizes, where the number of questions asked and answered are
reaching an equilibrium for the task as the size of the organization reaches five.
The only benefit of asking a question is if a response can be provided, otherwise,
it does not reduce search and contributes to the total effort via increasing idle
time. Part of the capability of answering a question is being able to recall
experience with the task. Thus, experienced agents are better able to answer
questions, but we have seen that the accumulation of idle time reduces experi-
ence. In Figure 14, we see that as the organizational size increases, the role of
memory declines, as each agent, though “working less” is also “‘experiencing
less” and cannot exploit memory and, consequently, communication.

Initially, agents cannot formulate a cognitive model of the warehouse as
they are simply queued to begin the task. Subsequently, they are engaging the
task with other agents and cannot generate sufficient experientially based mem-
ories, so their commonly shared cognitive models can be exploited through
communication. A desirable individual preference (to ask) coupled with a spe-
cific group characteristic (communication) led to undesirable collective conse-
quences (total task time not minimized, increase in total idle time) as well as a
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Average items Recslied per Agent
o
A

Number ot Agents

Figure 14. Use of memory declines as organizational size increases.

perhaps undesirable individual consequence (decrease in experiential memory,
increase in individual idle time).

A final analysis examined the trade-offs between the effort (as time) saved to
complete the task and the cost of added organizational overhead through the
addition of agents. The time it takes to perform the task can be reduced by
increasing the number of agents in the organization (see prior Figure 8). Figure
15 depicts the amount of organizational effort saved (i.e., decrease in time as
measured by decision cycles) in performing the task through the addition of
agents. Two observations can be made. First, all organizations experience de-
clining rates of marginal productivity. Second, the largest effect on gain is
accounted for the list length, with single-item lists yielding the highest gains.
There is a secondary effect, in that agent complexity, within a given list length,
accounts for similar orderings. For a given list length, agent complexity, such as
memory and communication capability, reduces marginal productivity gains.
Therefore, the highest marginal productivity gains are found with the simplest
agents using the single-item lists.

Despite the comparatively better marginal productivity gains of simple
agents and single-item lists, these organizations are constrained in an absolute
sense, by the initial level of effort (prior Figure 8). Their rate of gain is offset by
the high effort levels requlred of the single-agent solution. However, examining
the reduction in task time is only one of the effects of increasing the size of an
organization.

Reduction in task time by increasing the organizational size brings with it a
cost of increased organizational effort (prior Figure 11). Consequently, we can
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Figure 15. Most effort saved with simple agents using single-item lists.

define the “effort cost of time reduction” to show trade-offs across organization-
al sizes and types. Figure 16 shows the absolute effort gained (or lost) by
increasing the size of the organization for each organizational type. In Figure 16,
the initial effort of each organizational type is normalized at zero according to
the base effort of one agent performing the task. The incremental effort of each
additional agent added to an organization is calculated by subtracting the cost
(increase in total organizational effort) from the benefits (reduction in time to
complete the task).”? Thus a positive effort value indicates a net gain to the
organization (time reduction > effort added), a negative value indicates a net
loss to the organization (time reduction < effort added), while a zero value
indicates a direct trade-off. The highest net gain is found with simpler agents
using single-item lists (B1, BL1), thougha decline sets in when the organization
expands to four or five agents. Complex agents (BLC1, BLC3) eventually incur a
net cost to the organization, though at differing organizational sizes, but the
decline begins at a lower organizational size (three agents). Organizations com-
prised of noncommunicating agents using three-item lists (B3, BL3) seem to
initially decline with three or four agents, but then reverse the trend when the
organizational size increases to five agents.

To summarize, the total time to complete the task decreased as the organiza-
tional size increased. For smaller organizations, the length of the item list
accounts for much of the effort reduction. As the size of the organization
increases, there is a general convergence with agent communication capabilities

12 The metric and operations are mathematically meaningful as effort and time are both mea-
sured in the same units and scale (decision cydes).




L B

COMPUTATIONAL ORGANIZATION THEORY 79

{ —o— B
—a— BL1
—o— BLCY

—gr— BL3
—e+— BLC3

- Etiort Cost
L

Effort Saved

-400 T L4 L M
0 1 2 3 4 5 6

Number of Agents

Figure 16. Most absolute gains in effort by simple, single-list agents.

slightly mediating the efforts of item list length. In addition, an increase in
organizational size also brings with it an increase in wasted organizational effort.
This wasted effort is primarily the result of increased idle time, especially with
agents that can communicate. As idle time increases (with the increase in
organizational size), the advantages of both location memory and communica-
tion erode. The highest marginal productivity rates are found with the simplest
agents working with the smallest list size; furthermore, with larger organization-
al sizes, communicating agents actually incur a net cost in organizational effort.

6. CONCLUSIONS

The immediate goal of the research reported in this article was to demonstrate
how an assemblage of autonomous cognitive models of agents performing a
simple task could be used to study organizational behavior. The value of this
approach can be found in the nature of the fundamental questions about behav-
ior that may be addressed. When considering behaviors of groups of individu-
als, it is sometimes important to consider the degrees of explanatory freedom
one has in attributing cause. Such degrees of freedom vary with the nature of the
constraints imposed by the environment or the individuals or both. On one
hand, intelligent behavior is based on the extreme flexibility and adaptability of
the mind to bring to bear knowledge in the service of goals to perform tasks. We
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are members of a larger family of universal Turing machines. Thus the degrees
of explanatory freedom are enormous.

On the other hand, we are at the same time severely restricted in that there
are limits on speed, depth of deliberation, and knowledge, as well as restrictions
imposed by the environment (which includes the task and other agents) as it is
initially presented and as the task unfolds. The degrees of explanatory freedom
are reduced. What is difficult to assess, however, is where that reduction occurs
and, therefore, what explanations are valid to account for the phenomena
observed.

In our simple organizational models we learned that a particular task prop-
erty, order length, dominated smaller organizational sizes in terms of time to
perform the task. We also discovered that when an explicit coordination mecha-
nism was introduced (i.e., the ability to communicate to each other on item
locations), the organizational efficiency declined, as preferences to engage that
mechanjsm caused idle times. Furthermore, the utility of memory declined as
the organizational size increased. Increasing the number of complex agents had
a decreasing return, to the extent that agent complexity “costs” something to the
organization.

But what did we really learn about organizations? Even in this simple model
it was apparent that agent properties and behaviors interacted with environ-
mental and task constraints in complicated ways. However, the causes were
unequivocal. For example, optimal individual behavior (asking about the loca-
tion of an item) had suboptimal organizational effects (increase in idle time)
which led to a decrease in individual experience (decrease in the number of
stacks searched) that diminished the utility of both memory and communica-
tion.

The next steps, then, are to systematically vary the simulation in order to
weave a picture of the sensitivity of agent properties (e.g., communication
capabilities, knowledge, preferences, experience, goals, assumptions, trust, the
ability to learn) to environmental properties (e.g., number of agents, type of
agents, organizational structure, communication structure, coordination mecha-
nisms, power relationships, warehouse structure) and how behavioral events
emerge over varying time scales. It is those events, the collective conduct of
agents acting and interacting in their environments over time, that comprise
organizational behavior. It is the evolving experience, preferences, and knowl-
edge of individual agents that explains organizational behavior.

In many organizational simulations, approximations to behavior can be
obtained through normal discrete or continuous event simulation methods or
other forms of modeling, as organizational roles and task constraints bound the
behavior of an individual to the extent that the individual “‘becomes” a set of
predefined, unambiguous, and immutable behaviors. At the extreme, the con-
straints of the task negate the power of deliberation and the available degrees of
explanatory freedom—recall the musical chairs example of footnote 1. However,
individuals are rarely that constrained—when “mind matters” the situation
changes. Our solution is bottom-up in that explanatory degrees of freedom
concerning individual agent behavior are subsumed within a theory of individu-
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al deliberation. The explanatory degrees of freedom concerning the organiza-
tional environment are crafted with the task presented to the agents and the
socio-organizational situation in which the agents are placed. The observations
of how ideally we should meet our more macro, top-down organizational
research colleagues is somewhere in the middle.

This research represents a first step toward more cognitively based comput-
ational organization theories which can be articulated and tested in the form of
computer programs. When this is sufficiently accomplished, we can begin to
explicate and link the fundamental properties of agents, organizations, and tasks,
to the emergent properties of agents, organizations, and tasks. This research is a
single, exploratory increment toward that goal.
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