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Abstract

Researchers in social networks are becoming increasingly interested in how networks
evolve over time. There are theories that bear on the evolution of networks, but virtually no
statistical methodology which supports the comparative evaluation of these theories. In this
paper, we present explicit probability models for networks that change over time, covering a
range of simple but significant qualitative behavior. Maximum likelihood estimates of model
parameters which describe the rate of change of the network are derived, and some of their
sampling properties are elucidated. To calculate these estimates the researcher must have
measurements upon the trajectory of a network — these are the values of the network at
successive time points. We also describe goodness-of-fit tests for assessing model adequacy,
and use Newcomb’s dataset to illustrate the methodology.

1. Introduction

How do social networks evolve over time? That is a question of central interest
to many social scientists. In this paper, we examine methods that address that
problem. Our techniques provide models for situations in which the number of
nodes in the networks is fixed, but the edge set evolves over time. In effecting the
tradeoff between simplicity and analytical tractability, we have built models that
are probably too primitive to describe the complexity of realistic datasets, but they
suffice to identify qualitative features, such as increasing stability. An example of
cases in which our models appear relevant is Newcomb’s 1961 dataset, where he

* Corresponding author.

0378-8733 /95 /$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0378-8733(94)00249-5

W Eee e

R O O

N

E

e

g,

st B 40

®

CREey
- Yok v



66 A. Sanil et al. / Social Networks 17 (1995) 65-81

considered the changing interaction patterns among the same set of 17 undergrad-
uates.

For such datasets, we present a class of statistical models that describe different
kinds of evolution. We also outline procedures for estimating the ‘rate of change’
parameter of the model and discuss related issues. Fitting these models enables us
to determine the nature and propensity to change (or expected rate of change) in
the network over time. Although these models have been developed with a view
towards the analysis of social networks and are illustrated through examples of
social networks, they remain valid for general networks that satisfy the criteria
specified for each model.

To further clarify the nature of the networks we study, consider the following
example. (We will use variations on this example to highlight different aspects of
the models presented in the paper.) Imagine that one is interested in studying
change over time in friendship patterns among m students in a classroom. One
might collect such data by simply asking each of the m people who their friends
are, or one might ask k informants to tell you who among the m people are
friends. This distinction between common methods of collecting such data is not
important. From our standpoint, the key concern is whether (a) one tracks changes
in a single network on m nodes over T different time points, or (b) one tracks
changes in k networks on a common set of m nodes over T different time points.
In both cases, the node set remains fixed over time. We will refer to observations
on a single network at multiple time points as single-network data; Newcomb’s
data is an example. Similarly, we will refer to data in the form of multiple networks
on the same m nodes sampled at multiple points in time as multi-network data.
Examples of multi-network data are cognitive maps (Carley, 1986) and cognitive
social structures (Krackhardt, 1987).

Because networks provide a natural and effective mode of representing social
systems, social scientists have devoted considerable effort to the analysis of social
networks. This has resulted in a voluminous body of literature on the subject. The
motivation for much of the research has come from sociology and anthropology;
therefore, work has focussed on examining the role of each social actor (node) in
the network and various relations connecting the nodes. Structural equivalence in
networks (Sailer, 1978; Lorrain and White, 1979), clustering (Ferligoj et al., 1992),
and various other ideas aimed at elucidating the structure of the network and
patterns of relationships between actors have dominated the literature (Freeman,
1979; Fienberg et al., 1985; Holland and Leinhardt, 1986). Thus, almost all
attention has been directed towards studying the internal structure of a single
network .

In contrast, the problem we address is in the spirit of what Fienberg et al. (1985)
refer to as the macroanalysis of social networks (i.e. methods “which focus solely
on the relationships and ignore individual social actors”). The models presented
here are simplistic in the sense that they do not take into account the structural
dependence in the network. This appears to be a serious limitation since, almost
always, there is some kind of a dependence structure in a social network which
makes it worth analyzing. In this respect, we would like to emphasize that our
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models are geared towards a different kind of analysis. The situation that we have
in mind arises when a researcher wishes to get an idea of the volatility of a
network, i.e. the problem is to gauge roughly how much the network changes from
one time point to the next. These models may be used to get a first-stage estimate
of how stable the network is. Subsequently, finer analyses based on structural
properties may be conducted.

Previous research on networks evolving over time dealt mainly with networks
that ‘grow,’ in the sense that nodes and relationships are added at successive time
steps (see Doreian, 1983), but none are removed. This is quite different from the
problem we consider, since our node set is fixed and the edge set may increase or
diminish. Of all the earlier work, Snijders (1990) is closest to our study. The
models we describe fall within the class of models considered by Snijders, or are
simple extensions of members of that class. In Section 6, we show how our models
may be obtained from Snijders’ by imposing 2 certain parametric structure.
Snijders gave a simple and elegant test for change in a network at two time points.
But that approach required that one fix the number of edges to and from any
node; also, one could only test for change between two stages at a time, and there
was no measure of the propensity (or expected rate) of change. Our methods allow
estimation of rates of change and trend in the data, and tests of corresponding
hypotheses. However, we require that the network be observed on at least three
occasions (not two), and our analysis does not provide information on specific
network structures. From this perspective, our work complements Snijders’s ap-
proach.

This paper is organized as follows. First, Section 2 describes the notation and
basic concepts used in the paper. Section 3 introduces a model in which the
network’s propensity to change is taken to be an unknown constant. This is the
simplest member of the family of models that we discuss. Section 4 expands this
with a slightly more flexible model in which the propensity to change is modeled as
a linearly decreasing function of time. Methods for testing the fit of these models
are outlined in Section 5. Section 6 describes the general class of models that we
propose. These are models in which the rate of change is an arbitrary function of
time. Estimation and goodness-of-fit tests are also discussed. In Section 7, we
illustrate the procedures outlined in Sections 3-5 by fitting the well-known
Newcomb data set and conducting goodness-of-fit tests for competing models. The
analysis of these provides a concrete description of the somewhat abstract proce-
dure we outline in Section 6. Finally, Section 8 discusses the limitations and
advantages of the approach, further generalizations to the models, and the role
played by the metric that is used to measure change.

2. Background and notation
For networks with m nodes, we assume that all networks are represented by

their m X m adjacency matrices. Specifically, the adjacency matrix of an m-node
network is an m X m matrix with its (i, j)th element as 1 if there is a relation from
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node i to node j and 0 otherwise. Unless stated otherwise, the adjacency matrices
are not assumed to be symmetric (e.g. although A reports B as a friend, it need not
be the case that B claims A as a friend). An individual network is denoted by g, its
adjacency matrix is denoted by G,, and the space of all such m-node networks is
denoted by £, .
In order to analyze these networks, it is crucial to define what is meant by the
distance between two networks, i.e. we need a metric on £, It is possible to
define a metric in several ways and one should choose a distance measure that is
appropriate in the context of the data. In this paper, we employ the symmetric .
difference metric (also known as the Hamming metric or the Kemeny metric)
because of its general intuitive appeal and analytic tractability. In essence, this
metric defines the distance between two networks as the number of elements in ’
which their respective adjacency matrices differ (see Banks and Carley (1994) for
details). The formal expressions for this metric are as follows:

® When the networks have symmetric relations and a node cannot be related to

itself (i.e. the adjacency matrices are symmetric and have diagonal elements
equal to zero), use

d(g,, 32)=%tr[(61_62)2] (1)

where tr]-] denotes the trace of a matrix (the sum of the diagonal elements).
This function counts the number of edge discrepancies between g, and g,.

® When the adjacency matrices are asymmetric but have zero diagonal elements.
take

(81, 82) = tr[(G, ~ G,)"(G, - G,)] (2)

® When the adjacency matrices are symmetric and diagonal elements may be
non-zero, use

4**(81, 82) = $1[(G, - G,)] + ur| (Diag(G, - G,))’] (3)

where Diag [-] denotes the diagonal matrix whose diagonal elements are those
of the matrix argument.

The mathematical development in this paper assumes that the second case applies.
However, the formulae are casily modified to handle the other cases by employing
the appropriate metric and correcting for the cardinality N of the edge set, as
described in following section.

3. Models with constant propensity to change

We first outline a simple model of network evolution over time for single-net-
work data and then extend it to multi-network data.
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3.1. Single-network data

Different social networks have different expected rates of change over time -
some networks might change in a minor way at each successive time stage, so that
successive networks differ in only a small number of edges. Thus, in terms of a
general metric, the network is more likely to evolve into one of its close neighbors
in £, than into a distant network. However, for a network model with a large
propensity to change, successive observations are likely to skip around wildly in
z,.

Here we try to model the case where a network’s propensity to change can be
captured by a parameter f which remains constant over time. By chance, the
actual observed changes will sometimes be large and sometimes small, but its
expected value is determined by the propensity parameter f. Specifically, we
define f to be the probability of change of state for any edge in the network, i.e.
the probability that an existing relation between any two nodes will disappear at
the next time step, or that a relation between two unrelated nodes will come into
being at the next time step. Ifwelet{X,:t=0,1,2,..., T} denote the network-val-
ued sample obtained at (T + 1) successive time stages, then the one-step transition
probabilities (assumed Markovian) for this model are given by the simple binomial
model

P[d(Xn Xr—l) =jl X1 Xl—2""’X0] =P[d(Xn Xx—l) =j|X1—1]
-()ra-n* 0

where N is the maximum number of changes possible. The equation holds for
j=0,1,...,N, for t= 1,...,T, and for 0<f<1l

For any starting point X, as { = @, the distribution of X, approaches uniform-
ity over ¥,,. If f is between 0 and 0.5, then that network tends to evolve slowly; the
probability of observing a particular change diminishes exponentially with the
distance induced by that change. Conversely, for f> 0.5, the network is apt to
make radical changes at each step; in particular, changes that correspond to small
distances are improbable (we expect that the regime f>0.5 rarely occurs in
practical applications). When f=025, then the network changes into any other
possible network in ¥, equiprobably at each successive stage. In this case, there is
no dependence on the past and the Markov property degenerates to simple
uniform sampling.

An alternative interpretation of f can be made in terms of the odds ratio. If the
odds ratio for change at an edge is written as 6 = f/1 — f, then the model can be
reparameterized as

Od(xlvxl—l)
P(X\)X,_,)= 5
(KX = ) ®)
This is clearly a probability measure since for any g €%,
N
Z 0d(8y80= Z(N)0}=(1+0)N (6)
g€, j=o\!
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If the odds ratio is between 0 and 1, then the network tends to make small
changes; if 6 > 1, the network tends to make large changes. At 6 = 1, all possible
values of X, become equiprobable.

The value of N in Eq. (4) equals the maximum number of possible edges; it
varies according to whether the problem allows loops or directed edges. Similarly,
the metric must be appropriate to the problem. Some standard cases include:

® N=m(m- 1)/2 for symmetric adjacency matrices with diagonal elements
constrained to be zero;

® N=m(m + 1)/2 and the metric d(-,-) substituted with d**( *,- ) for symmetric
adjacency matrices with non-zero diagonal elements allowed;

® N=m(m-1) and d(-,-) substituted with d*(-,-) for asymmetric adjacency
matrices with diagonal elements zero;

® N=m? and d(-,-) substituted with d*(-,-) for asymmetric adjacency matrices
with non-zero diagonal elements.

Of course, in realistic problems one may want to capture structural information
about properties of nodes through some more complicated metric, or add rules
that bound the number of edges at particular nodes. The cost of such realism is
that the computational burden of maximum likelihood calculation and other
inference becomes dramatically greater.

If d,=d(X,, X,_,), define LZ{_id,=D. Then it follows from the Markov
property that (d,,...,d,) is an i.i.d. sample from a binomial distribution. The joint
likelihood function can easily be written as

T
P(dy,....dr, X,1 ) = P(X,) fP(1 —f)TN_DE(t]i\:) @

Assuming P(X,) to be independent of f, the maximum likelihood estimator of f
is found to be

. D
f=ﬁ (8)

Furthermore, the distribution of f is obtained from the reproductive property of
sums of i.i.d. binomial random variables. Since f takes values 0,1/nN, 2/nN,... , 1,
we have

P(f=j/TN)=(TJN)ffa_f)rN—f Jj=0,1,2,...TN 9)

Thus, for the simplest model, we have a complete understanding of the inferential
properties of the natural estimate of the unknown but assumed constant propen-
sity parameter.

3.2 Multi-network data

The situation for multi-network data is similar to the one described above in the
sense that f remains constant over time. But here we observe the evolution of k
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different networks, each over a sequence of T+ 1 common time points. It is
convenient to refer to the developmental sequence of a particular initial graph as a
trajectory, and to denote the fth observation in the jth trajectory by X - In the
analysis that follows we make the somewhat restrictive assumption that the k
networks observed at each time point are independent of one another, i.e. the
values of the k coeval random networks do not influence one another.

This model is applicable if we believe that the networks from each of the k data
sources have the same propensity to change. We set up a joint probability model
for the combined sample and calculate the pooled estimate of f. Proceeding
exactly as in the case of single-network data, we obtain

fA= Zf— lDl
TNk

where D, =XY7_.d, ford, =d(X,, X, i..—1), the distance of the change observed in
the evolution of the ith network trajectory from time point ¢ — 1 to time point .
Also, the distribution of f is given by

TNk
J

(10)

P(f=j/TNk)=( )ff(l—f)TN"" j=0,1,...,TNk (11)
The details of the calculation are straightforward, and directly follow the argument
for the single-network case.

In the context of our motivating example, this model might apply to a situation
in which one studies the rate of change and persistence of friendship relations in
k = 3 classes of m = 30 students over T = 12 years of education. Note that in this
case the nodes need not be the same. The independence assumption implies that
there is essentially no communication between the three classes, e.g. the making or
breaking of friendship ties in one class will have no influence on the tendency of
people in other classes to change their friendship ties. From a practical standpoint,
for this example, the more unreasonable assumption is that the propensity parame-
ter f is fixed over time; it seems unlikely that twelfth graders show the same level
of volatility that first graders do.

4. Models with decaying propensity to change

The practical concern that first and twelfth graders may exhibit different
degrees of fickleness highlights the need to extend the model described in the
previous section. For example, it is plausible that friendship networks change less
and less as time progresses. If one starts with a classroom of strangers, change is
likely to be dynamic in the first few weeks, but as relationships mature and deepen,
they become stable and unlikely to change.

The next set of models incorporates this feature by replacing f, the propensity
parameter, by f/t. This reflects the decreasing probability of change as time
increases. In the long run, the limiting distribution will concentrate upon a single
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network in €, uniformly chosen from that set. As in Section 3, we develop models
for single-network and multi-network data. However, in these models, the time-de-
pendence prevents the derivation of closed-form expressions for the sampling
distributions of the estimators.

4.1. Single-network data

Using the same notation as before, the one-step transition probabilities (as-
sumed Markovian) for this model are given by

P[d(X,, Xr—l) =j|X,_1, X:—z’---’XO] =P[d(X,, Xl—l) =j|Xr—l]
-(Yera-sm* a2

where N, d(-,-) and j take values as in Eq. (4) and 0<f<1 is the initial
propensity to change. If we let d,=d(X,_,, X,), and proceed exactly as in the
previous section, we find the likelihood function as

T
Pld,, d,....dy, X, | f] =P(XO)H(Z)(f/t)“'(1 SRCZ0) A )
and the reduced log-likelihood is
T
I(f1Xo, Xy,..., X)) = 2 [d, log(f/t) + (N —d,) log(1 - (f/1))]
=1

+In P(X,) (14)

Assuming that P(X,) is independent of f, maximization of the log-likelihood by
standard calculus implies

T N—d T
fL——==Xd, (15)
=1 t=f O

Although the MLE of f cannot be reduced to an explicit closed-form expression,
Eq. (15) represents a monotonically non-decreasing function in f. Hence, one can
casily use any of several search algorithms, such as Newton—-Raphson, to numeri-
cally calculate f If one wanted to assess the sampling distribution of f, the
simplest approach would be to use a parametric bootstrap. But this may place
undue reliance on the assumed form of the model. Alternatively, one could use a
nonparametric bootstrap, or develop the asymptotic distribution.

For those with expertise in GLIM (cf. McCullagh and Nelder, 1989) and
reasonable faith in the model, the binomial structure of our formulation, coupled
with a suitable link function, enables immediate calculation of the maxirnum
likelihood estimates and their standard errors.
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4.2. Multi-network data E'

The multi-network data model is exactly as in Section 3 with the f replaced by
f/t in Eq. (4). If we let d,, =d(X,,, X;,_,) be the distance between the networks
on the rh trajectory at times ¢ and r— 1, then direct calculation finds the
likelihood function as

P(d“, digs.- dkT7X10""vXkOIf)
k k T (nY . Ned
= iI:IlP(Xio)Jl'Il_I(d“)(f/t) (1= (f/r))" (16)

jm =1

and thus the maximum likelihood estimator f solves
k T N—d, k

— = ) D, 17
fzgtg t '"f i‘-;l ' ( ) 3
where D, =37_, d,. Again, monotonicity ensures this is susceptible to direct b
numerical solution. f
In many respects, this model for decaying propensity to change is too simple to B
describe realistic data sets. Its chief value is that it captures a qualitative feature 3
(increasing stability) that occurs commonly and which social network theorists LgA
would want to discover. As shown in the following section, this enables broadly @i
|
[ ]
|
|

adequate tests of constant propensity versus declining propensity, without impos-
ing the requirement for large sample size that is attendant upon the use of highly
parameterized models. If one wants to attempt a more precise fit and has
sufficient data, Section 6 describes how this can be done.

§. Hypothesis testing

In any statistical analysis, it is crucial to test whether the data obtained show
adequate fit with the hypothesized model. We suggest the following strategies to
test for goodness of fit.

For the single-network model, consider the observed distances (d,,...,d).
Each of the d,’s is independent, with binomial, with binomial distribution having
parameters N and f,. When f, =f, a constant, we obtain the first model; when
f.=f/t we have the model for decaying propensity over time.

To compare the qualitative feature of constant change versus decaying propen-
sity to change, the easiest solution is to regress the magnitudes of the observed
changes, d,, against t. If the fitted slope is significantly less than zero, then the
model of constant change is clearly rejected. If the slope is not significantly
different from zero, then the constant slope model is broadly sound, and if the
slope is positive, one should consider a richer class of models.

The regression test enables a preliminary assessment of the fit of the model in
terms of the functional behavior. A secondary assessment is also desirable, in order
to examine the adequacy of the fine structure. For example, it may happen that the

¢
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d, tend to become small over time, but that the tail behavior at a specific ¢ differs
from the exponential rate specified in the proposed model. To discover this, we
suggest the use of the probability integral transformation. Suppose the observed

distances are d,,...,dr; define
d
L IN) & A\N—Jf
p,=P(Xsd,)=Z(j)f,’(l—(f,)) t=0,1,2,...,T (18)
j=0

If the model is correct, the probability integral transformation ensures that
(py,.-.,py) is approximately (because of the estimation of f) a sample from the
discrete uniform distribution having support on the cumulative binomial probabili-
ties, i.e. P(p, <x)=x for all values of x that are binomial probabilities. Other-
wise, when the model is incorrect, the transformed sample arises from some other
distribution. So one can measure fit either through a test based upon multinomial
outcomes, or through a Kolmogorov—Smirnov one-sample test of the hypothesis
that the transformed data arise from a uniform distribution. Lehmann (1975)
tabulates the critical points for this procedure.

The Kolmogorov—-Smirnov test is approximate in this application since the null
distribution is discrete rather than continuous, and since the fit is assessed after
the estimation of the propensity parameter f. For most applications, this approxi-
mation should not cause difficulties. For even modestly large N, the continuous |
uniform will closely mimic the behavior of the discrete null distribution in this test.
Similarly, the estimation of the single parameter will slightly incline the test
towards conservatism. At need, one could perform an exact test by simulating the
null distribution of the test statistic for the precise situation in hand.

A major deficiency in the models we propose is that they take no account of the
structural properties of the network, such as reciprocity or in- and out-degrees. To
determine whether the models fail from oversimplifications involving reciprocal
relationships, consider the case of a single trajectory andfort=1,...,T,let Dy,,
denote the number of node pairs (dyads) that change from no edges to asymmetric
edge at time ¢, D,y , denote the number of dyads that change from asymmetric
edge to no edges at time ¢, D4, , denote the number of dyads that change from
symmetric edges to asymmetric edge at time 7, and Dy, denote the number of
dyads that change from asymmetric edge to symmetric edges at time ¢. These four
statistics count the dyads in which just one of the two possible directed edges
changes. If the proposed model holds, then the probability of a change from
asymmetric edge to no edges is equal to the probability of change from asymmetric
edge to symmetric edges, and thus, conditional on D4y, + Dpe> Dyn, is binomi-
ally distributed with parameters Dy, + D4y, and 0.5. Similarly, conditional on
Dyy,+ Dygayr Dy, is binomially distributed with parameters Dy, , + Dy 4, and
0.5. Thus a sign test enables broad assessment of whether reciprocity shapes the
trajectory of the network. That test may be applied at each value of ¢, or, by the
reproductive property of binomials, it could be applied to the entire history of the
network’s evolution.

In the same spirit, one can assess the adequacy of the model with respect to
issues of nodal degree. For example, let Y, denote the in-degree of the jth node
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at time ¢, and let Z; denote the number of new in-edges for node j at time
t +1. Clearly, for each t=0,. -1,0<Z;,,sm-1- Y,,. The proposed
mode! tmplies that all Z;,, are 1ndcpendent w1th binomial dlstrlbutnons having
parameters m — 1 —Y;, and either f or f/t, depending on whether the model has
a decaying rate of change At fixed ¢ this enables a goodness-of-fit x? test on the
2 Xm table with entries Z;,,, in the first row and m—-1-Y, - Z;,,, in the
second. Moreover, the test can be extended to a three-way table if one examines
different values of ¢.

Other possibilities exist for designing goodness-of-fit tests sensitive to the failure
of specific assumptions that underlie the family of models we discuss. One of the
advantages of these tests is that they enable the analyst to focus effort on
elaborating only those aspects of the model for which the data demand greater
flexibility.

6. A general family of models

In Sections 3-5 we outlined a procedure for fitting data on evolving networks by
modeling the network’s propensity to change as constant or as a specific function
decreasing over time. We now proceed to develop a general modeling strategy that
permits the propensity to vary as an arbitrary (parametric) function f(a, t) of time.

In the single-network situation, let {X,: ¢ =0, 1,...,T} denote the network-val-
ued sample obtained at (T + 1) successive time stages, and d, = d(X,, X,_,). For
the propensity function f(a, t), define the one-step Markov transition probabili-
ties as

PLACX, X, =1 K] = ()G 070 = G, )™ (19)

and so the reduced log-likelihood equation is
T
l(al Xq,..., X7)= Y [d, In f(a, t)+(N—d,) In(1-f(a, t))]
t=1

+1n P(X,) (20)

Then, assuming that P(X,) is independent of a, we find that the maximum
likelihood estimate & satisfies

fi(_i[) f(a,t)-(d,/N)
t=1 da f(&’ t)(l —f(aA’ t))

There is an appealing interpretation of Eq. (21). If we consider the binomial
distribution at each time point, then the summation is a weighted sum of the
difference between the estimated and the observed proportion of relations that

change at each time step, divided by the variance of the estimate. In other words,
the equation seeks the & that minimizes a weighted sum of standardized discrep-

(21)
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ancies. The weights on each term are the rate of change of f(a, t) with respect to
a at time ¢.

For general functions f(a, t), one must use a numerical method to solve Egq.
(21). If multiple solutions arise, then the root yielding the maximum value of Eq.
(20) should be selected. GLIM software can be useful in executing this calculation,
but the link function must be chosen to reflect the form of f(a, t). Also, we note
that the method in Section 5 for assessing goodness of fit extends to this case,
although the approximation may be less good if the functional dependence upon
the estimated parameter a is not smooth.

This extension of the general model for the single-network case to the multi-
network problem is straightforward. The numerical solution of the maximum
likelihood equation becomes somewhat more complicated.

We would like to point out the relation between the family of models given by
Eq. (19) and those studied by Snijders (1990). Consider the change in one time step
and let X,, and X,, be m-dimensional vectors giving the number of links
directed towards each actor and away from each actor, respectively. Then, condi-
tional on X,, and X, ,, the distribution of changes in the network given by Eq.
(19) is uniform over the possible changes. This is precisely the kind of conditionally
uniform models analyzed by Snijders. Thus, our basic model belongs to this larger
class of models and we may apply Snijder’s results and tests when appropriate. The
chief advantages of our models are that they lend themselves to the estimation of
meaningful parameters and that they extend to the case of networks measured
over several time steps.

7. An example

We now illustrate the procedures by fitting a dataset to the models given by
Egs. (4) and (12). The data that we examine were obtained by Newcomb (1961)
during a study of the interaction patterns between members of a certain fraternity
at the University of Michigan in the fall of 1956. The respondents were 17
fraternity members. For all but one of 16 weeks, each respondent ranked a list of
eight other members in the group of 17 with whom they had interacted most. The
adjacency matrix of interactions between the respondents was coded in two
different ways; in one case the interaction representation was necessarily symmet-
ric, but in the other it could be asymmetric. For the symmetric representation, a
link between nodes A4 and B was said to exist if both student A considered
student B to be among the top eight people he had interacted with that week and
student B thought same about 4. The asymmetric representation was constructed
by establishing a link between 4 and B if 4 considered B to be in the top four he
had interacted with and B considered A4 to be in the top eight.

Our procedures address the following questions:

(1) What is the rate of change of the interaction relationship in each week?
(Equivalently, what expected proportion of relations does one expect to change at
a given point in time?)
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(2) Does this rate remain constant over time or does it vary?
(3) What proportion of the relationships would we expect to change in some
future week?

We note that Newcomb’s data are not perfectly amenable to the techniques we
propose. This is because the method by which the data were obtained, rank
ordering, makes it impossible to represent the networks in a manner in which all
points in &, could be reached with a non-zero probability — certain points of &,,,
such as the completely connected network and the network with no relations,
cannot be realized in these data. This differs from the idealized model we
describe, which assigns non-zero probability to every point in &,,. However, this
difference is probably not crucial, since in Newcomb’s situation the trajectory of
the graph does not stray far from the starting graph, and thus our model is likely to
offer a locally accurate description of the behavior of the data.

Another concern is that there are missing data in Week 9 (the first week has
label 0). This gap corresponds to school holidays, and so a working hypothesis is
that the fraternity scatters, and interaction between members either do not take
place or occur much more rarely than during the regular semester. If this
assumption of reduced interaction is correct, then it is arguable that the evolution-
ary clock stops during breaks and the missing data pose no obstacle to our analysis.
Of course, it is difficult to verify this plausible assumption, but it seems nonethe-
less worthwhile treat this classic dataset with the tools we have discussed.

7.1. Analysis

The first, and probably the most revealing, step is to plot the jump sizes
(d(X,, X,_,)) versus time (see Figs. 1(a) and 1(b)). These plots indicate consider-
able change in the first four weeks, which diminishes and then becomes nearly
stable.

We fitted the two models given by Egs. (4) and (12). The regression of d, on ¢
yielded slope coefficients of —0.619 (standard error = 0.082) and —0.552 (stan-
dard error = 0.073) for the symmetric and asymmetric representations, respec-
tively. Both slopes were significantly different from zero. This implies that there is
a significant time trend in the d,’s and, therefore, the model in Eq. (4) does not
capture the general qualitative behavior of the network.

Since we rejected the constant rate of change model, we now test the model in
Eq. (12) using the Kolmogorov-Smirnov test. The p values for the test were 0.879
for the symmetric case and 0.06 for the asymmetric case. If one is willing to accept
the model at the 0.05-level, then from these p values we can infer that the model
in Eq. (12) captures the diminishing jump sizes quite reasonably. The results are
shown in Figs. 1(a) and 1(b), where the estimated expected jump sizes are
superimposed on the plots of the observed data.

If we adopt the model in Eq. (12) as the model for the data, then we can
conclude that the interaction network changes at a diminishing rate over time, and
its behaviour can be roughly approximated by Eq. (12). In the case of symmetric
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Fig. 1. Network jump sizes over time.

relations, & was estimated to be 0.3824. This means that we can expect around
aN/t or 5225/t of the relations to change (out of a maximum possible 136
relations) between successive time points at any given time f. For the asymmetric
representation, & was 0.2419, and this could be interpreted exactly as in the
symmetric case. We could use the estimates of a« and f(ea, ) to predict the
number of changes expected (as above) or to compare the rate and nature of the
change with corresponding estimates for, say, some other group at a different
university.

As an additional investigation of the change over time, notice that Newcomb's
data is such that each individual rank orders the other individuals. We can
calculate exact symmetry as the number of times that two individuals agree in their
rank for each other. Thus, if we let R, be the rank that / assigns to j, then the
level of match between i and j, or M;;,, can be determined as M, = | R, — R, |-
If M;,=0 then the match is exact. Two reasonable measures of the change in
symmetry of Newcomb’s data are the change in the number of exact matches and
the change in the average weighted asymmetry. The average weighted asymmetry
is the number of matches at a certain level (e.g. exact or off by one) times the level
of the match (e.g. 0 or 1) divided by the number of possible unique pairs. Table 1
shows the distribution of these variables over time. As can be seen, in neither case
is the level of asymmetry decreasing or increasing over time. Nonetheless, there is
significant change over time in these data.
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Table 1 .

Change in asymmeiry of Newcomb’s data over time

Time Exact matches Average weighted asymmetry
1 10 20
2 17 18
3 19 19
4 8 20
5 17 21
6 11 22
7 15 20
8 17 20

10 18 2.0

11 16 21

12 17 20

13 14 2.1

14 15 2.1

15 12 21

The importance of Table 1 is that the common assumption that symmetry
increases over time in this kind of social network appears unsubstantiated by the
data. Thus the conventional view of these data is unlikely t0 lead to successful
modelling, and the simpler approach that we describe may be superior.

8. Concluding remarks

In conclusion, W€ would like to outline the key aspects of the methods we
propose for the examination of change over time in social networks.

(1) Selection of a metric. Throughout this paper, W€ have used the Hamming
metric as a measure of distance between two successive networks. This metric
is analytically tractable and often intuitively appealing. It is appropriate to use

this metric if no specific network structural aspect is of interest. If this is not
the case (c.& if the research interest is to study clique formation around nodes
A and B), then some other metric might better reflect the focus of the
research interest. The appropriate choice of an alternative metric, and the
consequent calculations, aré typically difficult problems.

(2) Specification of a model. We have focused on the specification of a probabilis-
tic model that allows one to work with the likelihood of the sample. In this
paper, for the Hamming metric, this leads to reliance upon binomial probabil-
ity models, as in Eq. (4. Alternatively, one could treat (dy, dz,...,d,l) as a
time series, and obtain a different analysis.

(3) Estimation of parameters and model testing. The model parameters that are
developed during model specification need to be estimated from the model. In
this context, we emphasize the importance of employing some kind of assess-
ment of the model’s goodness of fit.

e

s TR

LW R




e r—

80 A Sanil et al. / Social Networks 17 (1995) 65-81

Moreover, we emphasize the limitations of the models we disFuss. In this paper, a}l
of the models presented assume that the edge changes are independent, which is
often unreasonable in practice. Specifically, the edge changes do not .depend upon
characteristics of the nodes, such as degree, or upon reciprocity, which favors the
establishment of reciprocal relationships. However, we describe tests that can be
used to detect situations in which our models do not apply, and diagnose the kinds
of generalization that are needed.

These broad points enable flexible application of the method we describe to
specific problems. This paper illustrates the strategy and provides details on
families of models that seem especially useful for examining change over time in
networks on a fixed number of nodes. While these models do not give a complete

answer to our initial question “How do social networks evolve over time?” they do
take us a step in this direction.
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