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Radar-Soar, an artificial organization composed of intelligent agents, is crafted out of multiple intercon-
nected modules—one of each agent, one of the organizational design (structure plus process), and one
of the task. Each agent is based on a sophisticated model of cognition, i.e., Soar. Using Radar-Soar we
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KEY WORDS: Computational organization theory, organizational design, organizational learning, orga-
nizational performance, simulation, artificial intelligence, soar.

Organizations are all crafted, supported and operated by humans. Organizations do
not make decisions, people do. Nevertheless, much of our understanding or orga-
nizational action, e.g., structuralist, institutionalist, and population ecology, is based
on an analysis of organizations that treats as irrelevant, or gives only a brief salute
to, the cognitive nature of human action. The information processing perspective
(March and Simon, 1958; Cyert and March, 1963; Galbraith, 1973) recognizes the
criticality of human cognition to organizational action, but the promise of this ap-
proach has not fully materialized (Carley and Prietula, 1994). By intelligent we mean
that agents are goal oriented, rational and can accomplish multiple types of tasks
by acting on the basis of available information, and thus bringing all the informa-
tion they have to bear on a problem in order to find its solution. In this paper,
we seek to demonstrate how computational organization theory can move us be-
yond statements of the importance of cognition to a detailed understanding of the
organization as a collection of generally intelligent agents.

*This work was supported in part by Grant No. IRI-9111804 by the National Science Foundation.
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Radar-Soar, a simulation system that can be used to examine organizational be-
havior, is crafted out of multiple interconnected modules—one of each agent, one
of the organizational design (structure plus process), and one of the task. Each agent
is based on a Soar model of cognition, and each agent works on a specific task and
acts within an organization with a specific design.

Soar js a model of general intelligence, a unified model of cognition (Newell,
1990). Soar agents are complex adaptive agents that act as humans do, but the types
of tasks on which Soar has been shown to act like a human are generally individual
in nature. As social scientists, however, we are aware that a wide range of human
behavior is social in character. If Soar is a model of human intelligence then it
should be able to perforn, as humans do, in social or organizational tasks (Carley
and Newell, 1990).

Carley, Kjaer-Hansen, Newell and Prietula (1992) demonstrated that Soar can,
within limits, act as humans do in a very simple multi-person task. This was a first
step in establishing the limits and capabilities of Soar as social agent. In this paper,
we take a second step by examining Soar agents with not only knowledge of the
multi-agent situation but also knowledge of social roles.

SOAR

Soar (Newell, 1990) is a general purpose language for problem solving. Soar in-
corporates specific knowledge about the world as a set of rules that guide it in
solving problems. Soar learns from experience by remembering how it solves prob-
lems. Such learning can occur through a procedure referred to as chunking (Laird,
Rosenbluoom and Newell, 1986a, 1986b; Rosenbloom, Laird and Newell, 1988) or
through model creation (Laird, Newell and Rosenbloom, 1987). Soar is considered
to be a unified theory of cognition as it is a single, integrated set of information
processing mechanisms that try to explain every aspect of human thought, and not
simply one or two experimental results (Newell, 1990).

Soar characterizes all symbolic goal-oriented behavior as search in problem
spaces. Such search procedures arguably serve as an architecture for generally in-
telligent behavior (Laird et al., 1987). Soar’s structure is built in levels. The bottom
level is memory and as we move up levels we get to decisions and goals. Default
knowledge is incorporated into the system as a series of predefined rules (Rosen-
bloom et al., 1989).

For Soar, search occurs relative to a context. The context is defined by the goal,
the problem space, the state, and the available operators. Operators define the set
of possible actions given that problem space. The state defines which of the agent’s
knowledge is currently salient given the current problem space. The goal defines
what problem spaces are applicable.

Memory: A general intelligence requires a memory with a large capacity for the
storage of knowledge, including declarative knowledge, procedural knowledge, and
episodic knowledge. Soar’s long-term knowledge is stored in a single production
memory, i.e., all knowledge is stored as a series of rules. Each production or rule
is a condition-action rule that takes its action when its conditions are met. As these
productions are executed memory is accessed. As memory is accessed information
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is retrieved from long-term knowledge and placed in the global working memory.
The working memory is a temporary memory corresponding roughly to the set of
items that are salient at that point in time. When an agent moves from one mental
state to another, the current state is kept track of in working memory. One special
type of working memory structure is the preference. A preferences encodes con-
trol knowledge about the acceptability and the desirability of actions. Acceptability
preferences determine which actions should be considered as candidate actions. De-
sirability preferences define a partial ordering on these candidate actions.

Decision: A general intelligence must have the ability to generate or select a
course of action that is responsive to the current situation. In the Soar architecture
the next level is the decision level. This level is based on the memory level plus a
decision procedure. The decision cycle contains two phases: an elaboration phase
and a decision phase. During the elaboration phase, the long-term memory is ac-
cessed. All productions that can fire in parallel, and this process continues until no
more productions can fire. These productions can set up preferences for either goal
context objects (goals, problem-spaces, states and operators) or augment working
memory. During the decision phase the preferences for context objects are evalu-
ated. This phase can result in changes in the goal context. The decision cycle lets
Soar make its decisions after all the rules have been heard from. Consequently,
Soar can use the most powerful knowledge it has available. When there is little
knowledge in long-term memory, Soar will behave in the way that resemble gen-
eral methods such as Hill Climbing (i.e., do whatever seems best at the time) or
Means-Ends analysis (i.e., if I am over here and my goal is over there, then I
should try to reduce the difference). If Soar has a lot of knowledge in long-term
memory and has clear preferences about what to do next then Soar will behave as
an expert.

Goals: A general intelligence must also be able to direct its behavior toward
some end, i.e, toward an ultimate goal. In the Soar architecture the goal level is
based on the decision level. Goals are set whenever a decision cannot be made; i.e.,
when the decision procedure reaches an impasse. There are four types of impasses:
(1) ties; (2) conflicts; (3) no-changes; and (4) constraint failures. When an impasse
occurs, Soar will create a subgoal to resolve the impasse, and a new performance
context for resolving this subgoal (i.e., a goal = subgoal, problem-space, state, and
operators). This automatic subgoaling procedures builds a hierarchical goal struc-
ture. A subgoal is terminated when either its impasse is resolved or some higher
impasse in the stack is resolved. This unique feature of the architecture is called
“universal subgoaling.” Universal subgoaling provides a general mechanism for do-
ing conflict resolution. Consequently, Soar can overcome the rigidity of the early
expert systems where conflict resolution was done by a fixed mechanism.

Learning: Within Soar learning can occur by the acquisition of chunks. A chunk
is a production that summarizes the problem solving that occurs in subgoals. In a
chunk, the new rule’s conditions are the relevant contents of working memory at
the time the impasse arose and its action is the new solution. Chunks acquired at
one point in time can be used later to speed up the system’s performance. Chunking
produces the type of power-law practice curves observed in humans. The power-law
practice curves demonstrate that a person’s performance on a given task invariably
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speeds up as some power of the number of practice trials (the power varies from
task to task).

Default Knowledge: Soar has a set of productions that provide default responses
to each of the possible impasses that can arise. This default knowledge prevents the
system from dropping into a bottomless pit in which it generates an unbounded
number of content-free performance contexts (Rosenbloom et al., 1989).

Knowledge Level Computational Models: Within Soar, each agent is first de-
fined in terms of a knowledge level computational model (KLCM). A knowledge-
level computational model is a class of systems which define an agent behaving in
an environment (E). The agent is defined as a set of actions (A), a set of percep-
tual devices (P), a goal (G), and a body of knowledge (K). The environment is in
one of a set of conditions at each instant of time, and the condition changes over
time. The agent interacts with the environment at various times by (1) taking ac-
tions and so possibly affecting what environmental condition occurs next, and by
(2) using its perceptual devices to acquire knowledge about environment. The en-
vironmental condition, the state of the agent, and the interaction between environ-
ment and agent determine the joint behavior over time of environment and agent.
The agent’s goal can affect both the agent’s and the environment’s behavior, i.c., the
agent prefers some joint behavior to others. The agent’s behavior is determined by
the principle of rationality; i.e., if the agent knows that one of its actions will lead to
a preferred situation according to its goal, then it will intend the preferred action,
and that action will then occur if it is possible (Newell, Yost, Laird, Rosenbloom
and Altmann, 1991).

The Knowledge Level Computational Model is a model of goal-directed behavior,
because all actions intend to attain the goal of the agent. It is also a model of
rational behavior, because everything the agent knows serves the agent’s interest.
So this model describes a capability for generally intelligent behavior.

Problem Space Computational Models: An agent described at the knowledge
level must be realized by a system that has representations of the agents’ body of
knowledge, and processes that represent new knowledge from perception and de-
termine the actions according to the principle of rationality. In other words, knowl-
edge level system are realized by symbol-level system. In Soar, this means problem
spaces. The knowledge level computational model is thus realized by the problems
pace computational model (PSCM).

A problem space consists of a set of states and a set of operators. Each operator
is applicable to a subset of these states. Applying an operator can change one state
to another.

A problem-space system generates behavior. Behavior consists of an indefinite
sequence of steps. Each step is a state-operator pair. Each step involves two phases:
selecting, and applying. First, the current operator is selected from the operator set.
Then the selected operator is applied to current state. If the operator is applicable
the current state changes to a new state, otherwise, the current state remains.

A task is formulated using problem spaces by following these steps. The first
step is determine-space. In this step, a problem space is adopted. Second goal-setting
occurs. In this step, the desired state is adopted. Next, initializing occurs and an
initial state is selected. The formulated task is thus accomplished by applying a
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series of state-operator pairs. In applying these pairs, the Independence principle
applies. According to this principle all operators are independent and any operator
that can be applied is applied. Finally, termination occurs when the current state
reaches the desired state.

Within Soar, if there is a lack of knowledge (the necessary knowledge is not
immediately available) in a problem space then another problem space is created
to obtain that knowledge. In this new problem space the same procedure for task
formulations is followed.

RADAR-SOAR

Radar-Soar is a composite simulation system built out of a series of interconnected
modules for task, organizational design, and agent. These modules are designed and
interconnected in a three stage process. During the first stage the researcher defines
the task. During the second stage the researcher specifies the knowledge and form
of the radar-soar agents, that receive as input the task information defined by the
researcher and generate opinions. During the third stage, the researcher defines the
organizational design by choosing the organizational decision procedure (manager
or voting program).

The task defines what knowledge the agents must have and the “parameters”
within which the organization must operate. The organizational design defines how
many agents are needed, what roles each agent plays, and how the agents commu-
nicate.

There is a separate simulation module for each agent in the organization. How
many of these modules are used is up to the researcher. Each agent module acts by
“observing” something (either information about the task or other agents actions).
These observations are done by reading a line from an input file. Each agent mod-
ule takes some action, e.g., makes a decision or recommendation. This action is
“communicated” by writing a line in an output file. Other agents can observe the
agent’s action, or “hear” what the other agent is communicating by reading this out-
put file. Each problem each agent must solve involves reading from one or more
input files and writing to one or more output files.

The Radar Task

Choice tasks such as the radar task have been widely studied (Carley and Lin,
1992; Hollenbeck, Sego, Iigen and Major, 1991). A complete description of the basic
choice task we use, the radar task, appears in Lin and Carley (this issue). However,
Lin and Carley use a dynamic version of this task where the planes actually move.
Here we use a static version where the planes do not move, and the final position
of the aircraft is the same as its initial position.

Organizational Design

Organizational design is an extremely broad notion that includes a variety of factors
(Thompson, 1967; Scott, 1987). In this paper, we take the stance that organizational
design includes the set of formalized relations among people and resources in the
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organization, the formal processes by which these relations change, and the formal
processes by which people or resources are acquired, let-go, or adapted. We will be
particularly concerned here with the organizational structure, the resource access
structure, and the training process. We assume that there are two types of agents,
analysts and managers. An analyst is an agent who observes features of the aircraft
by using radar equipment and makes a recommendation about the state of that
aircraft. A manager is an agent who collects recommendations from the analysts
and combines these to form a decision about the state of the aircraft. The orga-
nizational structure defines who reports to and “commands” or “manages” whom.
The resource access structure defines who has access to what resources (including
technology and information).

In order to perform a Radar-Soar experiment the user selects the organizational
design by making the set of six decisions: Number of analysts? Number of managers?
Who does each analyst report to? Which of the features does each analyst observe?
How are the agents trained? How extensive is the training. These decisions define
the organizational structure, the resource access structure, and the communication
structure. In order to simplify exposition, we will focus on a limited set of designs,
as described below.

Organizational Structure

We examine organizational structures in which there are nine analysts and the team
either has a manager or it reaches its decision through voting. When the team has a
manager the organizational decision is made by the manager. In this case, each an-
alyst passes its decision to the manager who collates this information and comes to
a final decision. In contrast, when the team votes the organizational decision is the
majority decision made by the nine analysts. We focus on these team structures as
earlier work by social network theorists and organizational theorists suggests that the
presence or absence of a manager may be critical to the organization’s performance.

Resource Access Structure

We examine two resource access structures: distributed and blocked. In both the
blocked and distributed structure each analyst sees information on only three of
the nine features of the aircraft. In the blocked structure three analysts have identi-
cal mental models (at least based on incoming information); i.e., three analysts see
exactly the same three pieces of information. In the distributed structure no two an-
alysts see exactly the same information, although each piece of information is seen
by all three analysts. Which three features the analyst has information on depends
on the analyst’s position in the resource access structure.

Training Process

All agents are trained minimally to make decisions on the basis of their experience.
Each agent sees a sequence of 10 aircraft, makes a recommendation, and then is
told the true state of each aircraft.
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Organizational Performance

Overall performance is measured as the percentage of “correct” decisions made
by the organization. An organization’s decision is correct if its classification of the
aircraft exactly matches the true nature of the aircraft (e.g., deciding that the aircraft
is friendly when it is actually friendly). A second measure is severity of error. An
organization can make an error by being either “off by one” (e.g., deciding that
the aircraft is friendly when it is actually neutral) or “off by two” (deciding that an
aircraft is friendly when it is actually hostile or vice versa). The severity of error is
defined as percentage of total errors that are severe.

We also examine cumulative performance which is the percentage of total deci-
sions that have been made correctly at this point in time. Similarly, we examine
cumulative severity of error.

Performance measures are calculated outside the simulation using post-proces-
sors. For the team with voting a post-processor extracts from each of the nine ana-
lyst’s output files the analyst’s decision for each of the observed problems. The ma-
jority is calculated and this becomes the organization’s decision. For the team with
manager a post-processor extracts the manager’s decision for each problem from
the manager’s output file. The manager’s decision is the organization’s decision.

Agents

We employ agents in two roles—managers and analysts. We will describe the Radar-
Soar agents in three steps. First, we will define the knowledge and actions of the
analyst and manager. Second, we will describe the knowledge level computational
model (KLCM) for the analyst and manager. Finally, we will describe the commu-
nication procedure between the Soar agents.

STEP 1 Knowledge and Actions Both analyst’s and manager’s have various knowl-
edge about how to communicate and how to read reports. What is critical to their
actions, however, is their initial “task” knowledge.

The initial knowledge of each analyst about aircrafts can be stated as three rules.

1. If all the observed features are low, then decide that the aircraft is friendly.
2. If all the observed features are medium, then decide that the aircraft is neutral.
3. If all the observed features are high, then decide that the aircraft is hostile.

The manager’s initial knowledge about the decisions their subordinates make also
can be stated as three rules.

1. If all subordinate analysts report that the aircraft is friendly, then decide that the
aircraft is friendly.

2. If all subordinate analysts report that the aircraft is neutral, then decide that the
aircraft is neutral.

3. If all subordinate analysts report that the aircraft is hostile, then decide that the
aircraft is hostile.

<
Both the analyst’s and manager’s task knowledge accumulates over time relative
to feedback from the external environment/regarding the true state of the aircraft.
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This feedback is identical for all agents regardless of their position in the organiza-
tional structure. When the current situation is beyond the agent’s initial knowledge
the agent will make a decision by reasoning, and not simply by guessing.!

The actions taken by all analysts are: observe air-space; analyze the information
observed from the air-space; make a decision about the aircraft to tell whether it
is hostile, neutral, or friendly based on current knowledge; report each individual
decision; get feedback on the true state of the aircraft. If the analyst is in a team
with a manager then the analyst has an additional action: receive command from
manager. Further, when the analyst is in a team with manager then the report action
is modified so that the report goes to the manager.

The actions taken by the manager are: propagate commands like “observe air-
space” and “tell me” (your decision); receive individual decision from each subordi-
nate; make organizational decision; get feedback on the true state of the aircraft.

STEP 2 Knowledge Level Computational Models The second step involves specify-
ing the knowledge level computational model (KLCM) for both the analyst and the
manager. This KL.CM is realized by developing the problem space computational
model (PSCM) for each analyst and for the manager. We begin by describing the
KLCM for the analyst and then the manager. We then provide general information
on PSCM’s. We then describe the analyst’s and manager’s PSCM.

The KL.CM implemented for each analyst is shown in Table 1. The KLCM im-
plemented for the manager is shown in Table 2. Both types of agents operate in the
same radar environment and have the same overall goal. For each analyst, their ini-
tial task knowledge consists of three rules denoting that if the inputs are consistent
then choose the corresponding answer. The manager has the same type of initial
task knowledge but differs in that it looks not at features of the aircraft but at deci-
sions made by analysts. The manager can command the analysts, while the analysts
can only report to the manager.

STEP 3 Problem Spaces Computational Models As previously noted, an agent de-
scribed at the knowledge level must be realized at the symbol level. This is done by
describing the problem spaces of the agents.

Each analyst is implemented using 11 problem spaces. These 11 problem spaes
and the hierarchical connections among them are shown in Figure 1. The top prob-
lem space contains the initial state and the desired state (the goal state) for each
analyst. The communication problem space consists of three operators. The first is
the gei-command operator which receives one command at a time from the man-
ager. This operator is not used when the agents are in a team with voting. The
second is the report operator which reports the decision the agent made about the
aircraft. The third operator proposed is get-feedback which is the initiating action
by the agent to retrieve the feedback information and update its knowledge. In ad-
dition, for the manager there are two kinds of commands/operators: “observe” and

For example, if the first aircraft an agent sces has the features not all high, all low, or all medium,
then the agent has no knowledge of what status (b aircraft is. What the agent will do is to compare
the features of the current aircraft to the models (initial knowledge) in its repertoire, then the agent will
choose the mode! which has the closest match to the current aircraft.
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RADAR-SOAR
TABLE 1
Knowledge Level Computational Model for Analyst
Environment Stylized radar station
Goal Make organizational decision

Knowledge Initial Knowledge

if feature — 1 = - - - feature — 3 = friendly
then organizational decision = friendly

if feature — 1 = - - - feature — 3 = neutral
then organizational decision = neutral
if feature — 1 = - - - feature — 3 = hostile

then organizational decision = hostile

Problem Space Interpret command

Action

first—"“Observe” airspace
second—*“Report” decision
wait for all radar information
make decision
report decision
get feedback
add knowledge

Interpret command
Make decision
Report decision
Get feedback

TABLE 2
Knowledge Level Computational Model for Manager

Environment
Goal

Knowledge

Problem Space

Action

Stylized radar station
Make organizational decision

Initial Knowledge

ifagent—1=. .agent—9= friendly then
organizational decision = friendly

if agent — 1 = ...agent — 9 = neutral then
organizationa! decision = neutral

if agent — 1 = -.-agent — 9 = hostile then
organizational decision = hostile

Propagate command
first—“Observe” airspace
second—*Tell me” decision

wait for all analyst’s decisions

get all analyst’s decisions

make organizational decision based on analyst’s decisions

get feedback
add knowledge
send command “Task finished” to analysts

Propagate commands
Receive responses
Make decision

Get feedback
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<

Air space
obgervation

FIGURE 1. Problem space computational model for analyst.

“te]l me.” These commands cause an analyst to move to two different problem
spaces, the observe air-space problem space and the make decision problem space.
The observe air-space problem space includes the parse information operator, which
is used by the agent to analyze the signal captured from the air-space about the fly-
ing object, and the interpret operator, which converts each signal to the attribute it
represents. The make decision problem space consists, first of a model select oper-
_ator which compares the information of the aircraft to all the different models in
an agent’s mind and then makes a decision based on the maximum match. Second,
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there is a write decision operator which allows the agent to track its decision so that
it will be able to report this decision to the manager later.

We have been describing Radar-Soar in the fashion that Soar models are typically
described. It is also useful to look at Radar-Soar from a standard flow chart per-
spective. In Figure 2 we have overlaid the flowchart with boxes outlined by dashed
lines, where each box indicates which processes are within which problem space.

The analyst (see Figure 2) begins in the communication problem space and from
there subgoals to any of the following problem spaces: get command, report, or
feedback. However, the agent is in an organization that constrains its access to in-
formation and therefore actions. These constraints enable the agent to first choose
to get a command. Then the agent can subgoal to either the airspace observation
or the make decision space. Which space the analyst moves into depends on the
available information. If the analyst has received an observe command then it sub-
goals to the air space observation problem space. Alternatively, if it has received
the report command it subgoals to the decision making problem space. If the agent
is observing the air space then it can subgoal to either the information parsing or
signal interpretation problem space. However, the agent has prior knowledge em-
bodied as preferences that enables it to choose to first parse the information and
then to interpret the signal. Interpretation of the signal results in satisfying that sub-
goal and agent then “pops up” to the get command problem space.

At this point the agent must again choose whether to move into the observe or the
decision space. However, it now has new knowledge that it has an observation, and
this knowledge is used to eliminate observation as an action possibility. When the
agent subgoals to the make individual decision problem space it can subgoal further
to either the model select or make decision subspace. Knowledge in the form of
preferences forces the agent to first select a model and then to make a decision.
After making a decision the agent pops back to the communication problem space.
Now that the agent knows its decision, reporting is possible. Thus the agent subgoals
to the report problem space. After the agent has filed its report it pops back up
to the communication space again. Now it has the information that it has filed a
report, and the only action remaining for which there is an active preference is
to get feedback. The analyst now subgoals to the feedback problem space. In the
feedback problem space the agent first determines if feedback is available, and if so
compares its answer with the correct answer. If the agent’s answer is not correct it
creates a new model, if it is correct it increases ht eprobability of the current model
(by adding a duplicate of the current model to the set of the available models the
probability of a model is set by the number of available models that are identical).
After either finding that there is no feedback, or after having processed the feedback
the agent then pops back to the communication problem space. On returning from
the feedback problem space the agent has new knowledge. This new knowledge
enables causes the agent to prefer to get a command over reporting or getting
feedback.

Because of the limits of human intellective capacities in comparison with the
complexities of the problems that individuals and organizations face, the problem
solving processes for humans are boundedly rational (March and Simon, 1958). This
rational behavior calls for simplified models that capture the main features of a
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Top

FIGURE 3. Problem space computational model for manager.

problem while eliminating its complexities. Radar-soar agents simulate this behavior
by randomly choosing among the best matched models to the current situation. To
find the best matched model the radar-soar agent first compares the models based
on feedback with the characteristics of the current aircraft. Then the agent counts
the number of features that match between model and the current aircraft. The
radar-soar agent makes a final decision by choosing the model with the maximum
number of matches. This model predicts the status of the aircraft (i.e., friendly,
neutral, or hostile). This is the basic decision making process in radar-soar. This
process is used whether the agent is an analyst Or 8 manager.

The manager agent is implemented using six problem spaces which are hierarchi-
cally connected as shown in Figure 3. The top problem space contains the initial
state and the desired state (goal state) for the manager. The next problem space is
the communication problem space which sequentially proposes four operators: the
give command operator; the receive response operator; the make organizational de-
cision operator; and get feedback operator. These four operators in turn propose
four problem spaces.

The manager takes a series of actions as though it were operating concurrently
with the analysts (Figure 4). The models that have the best match are preferred.
The manager then randomly chooses among the best matching models. The chosen
model defines the decision. The manager then gets feedback and if the decision
made was incorrect the manager creates a new mental model with this case and the
appropriate feedback.

“1m
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In Figure 4, we see that the manager begins in the communication problem space.
From the communication problem space the manager can subgoal to any of the fol-
lowing problem spaces: give command, receive response, make organizational de-
cision, or feedback. The organization constrains the agent’s access to information.
The information available to the agent causes it to choose to give a command.
Specifically, first the manager checks to see if there is an item in the airspace. If
so, the manager commands the analysts to either examine the aircraft or report
their decision if there are no more aircraft in the airspace (i.e., no more lines in
its input file). If the task is not finished the manager sends a pair of commands,
first “observe” then “report”. After having sent this pair of commands the manager
pops back to the communication space. Now the manager has information that a
command has been sent. The manager’s preferences now cause it to subgoal to the
receive response problem space. In this space the manager waits for all nine analysts
responses. The manager reads and stores the analysts’ responses. After all analysts
have responded the manager has as information the responses of the analysts. Af-
ter it has all responses the manager pops back up to the communication space.
Then the manager subgoals to the decision making problem space. The manager
first searches its mental models for the best match and then makes a decision. The
manager then pops back to the communication problem space and then subgoals to
the feedback space. In the feedback space the manager follows a process similar to
that of the analysts.

In the search mental models step the manager selects and evaluates all of its men-
tal models effectively in parallel (Figure 5). A model is a description of a situation
and a decision. Each model is represented as a production rule of the form if the
aircraft has characteristics a, b, and ¢ then decision should be that the aircraft is
x (friendly, hostile, or neutral). Once a model is selected the manager determines
how well the model matches the observed aircraft. The more of the nine features
that are the same, the better the match.

Once the match has been determined for each model, the manager then makes
a decision (Figure 6). First, the manager selects all models in parallel. Second, the
manager sets the preference for each model in parallel. Note, associated with each
model is a preference. This preference indicates the degree to which the model
is acceptable to the agent. These preferences are based on the extent to which the
model matches the characteristics of the aircraft currently in the airspace. The better
the match the higher the preference for that model.

The models are ordered by the strength of the preferences. If there is a model that
is most highly preferred then the decision suggested by the model becomes the man-
ager’s decision. Otherwise, the manager chooses a model from among those models
that are highly preferred. Which model is chosen is determined randomly. However,
since the manager stores a model for each problem that it observes this procedure
generates the result that the manager’s decision has a probability associated with it
proportional to the number of times the manager has observed an aircraft of this
type with this outcome. For example, imagine that there are 10 models in the man-
ager’s knowledge base. Let one of these models have a match of 3, three a match of
5, and six a match of 8. In this case, no model matches perfectly (no match of size
9). However there are six models that are highly and equally preferred. Imagine that

-
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Done!
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Next Siep!
FIGURE 6. Flow chart for decision making.

of these six models, three indicate that the aircraft is friendly, two indicate that it is
neutral, and one indicates that it is hostile. The manager eliminates the low prefer-
ence models. Now the manager randomly chooses from the remaining six models.
Half of the time the manager will state that the aircraft is friendly, one-third of the
time the manager will state that the aircraft is neutral, and one-sixth of the time
the manager will state that the aircraft is hostile. As the manager observes more
aircrafts these frequencies will change.

STEP 4 Communication Communication between agents is done simply by coordi-
nating the contents of the input and output files for the agents. As noted previously,
the organizational design and task define the content of these files.

The first 10 lines from an input file for an analyst is shown in Table 3. A full input
file has 60 lines. Each line indicates that the manager has commanded the tracker to
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TABLE 3
Analyst’s Input

Aircraft
id Order Feature Value Featurc Value Feature

fa
f4
f4
fa
f4
f4
f4
f4
f4
f4

3
§

3
234
459
2036
5131
5483
7884
9842
12614
2

DO A WN -
o Jo Jo Ju Jo Jo Jo Jo Jo Ja
NN e e e
W N s R s
J43J3J3JIJAJTIA]
H-arauounanxghou

—

examine the environment. Each line contains information on three features of the
aircraft present at that time in the environment. The analyst reads one line, parses
it, interprets it, and makes a decision. This process continues until all lines have
been read.

While running each agent creates a “trace.” The trace is the sequence of actions
taken by the agent. Each numbered line indicates a decision cycle. Following is
a trace of the first 108 decision cycles for the analyst who received the input file
shown in Table 3. The decision cycle is denoted by the number prior to the colon
at the beginning of a line. Unnumbered lines (such as “open File Done!” are the
result of an I/O operation on the part of the agent and track specific radar-soar
actions. In this trace, G is for goal, P for problem space, S for state, and O for
operator. A = indicates that the system is subgoaling. Indentation indicates the
depth of the subgoal. Outdentation occurs when the agent completes a subgoal and
pops back to a previous space. During decision cycle 27 he analyst prints out the
characteristics of the observed aircraft. From decision cycle 39 to decision cycle 95
the analyst is counting the degree of match for each model in its repertoire. Then it
sets its preference. Unnumbered lines after 96 show the content of the best matched
model.

Output of a tracker

Soar>
0: ==>G: Gl
1: P: P1 (top-ps)
2: S: 81 (top-state)

Sun Jul 11 17:14:33 EDT 1993
open File Done !
(Agent) Hostile Mcdel Done !

(Agent) Friend Model Done !
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(Agent) Neutral Model Done !

0: 01 (communication)

3

4 ==>G: G2
CH P: P2
6: S: 81
7: 0: 03
8 =-——>G:
9 P:
10 S:
command = observe

(operator no-change)
{communication~-ps)
(top-state)
(get-command)

G3 (operator no-change)
P3 (get-command-ps)

S1 (top-state)

11: O: 05 (observe-air-space)

12: ==>G: G4 (operator no-change)
13: P: P4 (observe-air-space-ps)
14: S: S1 (top-state)

testlinfo = 3

1S5:
16:
17:
18:

Parse command finished !

19:
20:
21:
22:
23: 0: 04
24: ==>G:
25: P:
26: S:

current: object ID
current: object ID

current: object ID

27: 0: 08
28: =u>G:
29: P:
30: S:

command = tell

0: 06 (parse-command)

==>G: G5 (operator no-change)
P: PS5 (parse-command-ps)
§: S1 (top-state)

0: 07 (interpret)
==>G: G6 (operator no-change)
P: P6 (interpret-ps)
S: S1 (top-state)
(report)
G7 (operator no-change)
P7 (report-ps)
S1 (top-state)
= 3 attribute = speed value = low

= 3 attribute = altitude value = low

= 3 attribute = identification value = low
(get ~command)

G8 (operator no-change)

P8 (get-command-ps)
S1 (top-state)

31: 0: 010 (make-decision)

32: ==>G: G9 (operator no-change)

33: P: P9 (make-decision-ps)

34: S: 81 (top-state)

35: O: O0ll (compare-to-model)

36: ==>G: Gl0 (operator no-change)
37: P: P10 (compare-to-model-ps)
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38:
39:
40:
41:
42:
90:
91:
92:
83:
94:
95:
96:

final status ==

type
type
type
type
type
type
type
type
type
97:
98:
99:
100:

friend
friend
friend
friend
friend
friend
friend
friend
friend

M. YE AND K. CARLEY

: 81 (top-state)

: 0l4 (accumulate)
: 018 (count-item)
: 013 (accumulate)
: 029 (count-item)

O0OO0OO0OwW

: 012 (accumulate)

: Ol49 (count-item)

: 014 (accumulate)

0150 (count-item)

: 012 (accumulate)

: 014 (accumulate)

: 0146 (set-preference)
friend match-number == 3 model ==
Attribute == speed Value == low
Attribute == range Value == low
Attribute == direction Value ==

O0000O0O0

Attribute == altitude Value == low

Attribute == angle Value == low

Attribute == corridor-status Value ==
Attribute == identification Value ==

Attribute == size Value == low

Attribute == radar-emission-type Value ==

O: 0153 (feedback)

==>G: Gll (operator no-change)
P: P11 (feedback-ps)
S: S1 (top-state)

feedback number === 30

101:
102:
103:
104:
10S:
106:
107:
108:

After the analyst has executed all commands (read and processed all lines from
the input file), the tracker stops. The Radar-Soar agent then prints out a message

0: 0155 (write-decision-slot)
==>G: Gl2 (operator no-change)
P: P12 (write-decision-slot-ps)
§: S1 (top-state)

0: 09 (report)

==>G: G13 (operator no-change)
P: P13 (report-ps)
S: S1 (top-state)

such as that shown below.

command = exercise-finished

Sun Jul 11 20:23:54 EDT 1993

All files have been closed !
Goal top-goal succeeded.
goal top-goal achieved

System halted.

Soar>
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The particular analyst, for whom we showed the input and the first part of its
trace, completed its job in 15355 decision cycles and 30446 elaboration cycles. Dur-
ing this time it fired 531456 productions, but used only 197 unique productions in
evaluating all commands in the input file. Of these 197 productions, 99 were default
and 98 were developed specifically for radar-soar. The large number of fired rela-
tive to unique productions is indicative of the highly repetitive nature of this task.
These performance characteristics are similar across all analysts.

Each agent also generates an output file of 60 lines that simply records which
aircraft it saw and what it’s decision was.

The manager then takes the output files of the nine analysts as input. The man-
ager generates, as output, a trace, similar to that for the analyst. In addition, the
manager generates an output file identical in form to the analysts listing the aircraft
id and the decision,

EXPERIMENTAL DESIGN—DATA DESCRIPTION

We examine organizations with four designs: team with voting, blocked resources;
team with voting, distributed resources; team with manager, blocked resources;
team with manager, distributed resources. First each agent is trained on 10 cases.
The agents do not stop learning after the training period. They continue to learn
from their experience. Then each agent in each organization sees information on a
sequence of 60 aircraft. These 60 cases are divided into two phases, each of which
contains 30 cases. During the first phase the agents receive feedback, and during
the second phase there is no feedback. Agents can only receive feedback after they
make their decision on the aircraft.

The overall design of this research is such that there are organizations, each of
which faces 60 different aircraft, the first 30 for which there is feedback and the
last 30 for which there is no feedback. These organizations vary in organizational
structure and resource access structure.

RESULTS

Prior research suggests that decentralized structures like a team with voting are flex-
ible structures that can respond rapidly (Aldrich, 1979) and provide more effective
communication for single-problem learning (Wilensky 1967; Simon, 1973; Galbraith,
1973). In contrast, more centralized structures, such as a team with manager, are
expected to take longer to make decisions but to be more resilient in the face of
difficulties. While less has been written in the organizational literature on shared
mental models we might expect that those organizations where the individuals have
a common view (blocked structure) will tend to outperform those where each in-
dividual has a distinct view (distributed). In Table 4, we see that as expected the
more decentralized structures, the team with voting, exhibits higher performance.
In addition, those organizations where more individuals shared their mental mod-
els (blocked) outperformed those with the same organizational structure but a more
distributed resource access structure.
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TABLE 4
Overall Radar-Soar Performance Measured as the Percentage of All Cases That the Organization Suc-
cessfully Classified

Oranizational
Structure Resource Access Structure
Blocked Distributed
Team with Voting 71.67% 68.33%
Team with Manager 61.67% 60.00%
N = 60 for all cells.
TABLE §

Overall Radar-Soar Severe Errors Measured as the Percentage of the Errors Made by the Organization
That Were Severe Across All Cases

Oranizational
Structure Resource Access Structure
Blocked Distributed
Team with Voting 7.14% 10.52%
Team with Manager 8.69% 8.33%

N =60 for all cells. N is the number of cases.

On the one hand, these results seem straightforward. On the other hand, they
fly in the face of some previous research. For examples, previous research suggests
that teams without managers must be explicitly coordinated to perform effectively
(Durfee, 1988; Durfee and Lesser, 1988). In Radar-Soar, final decisions made by
voting (the majority rule) involve an implicit coordination scheme with little cost.
These experiments show that the voting team outperforms the team with manager.
This may be due to the Radar-Soar agents acting as novices. Future work will need
to examine whether or not organizational performance increases with the expertise
of the manager. As another example, previous research also suggests that the equal
allocation of resources and effort, as in the case of the blocked structure, may not
be the optimal coordination strategy (Arrow and Radner, 1979). In contrast, this
research suggests that when the agents exhibit rigid adaptive learning and proba-
bilistic decision making behavior, such blocked structures are slightly better than
more distributed structures. Both of these examples suggest that part of the value
of the Radar-Soar system is the ability to look at organizations that differ in design.

The theories, and the results in Table 4, only speak to general performance; nei-
ther addresses degree of accuracy. In Table 5 we see that organizational accuracy
varies with the organizational design. However, the relationship between severe
errors and organizational design is complex. The team with voting and a blocked
structure makes the fewest errors (Table 4) and very few of these are severe (Table
5). In contrast, the team with manager and a distributed structure makes the most
errors (Table 4) but also makes relatively few severe errors (Table 5).

Next we examine the impact of feedback. In general, organizations perform better
given feedback if the agents can learn (Carley, 1991). To the extent that organiza-
tional behavior is largely symbolic (Feldman and March, 1981) then feedback may
not improve performance. Further, we might expect that whether or not there is

A bl
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TABLE 6
Impact of Feedback on Radar-Soar Performance Measured as the Percentage of Cases That the Organi-
zation Successfully Classified

Feedback
Organizational
Structure Resource Access Structure
Blocked Distributed Across Resources
Team with Voting 73.33% 63.33% 68.33%
Team with Manager 63.33% 53.33% 58.33%
Across Teams 68.33% 58.33% 63.33%
No-Feedback
Blocked Distributed Across Resources
Team with Voting 70.00% 133% 11.61%
Team with Manager 60.00% 66.77% 63.38%
Across Teams 65.00% M7.05% 67.50%
N =30 in for the central cells.
N = 60 in the Across Team rows and Across Resources columns.
N =120 in the Across Team and Across Resource cell.
N is the number of cases.

TABLE 7
Impact of Feedback on Radar-Soar Severe Errors Measured as the Percentage of the Errors Made By
the Organization That Were Severe

Feedback
Organizational
Structure Resource Access Structure

Blocked Distributed Across Resources
Team with Voting 0.00% 18.18% 10.53%
Team with Manager 0.00% 7.14% 4.00%
Across Teams 0.00% 12.00% 6.81%

No-Feedback

Blocked Distributed Across Resources
Team with Voting 11.11% 0.00% 5.88%
Team with Manager 16.67% 10.00% 13.64%
Across Teams 14.29% 5.56% 10.26%

N =30 in for the central cells.

N =60 in the Across Team rows and Across Resources columns.
N = 120 in the Across Team and Across Resource cell.

N is the number of cases.

feedback the relations between organizational design and performance will remain
as described above,

Our analysis, however, shows a slightly different pattern. In Table 6 we see that
there are organizational designs where performance is better when there is no feed-
back than when there is feedback. We cannot take these results, however, as sup-
porting the Feldman and March claim of symbolic action. Rather, it is important to
keep in mind that the Radar-Soar agents continue to learn from experience, whether
or not there is feedback. This learning may be superstitious, but it can, nonetheless
lead to improved performance. However, if the agents are engaged in superstitious
learning then, in an environment without feedback, we would expect to see a de-
crease in accuracy and an increase in severe errors as the agents face more tasks.
Turning to Table 7 we see that this is indeed the case.
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When feedback is available we get the expected relation between organizational
design and performance. In contrast, when there is no feedback we observe a dif-
ferent relation between design and performance. Under both the feedback and no
feedback condition, distributed structures (team with voting) outperform central-
ized structures (team with manager). Shared mental models (which occurin blocked
structures) are an advantage when there is feedback, but a disadvantage when there
is no feedback. In Table 6 we see that organizations with distributed resource access
structure, where each individual has a slightly different view of the organization, not
only do beter than blocked structures but do better than they did when they had
feedback. In Table 7 we see that while distributed resource access structures are
more prone to severe errors when there is feedback, they are prone to fewer se-
vere errors when there is no feedback. Further, the centralized team with manager
structure makes fewer severe errors than the decentralized team with voting when
there is feedback. However, the opposite is the case when there is no feedback. The
presence or absence of feedback can affect the relative performance of the different
organizational designs.

Now let us consider the performance of Radar-Soar over time. Figure 7 shows
the performance of Radar-Soar, under different organizational designs using the
measure of cumulative performance. Initially agent performance is highly variable.
As agents learn through feedback, their performance begins to stabilize. Regardiess
of organizational design performance is around 60%. After feedback is discontinued
(time 30) performance stabilizes. We also see that organizations with blocked struc-
tures tend to learn the fastest. And that, teams tend to do better in the absence of
feedback.

DISCUSSION

The procedure we have outlined for examining organizational behavior using Soar
agents could be used to examine organizational designs and tasks other than those
that we have described. In order to do so, the researcher would simply need to es-
tablish different organizational structures, resource access structures, and/or commu-
nication structures. Alternative tasks could be examined by using different defining
rules for characterizing the true state of the aircraft.

Running such simulations requires substantial computer resources. In our experi-
ments, we have only 60 cases for each type of organizational designs as compared to
the total possible cases of 3° = 19683. This limitation is due to the computer facili-
ties and time constraints for running the radar-soar experiment. Each analyst needs
approximately three hours (10825.297 seconds) of CPU time to finish an experiment
consisting of 60 aircraft, 30 with and 30 without feedback. It takes more than three
hours (11738.645 seconds) for the manager to finish the same experiment. In con-
trast, humans can finish this experiment in about 30 minutes regardless of whether
they are analysts or managers.

Soar agents (analysts) need almost four times longer than humans to reach the
same decision for several reasons. First, humans (unlike the radar-soar agents ex-
amined) cannot actually remember all the problems that they have seen (all aircraft
and its associated feature set and true state). Thus humans often make decisions us-
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FIGURE 7. Radar-Soar performance over time.

ing processes such as generalization and partial recall. Such processes speed by the
decision making process. While these processes could be modeled in Soar we have
not done so. Radar-soar agents on the other hand, remember all problems.? Further,
when the radar-soar agent wants to compare the current situation with the model in
their cognition, that radar-soar agent has to propose operators for comparison, and
for counting the matched features. How many models the Soar agent has and how
many features in each model determines how many compare operators and how
many match operators are proposed. Since each operator represents a single action,
the radar-soar system has to apply procedence or indifference preferences among
these operators. Establishing a preference ordering also takes time. For example,

2The learning model wsed in Radar-Soar is based on assumnptions which reflect the observation that
organizational behavior is historically based (Carley, 1992). Organizations rely on experience, incremen-
tally adapting their response to similar problems as they receive feedback on their previous decision
(Lindblom, 1959; Steinbruner, 1974; Levitt and March, 1988). Thus, each Radar-Soar agent is treated as
perfect historian.
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for a radar-soar manager, if there are 60 models and each model has nine features,
the total number of comparison and match operators would be 60 x 9 = 540. To
establish preferences each two of these models must be compared, thus resulting
in 145530 comparisons. Thus, as the number of models grows the time to make a
decision slow down. This behavior of the radar-soar agents is at odds with what we
know of human behavior, in that it does not follow the power-practice law.

In theory, we might have observed the power-practice law had we turned on
chunking. In our experiments, we set the chunking switch off, because first, turn-
ing the learning switch on in Soar needs more restrictive coding.® Second, learning
through chunking only comes into effect when the same situation appears again,
which is not true for the particular 60 cases in our experiment. Whether alter-
native representations would allow partial learning through chunking is a question
for future research. In particular, future research should consider alternative rep-
resen}ations of the radar-tracking problem in Soar that would avoid these prob-
lems.

We could, and have, coded radar agents without using Soar. These include
the CORP (Carley and Lin, 1995) and the DYCORP agents (Lin and Carley,
this issue). The CORP agents deal with a static version of the radar-task as we
have done, and the DYCORP agents deal with a dynamic version of the same task.
In creating the CORP and DYCORP agents, it was necessary to create models
of boundedly rational agents. Within CORP, for example, there are multiple agent
models: the experiential agent, the probabilistic experiential agent, and the proce-
dural agent. Of these agent models, the least sophisticated is the experiential agent.
The experiential agent is information limited and effectively over confident in its
decisions, but acts in a deterministic fashion given its information as though it
has perfect recall. The probabilistic experiential agent is more sophisticated as it
acts in a stochastic fashion given its information as though it has imperfect recall
much in the way that Soar does. Increasing the sophistication of the agent tends
to make it more Soar like. The CORP/DYCORP agents, unlike the Soar agents,
can only do choice tasks. Whereas, Soar’s architecture can be used with a wide
range of tasks. Both CORP/DYCORP agents, unlike the Soar agents, can only do
choice tasks. Whereas, Soar’s architecture can be used with a wide range of tasks.
Both CORP/DYCORP agents and Soar agents are complex adaptive agents. Unlike
a Soar hierarchy, a CORP hierarchy is similar in form to a parallel distributed
processing system. CORP agents operate in a numerical environment; whereas,
Soar agents operate in a symbolic environment. CORP/DYCORP agents are based
on standard learning theory, and learn exclusively through feedback. In contrast,
Soar agents learn through experience and the chunking procedure. Soar embodies

3When we turned the learning switch on, we found that Soar tried to learn from degree to which the
previous model matched, rather than from the features of the model (or current situation) that matched.
This behavior is not desirable. In order to let Radar-Soar learn from model features, the code has to be
rewritten significantly. An effort in this direction is the code written by Papageorgiou (1992).
4papageorgiou (1992) shows that if Soar agent makes decisions based on guessing when it faces a case
which the agent has never seen, the performance of 52.5%, see Carley (1993). This means Soar’s decision
making simply by guessing cannot fully capture the Humans® behavior. It also suggests that the main
mechanism for learning in Soar, learning through chunking, is insufficient to capture socia) behavior and
organizational learning that occurs in the face of novel situations.
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TABLE 8
Required Capabilitics of Social Agent
Capability Presence in Radar-Soar
Perception and Action
Perccives the environment somewhat
Physically manipulates objects no
Moves self to different locations no
Memory
Location no
People yes—managers, no—analyst’s
Task yes
Instruction
Can be incomplete yes
Task Analysis
Decomposes task yes
Coordinates subtasks for self to do yes
Communication Skills
Asks questions/Provides answers yes, but limited
Gives commands/Receives commands yes—mapager, but limited
Talks to a single individual/Talks to a group to individuals
Social Analysis
Models of other agents yes
Model of organization ' no

a well tested model of human cognition and is consistent with much of what is
known about human cognition; whereas, CORP/DYCORP embody only simple in-
cremental learning theory and are consistent with fewer finding on human cog-
nition. Unlike Soar simulations, CORP/DYCORP simulations run so quickly that
Monte Carlo analysis is feasible. Future work should consider what relative knowl-
edge of social behavior is gained by moving from organizations of simple adaptive
agents to organizations of Soar agents. '

CONCLUSION

Carley et al. (1991) define the base set of characteristics or abilities that an artificial
agent would have to possess and express to be social (see Table 8). It should be
noted that humans are presumed to have all these capabilities. By examining Radar-
Soar on this scale we can see how much more needs to be added to the basic
Radar-Soar agent to get agents that exhibit social characteristics.

Radar-Soar, e.g., has limited abilities to do task and social analysis. The task the
Radar-Soar agents are engaged in is sufficiently complex that greater task analysis
is warranted and some interaction among agents is expected. This research suggests
that to perform a task with a certain complexity, it is necessary for the agent to
have certain social capabilities.

Systems such as Radar-Soar allow us to examine the complex interrelationships
among social behavior and task behavior. Even this simple model enables the re-
searcher to locate gaps in our understanding of how organizations work (e.g., by
seeing the strong relationship between feedback and organizational design). By lo-
cating such gaps we can advance our understanding of organizational behavior.
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