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Abstract
Aspects of C2 structures can be represented
as graphs. In order for these graphs to be
contrasted and compared, however, they must
be labeled in the same way. This is rarley the
case. Thus, there is a need for an algorithmic
approach for labeling and aligning graphs in

order to statistically contrast those elements of

the C2 structure that can be represented as
graphs. A color-splitting algorithm for labeling
unlabeled graphs is presented. It is
demonstrated that graphs that are labeled in this
way can be aligned and the central graph
located. Further, this alignment appears to
minimize distrance between the graphs.

1. Introduction and Motivation

Each unit or task force has its own
somewhat unique C2 structure. Imagine for
the moment that we have data on a dozen JTFs.
On paper, the C? architectures look somewhat
different. The issues we want to address are
“Are these architectures really different?” and
“If these architectures are different, how
different are they?”. A related question is
“How will we know when a new architecture
has emerged?” Many aspects of the C2
structure can be represented as a series of
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networks or graphs! with relationships among
these graphs. Among such networks are those
that represent the command or authority
relations, the access to resources relations, the
task assignment relations, the precedent
ordering among tasks, and so forth. Once a C2
architecture has been chosen, then each of these
sub-structures can be measured and represented
as a network or graph. Using a variety of
metrics differences or similarities in these
graphs can be measured. Using such metrics it
should be possible to classify C? structures.
Unfortunately, there does not currently
exist a commonly accepted taxonomy for
classifying C2 architectures; indeed, within the
organizational theory community debate rages
over whether or not such a taxonomy is
possible, let alone useful. McKelvey [1982]
sees a need for such a taxonomy. Hannan and
Freeman [1989], by contrast, argue that
categories of organizational designs should be
specified according to the interests of the
researcher. Some schemes for classifying
organizations have been based on strategy
[Romanelli, 1989b] or product service
[Fligstein, 1985]. Other researchers have
classified organizations using multiple
dimensions. For example, Aldrich and Mueller
[1982] categorize organizations using the
dimensions of technology, coordination, and
control. Similarly, In contrast with these
previous efforts, what we wish to suggest is a
graph theoretic approach to this problem.
Specifically, we here conceptualize
organizational form, i.e., the C2 architecture as
a set of interlinked graphs. We then attempt to
develop a method of distinguishing alternative,
and possible new, forms by locating those

° This work was supported by Grant No. N00014-97-
1-0037 from the Office of Naval Research (ONR),
United States Navy.

1 We use the term network and graph interchangeably.
However, in some literatures graph are equivalne to
binary matrices and networks to weighted matrices.



structures which differ (statistically)
significantly from others. We develop formal
criteria for determining whether two C2
structures, given a set of measures of structure,
are significantly different under a null
hypothesis. Particular attention will be paid to
developing a graph theoretical procedure for
locating common networks and sub-networks.
This is critical, as the ability to locate a
common network is necessary for developing a
mathematical criterion for determining whether
the measures of structure for two different
graphs are meaningfully different. In order to
determine whether the difference between
structures is significant we will need to be able
to define the distributions on sets of graphs,
and measure the similarity between graphs.
Thus, by being able to define distributions on
sets of graphs, in terms of such things as their
central tendency, we hope to answer
fundamental methodological and theoretical
questions regarding C2 architectures. Our
intent is to address the questions, given a set of
graphs: “Can we define their distribution?”,
“Do these graphs exhibit some central
tendency?” and “When can we say that two
graphs are distinct?”

2. Background and Working
Definitions

Network measures can be used to
characterize graphs; similarly, statistically
significant differences in these measures can be
used to indicate differences in structure. At the
network level, measures such as density,
hierarchy, and graph connectivity are available
for characterizing graphs [Krackhardt, 1994;
Wasserman and Faust, 1994]. While most of
these measures can be applied to any data that
can be represented as graphs, whether or not
they are meaningful depends on what data it is.
For example, while span of control make sense
if the graph represents the command structure it
makes less sense if the graph represents the
precedence ordering among tasks.. Each
aspect of the C2 architecture that can be
represented as a graph will then have its own
set of measures. We can then contrast graphs
on the basis of differences in these measures.
We illustrate this approach in Table 1. In Table
1, four hypothetical command structures are

shown, and their difference on a number of
dimensions is indicated.

Structures Density Span of Levels
Control
0.29 2.00 3
0.29 6.00 2
0.29 2.00 4
0.48 3.33 3

Illustrative Structures &

Measures

It is not our intent in Table 1 to
exhaustively list all measures that are possible
for these graphs. Rather, we have merely
illustrated the types of measures possible for
only one aspect of the C2 structure. The first
point we wish to make is that this metric based
approach is a possible approach for
characterizing differences between graphs.
Exactly what the metrics are for each aspect of
the C2 architecture and whether or not any of
these metrics are predictive of performance or
other unit level behaviors is a separate issue.
Indeed, we expect that C2 architectures with
very different performance characteristics will
be identical on some dimensions and different
on others depending on which metrics are
examined and which of the substructures the
metrics are based on. Thus, for example, two
C2 structures that have identical command
structures but different task precedence
orderings will exhibit different performance
characteristics. While this is assuredly true, it
does not detract from our second point that if
we want to contrast and compare structures, or
some single aspect of structure, that can be
represented as graphs, then we will need to be



able to characterize the underlying distribution
of these graphs.

Unfortunately, graphs with widely
disparate configurations can look very similar
given a set of network measures. This makes
statistical comparison difficult. For example,
all of the graphs in Table 1 are distinct
structures yet each pair appear identical on a
number of dimensions. On the one hand, this
problem can be somewhat resolved by using a
suite of measures for each structure that cover
the range of implicit dimensions. Assuming
that all of the dimensions have been
characterized, structures that are really different
should show up as different on one or more of
these measures. The difficulty here, however,
is defining a set of measures that exhaust ail
possibilities and so ensure coverage of all of
the ways in which the graphs could be
different.  Further, this approach is
unsatisfying as it does not let us simultaneously
capture all differences.

An alternative approach is to map two
graphs onto each other and then look for
discrepancies in their overall structures. For
the special case in which the two graphs to be
compared are uniquely labeled, the difference
between them can be readily captured by the
Hamming distance [Hamming, 1950]. A graph
is labeled if the nodes have names. Note any
graph can be equivalently represented as a
binary matrix with the number of
rows/columns equal to the number of nodes
and a cell with a 1 representing the presence of
the link. The Hamming distance is simple the
number of cells whose value needs to be
flipped so that the two matrices come to be
identical; i.e., the number of links that need to
be added/dropped to make the two graphs
identical. In Figure 1, the matrices
corresponding to the networks in Table 1, and
their hamming distance from each other is
shown. Each of these matrices is an adjacency
matrix showing what edges or links are present
between nodes. In order to create Figure 1 we
labeled each of the nodes in the structures in
Table 1 using the proposed color-splitting
algorithm we will describe. All edges are
assumed to be uni-directional - from the lower
level to the upper level.
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1000000 1000000
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0000000 0000000
1000000 1000000
1000000 1000000
0100000 0110000
0100000 0110000
0000100 0110000
0000100 0110000

Figure 1. Hamming Metric and

Illustrative Structures

Previous work has demonstrated that, for
sets of graphs in which all nodes are labeled, it
is possible to derive a structural distribution
and to locate its central graph. Banks & Carley
[1994] developed a non-parametric network
based statistical technique for locating the
central graph2, the standard deviation, and
confidence intervals. Banks and Carley
measure the distance between networks using
the hamming distance [Hamming, 1950]. The

2 We use here the term central graph as we want to
emphasize the relationship between this graph and the
mean that one gets for variable level data. In other
contexts, the terms consensus structure (Krackhardt,
1987), cultural consensus (Romney, Weller and
Batchelder's, 1986), and majority intersection structure
(Carley, 1984, 1986) have been used to denote the same
basic idea.



central graph is that network containing the
union of the node sets of the graphs from
which it is constructed and in which two nodes
are adjacent if and only if they have been
adjacent in 50% or more of the graphs in the
set. Whether or not a graph is significantly
different than the central graph is assessed by
comparing its hamming distance from the
central graph with that which would be
expected under the null hypothesis.

Currently, it is possible to determine
whether or not two graphs are significantly
different only for the special case in which all
nodes are labeled (each node has a unique id)
and in which both graphs share the same label
set. This technique assumes a null hypothesis
in which all links between nodes are
independent and identically distributed [Banks
and Carley, 1994]. Given this assumption it is
possible to generate a distribution of networks
from the sample population using non-
parametric bootstrapping techniques, determine
the first moment of this distribution by locating
the central graph, and then calculate the
distribution of distances from this central graph
using the hamming metric. A non-parametric t-
test (essentially) can then be used to determine
whether the distance of the network(s) in
question from the central graph are sufficiently
large to reject the hypotheses that they are the
same as the central graph. The central graph,
hence, is the network equivalent of a mean for
a non-network variable.

In many situations, however, the nodes are
not labeled, or the labels are not relevant. For
example, In one JTF two nodes may be MEU1
and MEU2; whereas in another these might be
labeied MEU-A and MEU-B. These
differences in labels may be due simply to
documentation differences and not reflect real
underlying structural differences. Given a set
of unlabeled graphs it might still be possible to
produce a partial labeling of nodes by
"coloring" them: one might say that those
nodes possessing some given characteristic are
colored yellow, while those nodes with another
characteristic are red, and so on. For example,
all nodes representing resources are yellow and
all nodes representing personnel are blue.
Regardless, given a set of unlabeled graphs, or
at best colored graphs, we might still want to
identify any central tendencies present among
these graphs.

For colored networks, however, there are
many ways in which two networks can
overlay, thus complicating the process of
locating the central graph. For example, in
Figure 2, al and a2 are the same color and
therefore interchangeable. Two different
matches may be found (simply in terms of node
a) by either lining up the al’s and a2’s or by
lining up the left sides and the right sides. Still
other matches are possible when the nodes of
other colors are considered. Thus there are
multiple ways in which the central graph can be
calculated.

Teh
right Teh right

Figure 2. 1llustrative Colored

Networks

One approach to the comparison of
unlabelled (or partially labeled) graphs is to re-
label the nodes based on their network
properties. Once a unique and complete
labeling has been established, it is possible to
use traditional methods for the assessment of
structural distance. The choice of algorithm for
labeling the nodes is critical however. The
reason for this is that the Hamming metric is
sensitive to minor permutations of nodal labels.
An example of this may be seen in Figure 2.
For these graphs the three comparisons differ
from the minimum distance of O to the
maximum distance of 10 - despite the fact that
all six graphs are perfectly isomorphic! This
phenomenon suggests that using arbitrary label
choices may lead to poor inferences regarding
structural distance: a critical problem for cases
in which not all nodes (e.g., people, resources
or tasks) are interestingly unique (that is, non-
interchangeable in terms of the theory of
interest). Imagine, for instance, two JTFs,
each with an officer, M, two staff members (A
& B), and two tasks (t1 & t2) such that in the
first JTF A works on t1 and B works on t2
whereas, in the second JTF, A works on t2 and
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Figure 3: Hamming Distances for
Permuted Matrices

B works on tl. Though these JTFs are
functionally identical, a straightforward
application of the Hamming metric would
indicate a structural difference between the two.
In order to correctly assess the difference
between the two graphs, then, nodes of the
same "color”" (such as , in this case, staff
members working under the same officer) must
be trcated as interchangeable; treating the
structure as a conventional, pre-labeled graph is
not a viable option.

If arbitrary labels yield arbitrary distances,
what sort of labelings might prove more
useful? In general, it would seem reasonable to
seek a method of labeling nodes such that A)
the Hamming distance between labelings of any
two graphs will remain constant across (pre-
labeled) permutations of those graphs, and B)
the Hamming distance between any two labeled

graphs will be minimized3. Finding a general

3 This follows from the fact that A) we would prefer for
isomorphic graphs to have a Hamming distance of 0, and
B) the Hamming distance can never fall below the minimum
number of tie additions/subtractions needed to make the
two graphs under comparison isomorphic. By minimizing
the Hamming distance, we ensure that our comparison is as

method of achieving this goal, however, poses
several problems. The first is simply one of
combinatorics: for an unlabeled graph with N
nodes, the number of possible labelings is
equal to the number of node permutations, or
N!. While, in theory, one could exhaustively
search the space of labelings for the one which
minimizes the Hamming distance between
graphs, this method would be prohibitively
costly for all but the smallest networks4.
Genetic algorithms or other adaptive search
mechanisms could be employed as well, but
would be unlikely to yield uniform
performance. As an alternative to either of
these approaches, we propose a heuristic
method of node labeling which exploits
structural features of the networks on which it
operates. A simple heuristic technique for
locating structural similarity on colored nodes
has been developed and applied to locating
organizational structures [Carley, 1995c]. In
this paper we intend to refine this technique,
and to explore alternative graph theoretic
approaches for coloring and re-arranging
matrices in order to calculate the statistical
significance of structural differences using non-
parametric network based statistical techniques
[Banks & Carley, 1994].

3. Implementation

Our intent is to expand the Banks & Carley
[1994] technique for locating a central graph to
the case in which the set of networks is
constrained, and to the case where the nodes
are colored rather than labeled. We will use
Monte Carlo simulation techniques to generate
the distribution of possible structures given the
known organizational constraints on those
structures.

There is no known technique for locating
the optimal match between two colored
networks, let alone locating the central structure
based on the optimal match on a set of
structures. This problem is at least NP hard for
networks of more than two colors,
consequently heuristic techniques are called

close as possible to the smallest number of changes
required to convert one graph into another.

4 Just how prohibitive are these costs? To search the
labeling space of a fairly modest (N=20) graph at a rate of
100,000 comparisons per second would take over 77,000
years; this is probably a bit long to wait for a single data
point.



for. We will develop a “matching” or
“alignment” heuristic for locating the optimal
match between a set of unlabeled or colored
networks. Once the reordering for the
networks is determined, the previous
techniques for locating the central graph and
determining differences among networks can
be applied. The approach and tools for
generating these distributions and locating the
central graphs should generalize for networks
with other constraints and colorings than those
we examine.

3.1 A Color-Splitting Algorithm for
the Labeling of Graphs

The basic approach to the labeling problem
which shall be considered here consists of a
recursive algorithm which splits sets of
identically colored nodes into subsets of
identically colored nodes such that the
colorings are unique between subsets.
Nominally, this process terminates when no
subsets with more than one member remain,
thus producing a complete graph coloring..
(As we shall see, the algorithm will be unable
to split certain color sets - the impact of this fact
for algorithmic performance will be discussed.)
The method by which subsets are recolored is
based on an ordering principle which sorts
nodes based on both local (e.g., degree) and
global (e.g., connection to high-degree alters,
number of directed walks to other nodes)
network features; hence, the algorithm may be
applied to individual graphs, and works
independently of any within-color prefiminary
ordering.

This color-splitting algorithm works by
“feeling out” a graph’s structure. One of the
key elements used in this process is the set of
paths between nodes. In particular, we shall be
interested in the number of directed walks
between nodes in the graph given by adjacency

matrix AJ. Formally,
[ Wy, =+ A+A"+AN +AAv. A% +A™]
.
gives us the total number of directed walks
from i to j which are of length d or less.
As has been noted, the basic problem of
finding a reasonable labeling rests on using

5 Throughout this discussion, we shall treat directed graphs
and their sociomatrices as interchangeable.

a unique ordering of nodes.

structural properties of the network to produce
One obvious
property which might be considered in this
context is the row sum, or outdegree. In an
authority or reporting structure the outdegree of
a node would be the number of others that each
node reports to. Because outdegree follows
directly from the graph structure, it is invariant
under permutation; furthermore, it is simple to
calculate and compare.. Unfortunately,
however, most networks involve numerous

nodes with identical outdegrees6; hence, we
cannot rely on this measure alone. For
example, in many JTFs all nodes have an
outdegree or row sum of 1 in the reporting
structure. A simple extension of the row sum
concept, however, can be effected by adding in
the row sums of adjacent nodes. In particular,
we shall here consider the structural row
characteristic, SRi(d), of node i for distance d,
to be the sum of the outdegrees of all nodes
within d steps, weighted by the number of
walks between the two nodes. More explicitly,

we define SRi(d) as
N N
W, A 0<d<N-1
3 SAd)= ;( ooy '*J

0 d=N

Similarly, we can apply the same principle
to the column sum (or in degree), yielding the
structural column characteristic (SCi(d)):

[ SC(a)= Z(wd(q;‘\k,) 0<d<s N-1
o d> N

Note that, in both cases, the characteristics are
only meaningful for d<N. This follows from
the fact that the maximum path length for any
graph is N-1; walks longer than this distance
are cyclical, and hence structurally redundant.

Now, we declare our structural
characteristic coloring of an N-member
network A (SK(i) for all i in A), to be the
ordered coloring which is determined by the
following recursive process:

1) Let d=0

6 This is even more true of outdegree than indegree, due to
the presence of time and energy constraints on actors’
nominating ability for many relationships.



2) Given a set of identically colored nodes, G,
recolor members as follows:

3) (For all i and j in G): If SRi(d)>SRj(d) then
SK(i)>SK(j); if SRi(d)<SRj(d) then
SK(i)<SK())

4) (For all i and j in G such that
SRi(d)=SRj(d)): If SCi(d)>SCj(d) then
SK(i)>SK(j); if SCi(d)<SCj(d) then
SK()<SK())

5) (For all i and j in G such that SRi(d)=SRj(d)
and SCi(d)=SCj(d)): If d=N-1 then
SK(i)=SK(j), else let d=d+1 and goto (2)
for all sets G1...Gm such that
SK(k)=SK(!) for all k and / in Gn and
SK(k)SK(]) for all k in Gn and / in Gn+h
(hO, m-nh>-n)

Once the structural characteristic coloring
has been found, we can easily label the
network in question by assigning node
numbers in descending color order. If the
graph still contains some identically-colored
nodes, their specific ordering is irrelevant (so
long as they are properly ordered with respect
to all differently-colored nodes). In many
cases, such non-degenerate color sets are due
to structural equivalence [Lorraine and White,
1971]; hence, their orderings will not affect the
Hamming metric/. It is possible, however, for
algorithmic failures to cause non-unique

labelings of some non-equivalent nodes8. The
degree to which this affects assessments of
Hamming distance can vary, but (as with any
heuristic method) caution is advised.

3.2 Illustrtative Application of the
Color-Splitting Algorithm

Figure 4 presents a simple directed graph.
Given that the graph is uncolored (or 1-
colored), how would the foregoing algorithm
determine a unique labeling?

7 Structurally equivalent actors have identical relations
with identical (in this case, identically-colored) alters.
Thus, their ordering cannot change the value of any entry
in a sociomatrix so long as they are A) part of a coherent
block which B) is in the same position vis a vis all other
nodes.

8 Informal observation seems to indicate that the
algorithm is particularly vulnerable to regular equivalence.

Figure 4: A 1-Colored Graph with
Arbitrary Labels

To determine this, let us “run through” the
instructions and observe the results. The
intermediate results are also shown in Figure 5.
Initially, our G consists of the nodes A-I (2),
and d is equal to 0 (1). Proceeding to step (3),
we note that: SRA(0)=3; SRB(0)=1;
SRC(0)=0; SRD(0)=2; SRE(0)=1; SRF(0)=1;
SRG(0)=1; SRH(0)=0; SRI(0)=3;. Thus, we
can already split G into {A,I}, {D},
{B,E,F,G}, and {C,H}.

In (4), we now attempt to split the
identically-colored subsets, observing that:
SCA(0)=2; SCI(0)=2; SCB(0)=1; SCE(0)=1,
SCF(0)=0; SCG(0)=2; SCC(0)=0; and
SCH(0)=3. Applying the same ordering rule
as we used in (3), we are able to arrive at the
division {AI}, {D}, {G}, {B,E}, {F}, {H},
{C}.

At this point (5), we note that d<N-1 and
our ordering is not degenerate; thus, we let d=1
and return the two sets Gl={A,I} and
G2={B,E} to step (2).

1 2 3456 7 8 9

Initial L cpEFGu
Outdegree SR (0) (L )Rt d(c
Indegree SC,0) E DO EBEMLA
SR,(1) B0eREEEEE

Figure 5: A Sample Color-Splitting
Process

For (3) G1, we can see that: SRA(1)=8;
and SRI(1)=7. This splits G1 into {A}, {I}.

For (3) G2, we find that: SRB(1)=4; and
SRE(1)=3. This final division splits G2 into
{B}, {E}.




Figure 6: Sample Graph,
Fully Labeled

At this point, the ordering {A}, {I}, {D},
{G}, {B}, {E}, {F}, {H}, {C} is degenerate,
and we are finished. The descending-order
labeling which results from this process can be
seen in Figure 6.

3.3 Empirical Evidence for the
Validity of the Color-Splitting
Algorithm

The proposed color-splitting algorithm is
generally effective at producing unique
labelings of N-colored graphs. However, as
we noted earlier, if the goal is to compare and
contrast graphs it is not sufficient to just label
the nodes. Rather, the labelings that are
produced must be well-behaved with respect to
the Hamming metric. This is especially true for
cases in which the graphs to be compared are
known to differ in some way; ideally, there will
be a strong linear relationship between this
underlying structural difference and the
Hamming distance between the two networks.

To effect a preliminary test of the validity of
the color-splitting algorithm for this specialized
purpose, we ran a virtual experiment in which
we generated a large number of graphs which
were more or less typical of what might be
expected for C2 structures with a small number
of nodes. Each of these graphs was then
copied and “tweaked”: that is, some number of
ties (chosen at random) were “flipped”, so as to
produce a slight difference between the two
networks. The size of the tweak is the number
of flipped ties. After being modified, the
copied graphs were randomly permuted, and
the color-splitting algorithm was executed on

each. Once the graphs were labeled, the
Hamming metric was used to find the distance
between the two graphs (the original and the
permuted tweaked graph). More specfically,
we generated graphs with either 5, 7, or 10
nodes, that were and were not hierarchies, with
a mean tie probability of 0.01, 0.17333, or
0.36667, and a tweak between O and 2N-
(2N/5) by 2N/5 where N is the number of
nodes. Thus for graphs of size 5 the tweaks
were 0,2,4,6, or 8; for graphs of size 7 the
tweaks were 0,2,4,6,8,10, or 12; and for
graphs of size 10 the tweaks were 0,4,8,12, or
16. Each of these 306 cells was replicated
twenty times. The mean hamming distance was
recorded for all 20 cases within a cell. For this
research hierachy is defined as an upper
triangular matrix; i.e., there are no cycles in the
reporting structure.

Based on this data, for each size of graph a
linear regression was run on the mean
hamming distance (the results are shown in
Table 2). Of the various graph parameters
tweak has a big impact on the observed average
Hamming distance. Specifically, the larger the
tweak (the more ties that are flipped) the greater
the average Hamming distance, even when
other factors (such as the graph’s being a
hierarchy) are controlled for. Furthermore, the
optimal value (1.0) of the tweak coefficient is
within the 95% confidence interval® for the
parameter; hence, we have reason to suspect
that the coloring algorithm labels graphs in a
way which gives reasonable results.

Coefficients  P-value
Intercept -24.746748 1.6819E-18
N 3.684900 6.1998E-22
Hierarchy 7.660784 1.7749E-10
Density 29.540780 6.7093E-11
Tweak 0.774872 1.4544E-08

Observations 102

Table 2: Regression Statistics for the
Hamming Test

There are, however, a few cautionary
notes. First of all, the test presented here is
preliminary, and may not be fully indicative of
the challenges to which the method may be put
in the field. That is, the set of networks we

9 95% confidence interval for tweak: (0.526,1.023)



tested it on are not exhaustive of the set of all
networks. In particular, we did not examine
very large networks nor networks with a large
number of bi-directional links. Secondly, it is
important to note that factors other than tweak
can also influence the Hamming distance. In
Table 2 we see a massive effect due to density;
however, this effect is primarily an artifact of
the low real densities used for the simulation.
Nonetheless, it is worth recognizing that
density does produce some linear distortion in
the Hamming metric under the coloring
algorithm. Likewise, the presence or absence
of strict hierarchy and the size of the network
size can alter Hamming outcomes (albeit,
apparently, in a fairly straightforward

fashion10). How important are these effects
for research purposes? While it is too early to
be sure, there is reason to believe that the
distortions are minimally problematic when
comparing structures within a basic category
(e.g., hierarchies, low-density networks, etc.),
simply because the primary source of variance
within categories is tweak (which is what we
wish to capture in the first place). Comparison
of differences across categories may be
somewhat riskier. Further research must be
done to determine the precise strengths and
weaknesses of this heuristic approach.
However, initial results suggest that it is both
uniquely labeling non-isomorphic nodes and is
doing so in a fashion that it becomes possible
to locate the central graph.

3.4 Central Graphs

The central graph [Banks & Carley, 1994] is
that graph which contains those edges in 50%
or more of the set of graphs on which it is
calculate. It is analogous to the mean for
variable level data. After labeling the nodes for
the illustrative graphs, as shown in Figure 1,
we calculated the central graph. This central
graph is shown in Figure 7. For the four
original graphs, their hamming distance from
this graph is (clockwise in Figure 1) 0, 8,4,
and 4. This is the minimal set of Hamming

10 Many of these effects may be traced to the fact that the
Hamming distance counts the number of tie differences
between matrices; hence, any ordering distortion will have
an effect which is proportional to density and to network
size.

distances of these graphs from the central
graph.

1

a
S O

Figure 7: Central Graph for INlustrative
Graphs

4. Conclusion

The proposed color-splitting algorithm is a
heuristic based algorithm for labeling unlabeled
or colored graphs. Labeling the graphs
basically aligns the structures. Once the graphs
are labeled similarities and differences can be
measured and the central graph calculated.
Given the central graph, it is then possible to
generate other features of the distribution and to
statistically evaluate differences and similarities
between graphs. This technique will be usefull
in determining differences in those aspects of

C2 structrues that can be graphically
represented.
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