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Abstract

As units enter combat it is often necessary to

change C2 structure in response to external
changes such as changing rules of
engagement. We demonstrate, using
computational analysis, that in a dynamic
environment simply changing is insufficient
to improve performance; rather, the unit
needs to develop the appropriate change
strategies. Two meta-strategies can be used
for adaptation - tuning and shaking. These
strategies can lead to maladaptation if the
timing of the shakeups is out of sync with the
timing of environmental stressors.

1. Introduction

As units enter combat it is often necessary

to change the C2 structure in response to
various stressors both external (such as
changes in the rules of engagement) and
internal (such as when a new commander
takes charge). Organizational theorists have
often suggested that high performance units
are those that learn how to learn. This meta
learning is often interpreted as acquiring
skills, personnel and technology that increase
the likelihood that the unit will be able to take
advantage of new opportunities when they
arise. In contrast, we argue that meta-
learning involves not just acquiring “the right
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stuff” but also developing the right change
strategies. In order to achieve high
performance, units need to learn strategies for
when and how to change and when to take
risks.

C31 systems are clearly complex systems
that change frequently thus creating demands
for flexibility on the part of supporting
software [Leaonardis and Semprini 1986]
and supporting flexibility in the
organizational architecture. A variety of
factors influence the performance of C2
architectures - technology, environmental
stressors, rules of engagement and so on.
Our concern is with the architecture itself and
we ask how can it be designed so that as they
change they maintain high performance.
Technology alone is not the answer. Even
with modern communication technology
(such as radios), communication and
interference problems (such as the co-cite
problem) can be severe [Bahu, 1994] thus
necessitating a reliance on SOPs and norms

and rules embedded in the C2 architecture.

Herein we are concerned with the impact
on unit performance of structural and
cognitive factors and the interaction between
them. Structural factors include the size,
form of the authority structure, and the
distribution of tasks. Cognitive factors
include the level and type of training and
response to external and internal stressors.

2. Adaptive Strategies — Tuning and
Shaking

A commander faced with a fixed
command in terms of the number of
personnel has several choices for altering the
C2 structure. For example, the commander
could change who reports to whom or who is
assigned to do what. By making such
changes the commander can tune the C2
structure for the extant environment. This
tuning process can be characterized as a
process of slowly annealing the unit till it



reaches the necessary level of performance.
As the environment changes the commander
might wish to rethink these assignments.
However, continuing to tune, to make
changes like before might not be appropriate.
Rather, it might be necessary to rethink the
way in which changes are made; i.e., it might
be necessary to “shake” things up. Thus the
commander has two meta-strategies — tuning
and shaking. The question we address is the
relative value of these two meta-strategies in
improving overall unit level performance.

3. ORGAHEAD Model

In this paper, we examine the dynamic
relationship between strategy, structure and
performance. Using computational analysis
we examine the over time behavior of a set of
organizations that have the capability of
learning both structurally (by altering the
connections among personnel and tasks) and
operationally (by personnel gaining
experience). We will look for evidence of
meta-learning; i.e., evidence that the
organizations have learned how to learn and
so evolved effective change strategies.

The computational analysis is carried out
by running a series of virtual experiments
using the ORGAHEAD framework [Carley,
1996a; Carley 1998; Carley and Svoboda,
1998]. ORGAHEAD is a dual-level
information processing model of strategic
adaptation in which the commander can
change the C2 architecture in response to
various external and internal triggers. At the
operational level, each unit is modeled as a
set of intelligent adaptive agents (the decision
making units - DMU’s) arranged in a
command structure. Each DMU-agent may
be either a person a subgroup, or a platform.
Agents are boundedly rational and so exhibit
limited attention, memory, information
processing capability, and access to
information. Unit level performance is
determined by the agent's actions as they
process tasks. At the strategic level, the
commander can alter the C2 architecture
strategically in response to changes in the
environment and units actual and expected
performance. The types of changes
examined herein are retasking and

reassignment of personnel. Unit
performance is affected by the ability of the
commander to anticipate the future and take
the appropriate strategic actions to alter the
C2 structure in response to actual or
anticipated environmental changes. This
strategic adaptation is modeled as having two
components an annealing process whereby
the commander tunes the extant structure but
at a decreasing rate over time, and a shake-up
process whereby the commander alters the
likelihood of making major changes in the
structure (this can be thought of as increased
risk taking).

ORGAHEAD can be thought of as a
grounded theory of organizational
performance as the behavior of the agents and
the features of the model have been chosen to
reflect findings from empirical studies of
individual human learning and organizational
adaptation. ORGAHEAD has sufficient
versatility that the user can specify the initial
C2 architecture of one or more units, basic
training procedures, constraints on agent
abilities, the type and likelihood of allowable
strategic changes, the maximum frequency
of change, the rate of risk aversion, the
organization's goal criteria, the task
environment, and several types of change

“triggers”. For example, the C2 architecture
can have from 1 to 4 authority levels with 0
to 15 personnel at each level. All of the
agents are boundedly rational but they can
vary in their retention level and the number of
resources they handle (0 to 7) which includes
both those needed for communication and for
task analysis.

3.1 C2 Architecture and Task
Environment

The C2 architecture is characterized as a
series of networks connecting personnel and
resources; specifically, authority (who
reports to/commands whom), communication
(who talks to whom), and resource access
(who has access to what resources). Each of
these networks can be characterized using
various social network measures of basic
features of command and communication
structures such as span of control and

decentralization. Change in the c2



architectures can be monitored by examining
changes in these measures or the extent to
which the overall network differs from the

unit's initial C2 architecture. As the C2
architecture changes, who reports to whom,
who communicates with whom, and who has
access to which resources may change. The
agent’s skill with the resources can vary.

The task is characterized by a nine-bit
binary string such that each bit can be thought
of as a different, discrete piece of
information. In the context of a radar task,
the unit responds to a sequence of events
determining for each event whether the
observed object is a friendly or hostile aircraft
or vessel. From a situation awareness
perspective, the unit is evaluating context
information to determine the overall nature of
the threat. The overall task environment is
characterized by the bias and volatility in the
sequence of tasks. The degree of bias is the
degree to which the set of tasks faced by the
unit are of the same type or are generated by a
similar situation (e.g., friendly). The
volatility of the environment is the rapidity
with which the type of task faced by the unit
changes.

3.2 Simulated Annealing

Simulated annealing is a heuristic based
optimization procedure intended as a
computational analog of the physical process
of annealing a solid [Kirkpatrick, Gelatt and
Vecchi, 1983; Rutenbar 1989j. The
procedural goal is to find that state which
minimizes costs. The process involves
heating the system to a state that admits many
alterations, then, given a cooling schedule in
which temperature decreases by some
function, slowly cooling the system until it
reaches thermodynamic equilibrium at each
temperature in this schedule, and eventually
freezing the system in a good configuration.
This is done by creating a set of moves for
changing the existing state to a new state,
choosing a move, evaluating the proposed
state that this move would create, and then
moving to that new state if it improves things
and possibly even if it does not. The
frequency of accepting such non-improving
or risky moves decreases with time (as the

temperature cools). Simulated annealing as a
heuristic optimization technique it is not
guaranteed to find the optimal solution; nor
does it always make the best move.
Typically, it moves the system to a state that
is better than where it started. Simulated
annealing is particularly valuable for
combinatorial optimization problems which
are NP-complete where it may not be
possible to locate the exact solution in a
reasonable amount of time.

For organizational units, simulated
annealing is a computational analog of the
process of strategic organizational adaptation
through a satisficing process [Carley, 1996b]
and has received empirical support as a model
of organizational behavior [Eccles and Crane,
1988]. The design of C2 architectures for
optimal performance is at least an NP-
complete problem.

ORGAHEAD uses simulated annealing to
capture the strategic constraint based
adaptation process that the unit goes through.
Over time, the commander attempts to

optimize the C2 architecture relative to some
cost function (such as maximize accuracy or

kill ratio). The commander alters the Cc2
architecture strategically; by making changes
if it appears to move the unit closer to the
goal regardless of whether or not it actually
does so [Simon, 1944; March and Simon,
1958]. The commander is not omniscient.
Rather than comparing all options the
commander simply evaluates a strategy
through a kind of *“what if”” analysis, trying to
forecast or anticipate, albeit imperfectly, the
future [Allison 1971; Cohen and March 1974,
Axelrod 1976]. Since the forecast is known
to be imperfect, the commander may gamble
on changes that might possibly “increase
costs” if it is felt that there is some long term
advantage. Overtime, the number of such
risky moves decreases [Stinchcombe, 1965]
as the unit locks into certain standard
operating procedures and so gets trapped by
its competency [Levitt and March, 1988].

In ORGAHEAD the commander can
change the unit’s C2 architecture in a variety
of ways. Herein, we are concerned only
with two types of change - altering who



reports to whom, and altering change who
has which resources. These types of changes
are the move set used by the annealer, and
represent constraints under which the
commander must operate. The commander
proposes a new design (old design changed
by making one of these moves), and then
extrapolates the expected performance. In
ORGAHEAD the behavior of the proposed
new design is actually simulated for a small
number of tasks. The performance of
proposed architecture is then compared with
unit' current performance. In ORGAHEAD
the probability of accepting a new design is
set by the Metropolis criteria and the
Boltzman probability criteria. Accordingly,
the commander will always implement the
proposed change if the proposed architecture
is expected to be a better performer than the

current C2 architecture. Otherwise, the risky
change is accepted with a small probability
which reduces over time (as the system
cools). For the virtual experiments that we
ran temperature (T) drops each time period
(until the next shake-up) as T(t+1) = a * I(t)
where a is the rate at which the organization
becomes risk averse and ¢ is time.

Engineers have postulated that a cooling
schedule in which the system is periodically
re-heated (shaken-up) will actually increase
the likelihood of finding the optimal solution
on very complex surfaces [Medeiro, et al.,
1994]. Such a cooling schedule is referred to
as a Medeiro cooling schedule. In our
analyses the shake-ups returned the unit to
the original level of riskiness. A direct analog
of increasing the temperature is bringing in a
new commander. Numerous accounts of
battles demonstrate how shake-ups, often
associated with a change in command, result
in new ways of doing business, potential
increase in risk, and increases re-assignment
and re-tasking of personnel [Wetterhahn,
1997].

4. Virtual Experiment

We explored the parameter space in order
to determine the conditions which facilitate
meta-learning. This exploration was
achieved by running a set of virtual
experiments using ORGAHEAD. The set of

experiments was conducted across the
parameters which are hypothesized to be the
most relevant ones in affecting meta-learning.

Task limit, the first parameter, is the
simply the number of tasks to which the
organization must respond. Since
organizations are known to evolve through
time and activity, this parameter can be seen
as a proxy for time as well, given a naive
correspondence between time and activity.
We examined organizations under two task
limits, 20,000 and 80,000, to determine the
differential effects of a longer-term learning
period, if any.

Organizations often face tasks of different
complexity; that is, the solution space is
simply larger and admits many more
possibilities than that of a simple task.
ORGAHEAD allows for several variations of
“complexity”. In the experiments presented
herein, we define a simple task as one which
is comprised of signals that take on only two
values, yes or no: a “binary task”. A
complex task is comprised of signals that can
take on three values, yes, no, or
neutral/maybe; we refer to these as “trinary
tasks”. As correct solutions become harder
to attain, it is expected that the higher
performing organizations will show more
complex structures than those which are
faced with more simple tasks. That is, we
should expect a higher degree of meta-
learning and, consequently, the complexity of
organizational elements, be they relations,
individual attributes or meta-adaptive
strategies, to increase as the difficulty of the
task increases.

Another means of varying complexity is
by varying the amount of information per
task. Hence, we explore a second kind of
task complexity by observing unit level
response to conditions in which the number
of bits of information per task is 7or 9. A
third way of increasing task complexity is by
not altering the task, but varying the abilities
of the individual agent. We do this by
varying the number of incoming signals, or
bits of information the agent can consider at
one time, as either 5 or 7.



We also examine the effect of different
kinds of environmental variation on the
learning abilities of the virtual organizations.
The organizational literature is replete with
studies that show how the changing
environment, certainly not under the control
of the organization, can easily and quickly
determine the fate of the organization. Based
on these findings, we allow for two types of
stressors. The first is simply no stress; that
is, the task environment is stable and does
not vary. The tasks to which the unit needs
to respond remain unchanged throughout the
unit's life-cycle as set by the task limit
parameter. The second variation involves an
oscillating environment in which solution
criterion to the task changes periodically.
The default condition, also known as no-bias
used for the “no variation” condition,
requires the unit to classify an input vector as
“friendly” or “enemy”; the elements of the
input vector can be considered as features of
a yet to be identified target or assessed
situation. For the ‘“second variation”
condition, the unit is put into a state of alert
and the criterion for classifying the target as
“friendly” becomes much more stringent.
For this situation, we say the environment is
in a state of “high bias”; the bias is strongly
towards the “enemy” classification. So for
the “second variation” condition, the
environment oscillates every 5,000 tasks
between no-bias and high-bias.

While size (i.e. number of personnel) has

always been assumed to impact the unit's_

behavior and performance, the nature of the
effect is disputed. For these experiments, we
examine unit's which are constrained to have
maximum numbers of people per level of 3,
4, 6, and 12. These limits correspond to unit
sizes of 9, 12, 18, and 36 respectively.

Finally, we explore the impact of
"shaking" by considering four different
“shake-up” strategies. The first consists of a
single shake-up at the onset as the risk-taking
tendencies of the commander slowly
decreases over time such that the commander
is completely risk-averse by the time the task
limit is reached. The second strategy
employees an additional second shake-up, the
third strategy has three shake-ups, and the
fourth has four. When there are multiple

shake-ups there is always a shake-up at time
0, and the remaining shake-ups are evenly
spaced across the duration of activity as
defined by the task limit. So when a four
shake-up strategy is employed the unit
responding to tasks for 80,000 periods, faces
shake-ups at task 0, 20,000, 40,000, and
60,000.

This virtual experiment is described in
Table 1. These variations of parameters yield
512 different experimental conditions. For
each condition 40 units were simulated, per
the Monte Carlo technique, giving us 20480
data observations.

Parameter Categories
Task limit 20,000 and
80,000
Task complexity binary and trinary

Environment stable (no-bias)
and oscillating
(alternates
between no-bias
and high-bias)

Size 9, 12, 18, and 36

Individual resources 5 and 7

Task length 7 and 9

Shake-ups 1,2,3and 4

Table 1: Summary of Parameters

ORGAHEAD has been parametrically
constrained in other ways that deserve
mention. The primary constraint is that the

only the relational aspect of the C2
architecture is allowed to change; this means
agents cannot be added or removed. For
these experiments, we ask how meta-learning
occurs for organizations whose size is fixed.
Within this and the aforementioned
parameters, each unit’s C2 architecture was
randomly generated for each run. Changes
are allowed to occur every 500 tasks and
performance is measured for the same
duration as well. Memory capacities are set
to 250 tasks, including that of the
commander’s look-ahead capability. In
assessing whether a given change may



benefit the organization, commander can look
as far as 250 tasks ahead.

5. Results

Results from this virtual experiment were
examined from a variety of vantage points.
We report here on aspects of the findings.
First we explore the impact of the meta-
adaptation strategies on influencing
performance and sustained performance
despite environmental and internal stressors.
Second we explore the impact of the meta-
adaptation strategies on the ultimate form of

the resulting C2 architecture. The findings
should be treated as a series of predictions
that can be explored in human experiments
and with field data. Experiments were also
conducted to contrast model results with
experimental results obtained from the A2C2
project. We note in passing that in general,
predictions from the ORGAHEAD model
were upheld in this venue.

5.1 Impact of Meta-Adaptation on
Performance

Our results indicate that, in order of
impact, the four factors which most affect
sustained performance are: (1) the number of
resources available to each agent, (2) the size
of the unit, (3) the length of (amount of
information in and resources associated with)
the task, and (4) the number of shake-ups
(Figure 2). These results are summarized in
Table 2. Environmental stress (Figure 1),
not surprisingly, tends to reduce unit level
performance (significant difference at the p <
0.01 level). However, the effect of more
shake-ups is not strictly linear. We observe
that performance slightly increases when the
number of shake-ups increases from 1 to 2.
Then, a significant drop occurs between 2
and 3 (p < 0.05). This degradation is
somewhat restored when the number is once
again increased to four. One possible
explanation for this is that the effect of the
shake-up strategy is sensitive to the particular
kind and frequency of environmental
variation. That is, we should see different
effects if the periodicity with which the

environment changed did not co-incide with
the periodicity of the shake-ups.

Mgg n Performance
72.8
72.7 4
72.6 = 7
Stable Changing
Environment

Figure 1: Task Environment Affects
Performance

Mean Performance
7294

72.8+

1 2 3
Number of Shake-Ups

P

Figure 2: Interaction Between
Shakeups and Performance

Predictor _(;o_cfﬁci_enl p value
intercept 0.000000 1.000
Task Iimit 0.031853 0.660
Task -0.024068 0.000
complexity
Environment -0.014568 0.027
Size 0.170226 0.000
Individual 0.265205 0.000
resources
Task length  0.091118 0.000
Shake-ups -0.012299 0.063

R2 (adj) = 10.9%, df = 7, 20472, p<0.001




Table 2: Standardized Regression for
Performance.

Strategies of learning and time to learn are
conflated (Figure 3). For lower task
duration/experience (i.e. 20000) tasks,
annealing strategies have a more varied effect
on performance when the environment is
unstable. With more history and experience
(i.e. 80000 tasks), the reverse is true:
application of the consistent strategy yields
stable performance levels under the variation.

unit adapts given a set of constraints. After
controlling for task duration (obviously
80,000 tasks will yield far more changes),
we look at the difference between the number
re-assignments (people-to-people changes)
and the number re-taskings (people-to-task
changes). Both increasing organizational size
and increasing the task complexity from 7 to
9 bits, reduces the number of re-assignments
made and increases the number of re-taskings
(Table 3).

Duration and Shake-Up

71.40 72.10 72.80 ~73.50
Performance (p<0.001)

Figure 3: Duration and Shake-ups
affect Performance

In the changing environment the unit has
adapted, or become synchronous, to the
variation, while under the stable
environmental condition, that goal is more
difficult to achieve. Further, the number of
personnel per level is a strongly determines
he effect of the tuning process; we find that
tuning yields more variation in performance
for smaller units (Figure 4). Larger units are
typically better able to withstand both internal
and external stressors. Units that are too
large (i.e. size 36) exhibit behavior of smaller
organizations; their performance degrades
when the environment changes (Figure 5).

5.2 Impact of Meta-Adaptation on
Architecture
Since there are only a finite number of

changes that can be made, the type of change
made is indicative of the way in which the

Size and Shake-ups

——————————— e e Je==sess o vy

70.5 72.0 73.5 75.0
Performance (p<0.001)

Figure 4: Size and Shake-ups affect
Performance

Size and Environment

70.8 72.0 73.2 74.4
Performance (p<0.001)

Figure 5: Size and Environmental
Change affect Performance




This first part of this finding is quite non-
intuitive. If there are more people, then the
probability of a re-assignment should
increase. However, we find this number
decreases implying that units are adapting by
creating more direct linkages to the task and
reducing the complexities and noise brought
on by inter-organizational communication.
The C2 architecture of choice allows for
fewer exchanges of information among
individuals and increases the among of
information and the number of resources
available to any one individual. This effect
decreases as the task length and difficulty
increases. This finding however is more
intuitive. The reason here is that as the size
of the solution space increases, the direct
linkages between the problem-solvers and the
task should increase if performance is to be
sustained.

intercept 0.000000 1.000
Task limit -0.005913 0.396
Task 0.009433 0.176
complexity

Environment 0.002727 0.695
Size -0.084875 0.000
Individual 0.005552 0.425
resources

Task length  -0.021738 0.002
Shake-ups -0.004065 0.559

What these results suggest is that stress,
particularly external stress, can actually
improve the efficiency of the C2 architecture.
Since unit level performance degrades in a
changing environment, this finding suggests
that structural efficiency is maladaptive
strategy. In other words, redundancy, and
not structural efficiency, is needed for the
type of flexibility that enables sustained
performance in the face of environmental
change.

Predictor _(;oefﬁciem p value
intercept 0.000000 1.000
Task limit 0.0112216 0.001
Task -0.021989 0.004
complexity
Environment -0.019577 0.000
Size 0.041705 0.000
Individual -0.224468 0.000
resources
Task length  0.085484 0.000
Shake-ups -0.008307 0.220

R2 (adj) = 6.0%, df = 7, 20472, p<0.001

R2 (adj) = 0.8%, df = 7, 20472, p<0.001

Table 3: Standardized Regression for
re-assignment minus re-tasking
changes per task cycle.

The efficiency of the structure is most
affected by: 1) the number of resources
available to individuals and 2) the length of
the task (see Table 4). Units tend to be more
efficient in an unstable or changing task
environment (Figure 6). The important point
here is that efficiency and performance are at
odd with each other. Although units in the
changing environment have more efficient 2
architectures (this increase in efficiency is
significant at the p < 0.01 level) they also
exhibit lower performance.

Table 4: Standardized Regression for
Efficiency.

Mean Efficiency
0.941

0.940-

0,939+

0.938 -

0.937 r Y
Stable Changing

Environment

Figure 6: Environment affects c2
Efficiency

Certain types of redundancy are more
important than others. Although larger units
and units with more resources per agent tend
to exhibit more sustained performance, other



factors also play a role. Connections
between personnel or between personnel and
resources at different levels have different
effects on overall performance and are
differentially affected by stressors. In
particular, the manager-task, manager-
analyst, and commander-task densities are
significantly sensitive to whether or not the
environment varies. Since we do not observe
noticeable differences in performance when
the environment varies, it is possible that the
unit is sustaining its performance level by
adjusting these specific ties in response to
environmental stressors. This implies high
level connections to lower level personnel
and tasks are important when the task
environment shifts. Decentralization per se
does not sustain performance, rather having a
direct line to the commander is of direct
benefit.

Figure 9: Bias affects commander-
Analyst Links

As part of the tuning process the manager-
analyst and commander-manager links
(Figures 10 and 11) are adjusted. These
connections appear to act as some type of
homeostatic or mediating mechanisms
depending on whether the unit is trying to
maintain or improve its performance.

Shake-ups

_______ P NSO

1 (—=—mmm R )
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N e )

——————— fmm e e e e e
0.840 0.860 0.880

Average Manager-Analyst Links (p<0.1)

Bias

------- - ———————

0 (== Koo )

1{==rm——— B )

——————— o e e e it e et vt e e e S
0.840 0.852 0.864

Average Manager-Task Links (p <
0.05)

Figure 10: Shake-ups affect Manager-
Analyst Links

Figure 7: Bias affects Manager-Task
Links

Bias

o ot dore e e 2 ]

0 O L )

1(===mm=mn R )

i ————————— e s g e fpm———— - d——
1.065 1.080 1.095 1.110

Average Manager-Analyst Links (p<0.05)

Shake-ups

————————— e S

1 (m——————m L )

e e )

3 O R )

4(--=-m=m- L )

————————— s S

0.615 0.630 0.645

Average Commander-Manager Links

(p<0.05)

Figure 8: Bias affects Manager-
Analyst Links

0.720 0.732 0.744 0.756
Average Commander-Analyst Links (p<0.10)

Figure 11: Shake-ups affect
commander-Manager Links

6. Conclusions

This exploration of adaptation
demonstrates that change, in and of itself, is
not a viable strategy to sustain high
performance in response to changing external
and internal operating conditions. Units need
to employ meta-strategies for adaptation.
One such meta-strategy is to shake things up,
for example, by bringing in a new
commander. Such shake-ups do not
necessarily improve performance. In fact, is
the timing of such shake-ups is out of sync
with changes in the environment, such a




meta-strategy may have very disastrous
consequences.

We also found that units respond
differentially to external and internal stresses,
which are the environmental variation and
shake-ups respectively. These effects also
vary with the size of the unit and the duration
of the task that they face. We find that unit
level efficiency and performance can be at
odds with each other, particularly in a
changing environment. Units with highly
efficient C2 architectures are inflexible and
tend to be maladaptive in the face of
environmental change. The tuning process
tends to result in leaner, more efficient, less

redundant C2 architectures. In particular,
links that skip levels in the organizational
hierarchy, that connect the upper levels and
lowest levels in the unit tend to emerge. Our
analysis suggests that such flattening of the
structure, such structural efficiency is
potentially maladaptive. The key, to whether
or not efficiency improves or sustains
performance appears to be in the timing of the
shake-ups relative to the timing of the
environmental changes. More research is
needed on this point.

We observe a decrease in efficiency
between managers and analysts; this supports
the earlier finding of the negative effects of
relational efficiency. Finally, larger more
experience units (with more trained
personnel) are better capable of withstanding
both external and internal stressors.
However, there appears to be a point of
diminishing return when the unit can become
large enough for its size to be detrimental.
While, in general, more is better, we see that
under certain conditions neither streamlining
the organization nor increasing the
communication links and raw size necessarily
serves to enhance performance. Units ought
to be aware of their own risk-taking strategies
and the type of environment they are facing
before adopting a growth strategy.

Research on C3I suggests that standard
principles such as minimize and prioritize are
insufficient in the modern world in which
increased complexity and rapid change are
requiring greater flexibility. Feedback

control and communication control helps to

control the adaptivity of the C2 architecture
[Clapp and Sworder, 1991]. Additionally,
we find that since feedback is often
intermittent, incorrect, or based on
expectations rather than actualities, meta-
adaptive strategies are needed if the unit is to
show sustained performance in a changing
environment.
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