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CHAPTER

20

Organizational Performance,
Coordination, and Cognition

Kathleen M. Carley
Camegie Mellon University

Organizations can be viewed as collections of intelligent agents who are cog-
nitively restricted, task oriented, and socially situated. Accordingly, the
behavior of the organization is affected by the behavior of the agents and by
how the agents are coordinated. Coordination can be achieved passively
through the extant organizational structure. This structure limits agent
behavior by determining who has access to what information, who must
make which decisfons, and who must report what to whom.

Carley and Prietula (1994) referred to this perspective as ACTS theory and
described it in detail. Central to this perspective is the idea that organiza-
tional performance is jointly affected by coordination and cognition. The
thesis is that organizational performance should change, given a particular
coordination structure, as you replace the agents with agents of differing
cognitive abilities. Replace people by robots or rocks and the organization-
al performance should change. Similarly, organizational performance should
change, given a particular type of agent, as you alter the coordination struc-
ture. Change the organizational structure from an democratic team to a
more hierarchical structure and organizational performance should change.
Similar arguments have been made at the interorganizational level (Malone,
1986; Williamson, 1975).

These arguments seem obvious, yet much of organization theory has
looked at organizational performance as being dependent on the coordina-
tion structure sans agent cognition. For example, structuralism, institutional-
ism, and population ecology suggest that organizational performance is
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" largely determined by factors other than human cognitive and affective
behavior. In contrast, much of the research in organizational behavior has
focused on the impact of cognition sans coordination. We have only a limited
understanding of the organization as a collection of coordinated intelligent
agents. Recent advances have been made, however, using meso-level models
in which macrolevel organizational behavior emerges from the microlevel
agent actions (Carley, 1991, 1992; Carroll, 1984; Masuch & LaPotin, 1989). In
these models, organizations are formed as collections of intelligent adaptive
agents. The models of the agents are based on reasonable assumptions
about human behavior, generally predicated on decades of research. The
complexity of these agents is sufficient that recognizable, and important,
organizational behaviors emerge. In this way, these models have increased
our understanding of organizational performance and demonstrated the
value of meso-level adaptive agent modeling for building organizational the-
ory. All this being said, there has been little attention as to whether the cog-
nitive nature of the agent alters organizational performance and whether
there is an interaction effect between cognition and coordination.

Clearly, organizations composed of agents with different features behave
differently. Cohen, March, and Olsen (1972) found that the amount of effort
agents expended affected the quality of organizational decisions. Carroll
(1984) found that organizations composed of agents with different cultural
biases perform differently. Carley, Park, and Prietula (1993) found that
whether or not agents lied affected the degree to which the organization
wasted time. Lin and Carley (1993) found that organizations of proactive
agents tended to outperform organizations of reactive agents. Numerous
other examples exist. In all these analyses, and many others, we find that
agent features make important differences in organizational performance.
However, none of these analyses indicates whether or not increasing the
cognitive realism of the agent models, so that they more closely approxi-
mate the human agent, alters organizational performance.

Organizations employing different coordination structures may also vary
in their performance. Mackenzie (1978) and Roberts (1989) argued that hier-
archy is linked organizational efficiency and reliability. Galbraith (1973, 1977)
discussed the relative importance of centralization and decentralization.
Thompson (1967), Mintzberg (1979), La Porte and Consolini (1991), and
Roberts (1990), argued that loosely coupled or structural redundant organi-
zations are high performers in stressful conditions. Numerous other exam-
ples exist. In all these analyses, and many others, we find that organizations
who coordinate through the use of different designs exhibit different per-
formance. Collectively these studies demonstrate that there is no one best
organizational design. However, none of these analyses indicate whether or
not the performance attributable to a particular coordination structure will
remain constant as the agent model is altered.

—p—
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Understanding whether the degree of agent veridicality interacts with
structural changes in the organization or the task in important ways is
important for advancing organizational theory. If we find that the veridicali-
ty of the agent model does not interact with the organizational structure or
task, that the performance of the coordination structures and task are con-
stant regardless of the agent model, then macro theoretical approaches that
ignore the agent gain support. In contrast, if we find that organizational per-
formance, and particularly the relative performance of the different coordi-
nation structures, is dependent on the realism of the agent model then these
theoretical approaches are called into question.

In this chapter we address this issue directly by contrasting the perform-
ance of organizations with different coordination structures, different task
complexities (from the agent’s perspective), and composed of different
“types” of agents. The performance of organizations composed of simple
adaptive agents (ELM agents), complex adaptive agents (Soar agents), and
humans is examined. As we move from ELM to Soar to humans, presumably
the realism of agents is increasing. At issue is how this realism interacts with
organizational and task constraints in affecting organizational performance.
Similarly, the performance of organizations with teams and hierarchies,
blocked and distributed information are examined. For each organization
performance is measured. Using this data the relative impact of, and inter-
actions among, cognition and coordination on organizational performance is
explored relative to a simple ternary classification—choice task.

THE TASK

The task faced by each organization, regardless of its coordination scheme
or the cognitive architecture of its agents, is a ternary classification—choice
task. Without loss of generality we can think of this task as a highly stylized
radar task. There is a range of physical air space surrounding the radar
equipment. This airspace can be scanned by the radar equipment and infor-
mation about the flying object can be gathered. Within the airspace there is
a single object. This object has a true state that is either: FRIENDLY; NEU-
TRAL; or HOSTILE. This object has nine features. These are: speed (mph);
direction (indicating degrees of deflection by which the flight path deviates
from a direct route); range (miles); altitude; angle; corridor status (in, edge,
out); identification (friendly, civilian, unknown); size (feet; small, medium,
large); radar emission type (weather, none, weapons; Carley & Lin, 1992).
Each feature has a value of either: 1, 2, or 3. The interpretation of these val-
ues depends on the feature (e.g., if the feature is “speed,” the Value 1 means
speed is low, Value 2 means speed is medium, and Value 3 means speed is
high). Initially agents in the organization do not know whether having a low
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or high value on one feature or another is associated with the object being
truly FRIENDLY, NEUTRAL, or HOSTILE. Agents must learn these associa-
tions.

The true status of the aircraft is defined external to the organization and
is not manipulatable by the organization. This is the characteristic of the
design for the task. The true status of the aircraft is manipulated by the
experimental designer. By changing the rule relating a pattern of aircraft
characteristics to an outcome the researcher can examine different types of
tasks. In this chapter, the true status of aircraft is generated by using decom-
posable and unbiased scheme for defining the task.!

In an unbiased environment all three possible outcomes are equally like-
ly. In a decomposable environment each piece of information is equally
important. Consequently no analyst plays a more important role than any
other simply on the basis of seeing a certain type of information. The task
has a complexity level of nine; that is, there are nine pieces of information F1
through F9. Each piece of information can take on one of three values,
FRIENDLY = 1, NEUTRAL = 2, and HOSTILE = 3. The true state of the aircraft
is defined on the basis of the sum of these nine features. If the sum of the val-
ues for these features for a specific aircraft is less than 17 the true state is
friendly, if this sum is greater than 19 the true state is hostile, otherwise the
true state is neutral. This defining rule establishes which true state is asso-
ciated with which pattern of information. The members of the organization
do not know apriori how the true state is calculated from the set of features.
Consequently, the agents in the organization do not know apriori how to
relate a particular pattern of information to a particular outcome. Because
there are nine pieces of information each of which can take on three values
there are 19,683 possible patterns that the organization needs to learn. The
organizational design limits the organization’s ability to learn these pat-
terns.

Each analyst must decide which one of three states (FRIENDLY, NEU-
TRAL, HOSTILE) the passing object is, based on the information (the fea-
tures of the object) he or she can access. The information known by each
agent is a subset of the total information, and how many pieces of informa-
tion in each subset is dependent on the organization’s resource access
structure. After seeing the information, each agent has to make a decision
and deliver a recommendation. How these recommendations are processed

In a decomposable task each component has a separable, identifiable, and additive effect
in determining the problem solution. Each piece of information contributes equally to the final
decision. No agent has greater “power” simply by virtue of having access to a more powerful or
more important piece of information. In an unbiased environment approximately one third of
the 19683 aircraft are friendly and one third of the aircraft are hostile. This is an environment
where all the possible outcomes are equally likely to be true (Carley & Lin 1992).
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or combined by the organization depends on the organizational structure.
After each analyst has made its recommendation it receives feedback on the
true state of the aircraft. The feedback can be considered as part of the train-
ing procedure.

This radar task is based on a real-world problem, and variations of it have
been widely examined (Carley, 1990, 1991, 1992; Hollenbeck, Sego, Iigen, &
Major, 1991; Mallubhatla, Pattipati, Tang, & Kleinman, 1991). Two features of
this task make it appropriate for our present purpose. First, the true state of
the object is known. Thus feedback can be provided and issues of training
(and hence differences in learning procedures) can be addressed. Second,
this task is complex enough that it can be solved in a distributed environ-
ment where information is shared by different agents, and multiple agents
can be used to work on different aspect of the task.

MODELS OF COORDINATION

The organizational design can serve as a passive coordination scheme defin-
ing who does what when. Herein, two aspects of organizational design are
considered: the organizational structure and the resource access structure.
The organizational structure defines who reports to whom and how the
organization makes its decision. The resource access structure defines who
has access to what information or resources. Regardless of the organiza-
tional design there are nine analysts. Each analyst, regardless of the organi-
zation it finds itself in, has access to three pieces of information on each task,
makes a recommendation based on this information, and passes on this rec-
ommendations as its decision, For each analyst each of the three pieces of
information can take on three different values. If there is a manager in the
organization then the manager takes these nine recommendations and
makes a decision based on them. If there is no manager the organizational
decision is simply the majority vote. In principle, each manager has the pos-
sibility of seeing nine different pieces of information each of which can take
on three different values.

Two organizational structures are examined (see Fig. 20.1): the team with
manager and the team with voting. Within the team with manager structure,
the organizational decision is made by the CEO who makes this decision
after it receives all nine analysts’ decisions. Within the team with voting
structure, the organizational decision is the majority decision given the sep-
arate decisions provided by the nine analysts. We focus on team structures
as previous research has demonstrated that teams learn more quickly and
are typically more “disturbed” by any type of internal or external stress such
as turnover or missing information than are other organizational structures
(Carley, 1990, 1991, 1992). The two team structures examined differ, however,
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in their centralization. The team with voting is a decentralized structure,
whereas the team with manager is a centralized structure. By focusing on
these structures we will be able to see whether slight changes in the cogni-
tive makeup of the agents make major differences in organizational per-
formance when the decisions made by these agents are combined in differ-
ent ways. Such an analysis would be more difficult with more complex
organizational structures although later work should examine such struc-
tures.

Two resource access structures are examined (see Fig. 20.1): distributed
and blocked. Within the blocked resource access structure, multiple agents
see exactly the same information. In this case, three analysts see the same
three pieces of information on each task. Within the distributed resource
access structure, no two agents see exactly the same information and each
piece of information is seen by more than one person. Specifically, each
piece of information is seen by three different analysts. In both resource
access structures each analyst sees the same number of pieces of informa-
tion (three). Thus, regardless of the structure, all analysts are facing tasks
with the same complexity and so their information load is the same. All man-
agers, regardless of the resource access structure, see nine pieces of infor-
mation and so are facing the same information load. Differences in “learning”
at the analyst level can only be attributable to differences in the cognitive
realism of the agents and not to differences in information loads. Differences
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FIG. 20.1. Organizational coordination schemes.
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in learning at the managerial level can only be attributable to the extent to
which the information they have is consistent and to the cognitive realism of
the agents. By focusing on these resource access structures we will be able
to see whether slight changes in the cognitive makeup of the agents exacer-
bate differences due to the level of similarity in different agents’ mental
models.

For analysts, since they see three pieces of information each of which can
take on three values, there are 27 possible patterns. For managers, since
they see nine pieces of information each of which can take on three values
there are 39 or 19,683 possible patterns. Not all of the patterns are equally
likely to occur. The likelihood of a specific pattern is a function of the set of
tasks that the organization sees and, for managers, it is also a function of the
resource access structure. In this study, the tasks were chosen randomly
such that all patterns are equally likely. Thus, for analysts, all patterns are
equally likely. For managers, however, the resource access structure deter-
mines the likelihood of specific patterns. If the agents are in an organization
with a blocked resource access structure then the manager may potentially
see only 27 of the possible 19,683 patterns; however, the number actually
seen depends on the type of agent. Whereas, a manager in an organization
with a distributed resource access structure has a greater likelihood of see-
ing all 19,683 patterns (if the organization faces that many tasks). How many
patterns the manager actually sees depends on the model of cognition.
Whether these differences in the number of possible patterns, the probabil-
ity that certain patterns will occur, and the number of potentially observable
possible patterns will affect learning or the speed of making a decision
depends on the agent’s cognitive capabilities. Regardless of the agent’s cog-
nitive makeup the number of patterns affects the resolution of the informa-
tion available to the decisionmaker and so may affect the quality of the deci-
sion maker’s decision. For the environment being examined there are 19,683
unique aircraft; hence, 19,683 patterns relating the aircrafts nine features to
its true state. The fewer patterns an agent can see the less resolution the
agent has on the overall problem.

MODELS OF COGNITION

Three different agent “models” are considered: ELM agents, Soar agents, and
human agents. Both ELM (Carley, 1991, 1992; Carley & Lin, 1992) and Soar
(Papageorgiou & Carley, 1992; Carley, Kjaer-Hansen, Prietula, & Newell, 1992;
Carley, Park, & Prietula, 1993) agents have been used in models of organiza-
tions composed of artificial adaptive agents; however, their performance has
not been contrasted. Further, there is no research demonstrating how the
behavior of these artificial agents actually compare with the behavior of
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human agents given the specific task we employ. ELM agents are based on a
simple experiential learning model using an incremental adaptive algorithm
similar in intent to those used in classic learning theory (Bush & Mosteller,
1955). Soar agents are knowledge intensive agents who are capable of employ-
ing the various common search algorithms for problem solving (Newell, Yost,
Laird, Rosenbloom, & Altmann, 1991).2 The important point here is that ELM
agents are task specific in nature and employ a learning and decision proce-
dure that reflects only a little of what is known about human cognition. In con-
trast, Soar agents are not task specific and the learning and decision proce-
dures in Soar have been shown to be consistent with much of what is known
about human cognition (Laird, Newell, & Rosenbloom, 1987; Rosenbloom,
Laird, Newell, & McCarl, 1989). Clearly Soar agents are much closer to humans
than are ELM agents in terms of individual behavior. We ask, does this close-
ness matter when it comes to examining organizational behavior.

Both the specific ELM (Carley & Lin, 1997; Lin & Carley, 1977) and Radar-
Soar (Ye & Carley, forthcoming) agents that we employ have been described
in detail elsewhere® Soar itself has been described in numerous reports
(Laird, Newell, & Rosenbloom, 1987, Laird, Rosenbloom, & Newell, 1986). We
limit our description of these models to a brief overview of how these models
work, mainly to highlight differences in their assumptions about human prob-
lem solving behavior as it relates to the ternary task used in this analysis.

Regardless of how the agents are modeled they make their decisions on
the basis of the same incoming information. How the agents are modeled
affects how they access, use, recall, and make decisions on the basis of this
information. In this study, all analysts see three pieces of information which
are the raw task information (about the aircraft). If the agent is a manager he
or she sees nine pieces of information which are the decisions of the nine
analysts. Each piece of information can take on one of three values: FRIEND-
LY (=1), NEUTRAL (=2), and HOSTILE (=3). The values for the set of informa-
tion seen by the agent is referred to as a pattern. For example, an agent
might see the pattern 111, meaning that the agent sees three pieces of infor-
mation for which all three have a value of one. What speciiic pieces of infor-
mation the agent sees depends on his or her position in the organization’s
coordination scheme; specifically, in the organizational structure and the
resource access structure.

Regardless of how the agents are modeled they all receive the same feed-
back in the same way. During training, after each agent has reported his or her
decision, he or she is told what the true answer is for the entire problem. That

2For general discussions of Soar see Mitchell (1988a, 1988b).
3See also Carley (1992) for a description of the ELM agents when faced with a binary task.
See also Carley and Newell (1994) for a detailed description of Soar as a model of the human

agent.
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is, each agent is told the true state of the aircraft. Agents are not told how well
the organization or they themselves are doing. They have to infer that infor-
mation from the feedback they receive about the aircraft’s true state.

ELM Agents

The Experiential Learning Model (ELM) is a simple model of agent learning
and decision making in which the agent incrementally adapts its behavior on
the basis of feedback. This model is similar in kind to Bush and Mosteller’s
(1955) type learning models. This model has been used within various orga-
nizational simulation test beds, such as CORP (Carley & Lin, 1997; Lin &
Carley, 1977). Such testbeds have been used to examine the relative per-
formance of organizations which place different sociocultural-historical
constraints on the agents. ELM employs a simple situated-cognition model
of individual action in which agents learn from experience. What information
agents have access to and what action they can take are dependent on their
social situation in the organization and specific task assigned to them. In
ELM the social situation is defined by the agent’s position in the organiza-
tional design (Carley & Prietula, 1994).

ELM agents are boundedly rational in the sense that: (a) they are not
omniscient, (b) they can act only on the information available and their his-
torical knowledge; (c) their historical knowledge is limited to information
about the distribution of previous events; and (d) their knowledge is task
specific and there are no built in procedures for transferring knowledge
between tasks. ELM agents are adaptive in the sense that they change their
memories over time.

ELM agents’ memories can be thought of as a series of rules of the form
“if pattern x is seen then report y.” Each agent has an information load equal
to the number of possible patterns that it can possibly see. This information
load is affected by the organizational design. In the designs examined the
information load for all analysts is 27 and for all managers is 19,683. The high-
er the load the slower the agent loads and the longer is takes to make a deci-
sion. It does not necessarily affect the accuracy of the agent’s decision.

The agent reports whether he or she thinks that the aircraft is FRIENDLY
(=1), NEUTRAL (=2), or HOSTILE (=3). Each ELM agent has in its memory
information for each pattern as to the number of times that he or she saw
this pattern and the true answer was FRIENDLY, NEUTRAL, or HOSTILE. The
agent then selects as its decision for an observed pattern that event that was
most likely in the past. Thus, when faced with the pattern 111, the agent will
recall the distribution of true states associated with this pattern, that is,
FRIENDLY occurred 6 times, NEUTRAL occurred 4 times, and HOSTILE
occurred 2 times. Then the agent will provide as its answer the most likely
event, in this case, FRIENDLY.

——
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During training, while the agent is learning, the agent builds up these dis-
tributions incrementally. Thus, agents who observe different sets of patterns
will actually learn different behavior. If all patterns are equally likely then
the analysts and managers will, in the limit, learn to act approximately as
majority classifiers (given the task being examined).

For a specific number of tasks, managers in a blocked resource access
structure, because they see at most 27 of the possible patterns, will build up
more information on how those 27 patterns relate to the three possible out-
comes. For those same tasks, managers in a distributed resource access
structure have the potential to see 19,683 and so are less likely to build up
information on any one pattern. Whether having more information on fewer
patterns or less information on more patterns will lead to better decisions is
the issue at the managerial level when comparing these resource access
schemes for the ELM agents.

Radar-Soar Agents

Radar-Soar agents are complex adaptive agents built on top of the Soar
architecture. Following is a brief description of Soar. This is followed by a
brief description of the Soar agents.

Soar. Soar is a general-purpose program for solving problems. It incor-
porates specific knowledge about the world as a set of rules that guide it in
solving problems. Soar agents learn from experience by remembering how
they solve problems—this is referred to as chunking. Within Soar all cogni-
tive behavior is considered to be symbolic and goal oriented. Soar is con-
sidered to be unified theory of cognition as it is a single, integrated set of
information processing mechanisms that try to explain every aspect of
human thought, not one or two experimental results (Newell, 1990).

Soar characterizes all cognitive behavior as search in problem spaces
and serves as an architecture for general intelligent behavior (Laird et al.,
1987). Soar’s structure is built in levels, starting with memory and proceed-
ing to decisions and goals. A learning procedure (chunking) and default
knowledge are also incorporated into the system, but need not be used
(Rosenbloom et al., 1989). In this chapter the chunking mechanism is not
employed.

* Memory: All Soar’s long-term knowledge is stored in a single production
memory composed of if-then rules. Memory access consists of the execu-
tion of these productions. As these productions are executed information is
retrieved into a global working memory. The working memory is a tempo-
rary memory which roughly corresponds to the set of things that the agent
is attending to at any given moment. A special type of working memory

—o—
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structure is the preference. Preferences encode control knowledge about
the acceptability and desirability of actions. Acceptability preferences deter-
mine which action should be considered as a candidate action. Desirability
preferences define a partial ordering on the candidate actions.

* Decision: The decision cycle requires two phases: elaboration and deci-
sion. During the elaboration phase, the longterm (production) memory is
accessed repeatedly (effectively in parallel), until no more productions can
execute. This can result in a set of preferences being established. During the
decision phase, these preferences are interpreted. This can result in changes
in the agent’s goal, state, actions, etc. This decision cycle ensures that Soar
will make its decisions after all the rules have been fired; consequently, Soar
will use the most powerful knowledge it has available. When there is little
knowledge in long-term memory, Soar will behave in ways that resemble gen-
eral problem-solving techniques such as hill climbing, or means-ends analy-
sis. When there is lots of knowledge in long-term memory, Soar will behave as
an expert as it will have clear preferences about what to do next.

* Goals: Goals are set whenever a decision cannot be made; that is, when
an impasse is reached during the decision phase. Impasses include: ties;
conflicts; no-changes; constraint failures. When an impasse occurs, Soar cre-
ates a subgoal to resolve the impasse and a corresponding performance
context. This results in a hierarchical goal structure. A subgoal is terminat-
ed when either its impasse is resolved or a higher impasse in the stack is
resolved. This architectural feature is called universal subgoaling (Laird et
al., 1986). Goals are functions on behavior (i.e., agents prefer some actions to
others). An agent’s behavior is determined by the principle of rationality, that
is, if the agent knows that one of its actions leads to a preferred situation
according to its goal, then it will intend the preferred action, and this action
will then occur if it is possible (Newell et al., 1991). Agents exhibit goal-direct-
ed behavior, because all actions intend to attain the agent’s goal. Agent’s are
rational, because everything the agent knows serves the agent’s interest.

Radar-Soar

Developing task-related agents in Soar requires determining for each agent
its initial task knowledge, possible actions, and problem spaces. This task
knowledge is instantiated as productions in the agent’s long-term knowledge
base. The actions are instantiated as operators within problem spaces
(which are the arenas for action). As productions are fired the agents solve
problems by moving through a series of problem spaces and within each
space taking those actions that are preferred. A task is formulated using a
problem space by: determining which problem space to adopt; setting a goal
which determines which desired state is adopted; and determining the ini-
tial state. The formulated task is accomplished by: attempting state-operator
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pairs; applying operators; and terminating the current state when the
desired state is reached.

Analysts and managers differ in the problem spaces and actions they
used for communication. Both analysts and managers move between prob-
lem spaces by taking actions in one space which then move the agent to a
subsequent space. Regardless of whether the agent is an analyst or a man-
ager the agent makes its decision within a make-decision space.

The make-decision space is critical to the subject of this chapter. In this
space the agent compares the newly observed information with each of the
models currently in its knowledge base and calculates the level of match for
each model. A model is a description of aircraft features and the values they
take on (a pattern) and a predicted outcome. Each model is represented as
a rule of the form “if pattern X is seen then report Y." (These patterns are
equivalent to the patterns in ELM.) The match is the number of features in
the observed aircraft and the model that have identical values. For example,
for analyst, if the model is that all three features are FRIENDLY and the
observation is that one of the three features is FRIENDLY and the other two
are not, then the match is one. If the agent has N models then N matches are
calculated. The agents preference for a model is based on the match. Specif-
ically, agents prefer models with higher matches and are indifferent among
those with the same level of match. After the matches have been calculated
the agent chooses that model that has the highest match. If there are sever-
al such models the agent randomly chooses among them. Among the equal-
ly preferred models, which model is chosen is determined randomly.
Because the agent stores a model for each problem that it observes, this
results in the agent’s decision having a probability associated with it pro-
portional to the number of times the agent has observed this type of aircraft
with this type of outcome. The more models the agent has the longer it takes
for the agent to make a decision (without chunking). When a model is cho-
sen the agent makes as its decision the choice recommended by this model.

When the current situation is beyond the agent’s knowledge, he or she
will make a decision based on reasoning and not simply by guessing. If an
agent sees an aircraft he or she will compare the features of that aircraft to
the models available (to start with this will only be the initial knowledge).
Then the agent will choose the model that has the closest match to the cur-
rent aircraft. For example, imagine that the agent sees only three aircraft fea-
tures and that the first aircraft seen has the features high, high, medium. The
agent will calculate the match with the existing models. The match with the
first model (all high) is 2, the match with the second model (all medium) is
1, and the match with the third model (all low) is 0. These matches set up a
preference ordering among outcomes such that the first model is preferred
to the second, which is preferred to the third. Thus the agent will choose the
first model and make whatever decision it suggests.
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A second critical space for this model is the update knowledge space.
The update knowledge space is the space where the agent creates new
models. In this space the agent takes its observation and the feedback it has
received and creates a new model. Feedback is of the form the aircraft’s
true status is FRIENDLY (or NEUTRAL, or HOSTILE). Each observation
results in a new model. Each time the agent receives feedback during train-
ing it creates a new model linking the observed pattern with the true state
of the aircraft.

* Analysts: Overall, the analyst’s goal is to resolve all commands for-
warded by the manager. The analyst sees a sequence of commands and
responds to these, and stops when all commands are resolved. These com-
mands direct the analyst in the observation of the airspace and the making
of decisions on the information observed. Each Radar-Soar analyst is imple-
mented with 11 problem spaces connected hierarchically. The top problem
space contains the initial states and the desired state (the goal state). The
goal state is where all commands are resolved. This connects to the com-
munication problem space. In the communication problem space, three
operators are sequentially proposed: the get-command operator; the report
operator; and the get-feedback operator. Each operator in turn calls the cor-
responding problem space. Within the get-command problem space, there
are two kinds of commands from the manager: ‘observe” and “tellme,”
which when accepted by the analyst lead to two different problem spaces,
the observe air-space problem space and the make-decision problem space.
In the observe air-space problem space, two operators are raised. One is the
parse information operator which the analyst uses to analyze the signal cap-
tured from the air-space about the flying object; another is the interpret
operator which the analyst uses to convert each signal to the attribute it rep-
resents. Each operator calls up their corresponding problem space. In the
make-decision problem space, two operators are also proposed, one is the
model-select operator which compares the information of the aircraft to all
the different models in an analyst's long-term memory, then makes a deci-
sion based on the maximurn match; the other operator is the write-decision
operator which the analyst uses to record his or her decision so that it can
be reported to the manager later. Each of these operators also creates their
own problem spaces in which the operators are enacted.

Each analyst sees exactly three pieces of information or features. The
three initial productions (or initial models) are:

If feature-1 = feature-2 = feature-3 = FRIENDLY then decision = FRIENDLY
If feature-1 = feature-2 = feature-3 = NEUTRAL then decision = NEUTRAL
If feature-1 = feature-2 = feature-3 = HOSTILE then decision = HOSTILE

——
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Within the make-decision space the analyst's goal is to suggest a decision
about the true state of the aircraft. Initially the analyst can only compare the
observation with these three models. Thus, initially the analyst will act as a
majority classifier. Over time as new models are built the analyst’s behavior
will come to emulate the lessons of history. However, to the extent that mul-
tiple models are equally valid the analyst will choose between them sto-
chastically.

* Managers: Managers are conceptually similar to analysts. The main differ-
ence is that they have additional communication actions, can command other
agents, and their initial models are based on nine rather than three pieces of
information. The Radar-Soar manager is implemented using six problem
spaces connected hierarchically. The top problem space contains the initial
states and the desired state for the manager. The top problem space, as with
the analyst connects to the communication problem space. Within the com-
munication problem space four operators are sequentially proposed: the give-
command operator; the receiveresponse operator; the make-organizational
decision operator; and get-feedback operator. These four operators in turn
lead to four problem spaces in which the manager carries out its actions.

The manager’s goal is to make the best possible organizational decision
for each of the problems it faces. Each manager sees exactly nine pieces of
information, one for each analyst. The three initial productions are:

If agent-1 = agent-2 =. .. agent-9 = FRIENDLY then organizational decision

= FRIENDLY ’7% soe. bedore

If agent-1=agent-2=. . . agent-9 = NEUTRAL then organizational decision= " [ o}lipsis (hs 0w "‘h
NEUTRAL ok o

If agent-1 = agent-2 =. . . agent-9 = HOSTILE then organizational decision =

HOSTILE

The manager will build up models at the same rate as the analysts, A man-
ager in a blocked resource access structure will build up more models with
similar left hand sides than will managers in distributed resource access
structures. Hence, when a new aircraft is observed there will, on average, be
more models with equivalent matches to the new data. Hence the manager’s
preference ordering will be less likely to suggest a unique outcome and the
manager will be more likely to be indifferent among a wider variety of mod-
els. Consequently, stochastic factors may play a greater role in the organi-
zational outcome when the resource access structure is blocked.

Because Radar-Soar agents act in a stochastic fashion, two agents who
see the same information may respond differently. Thus, in a blocked
resource access structure, even though three analysts see the same infor-
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mation they may not respond in a similar fashion. Consequently, the manag-
er in a Radar-Soar organization, even when the resource access structure is
blocked, may potentially see more patterns than the ELM manager in the
same situation. Whether the potential lack of consensus among analysts
despite common incoming information, in the Radar—Soar situation, will lead
to better decisions is the issue when comparing Radar-Soar and ELM organ-
izations with blocked resource access structures. Whether the lack of con-
sensus among analysts caused by interpretation (differences caused by ana-
lysts in a blocked resource access structure stochastically making different
choices) or caused by different information (differences caused by analysts
in a distributed resource access structure making different choices) leads to
better or worse performance is the issue in contrasting Radar-Soar organi-
zations under the different resource access structures.

Human Agents

A series of experiments were run by Carley and Prietula to examine the
effect of structure. These organizations duplicate the organizations exam-
ined via simulation by Carley.! In the human experiments subjects were run
as either analysts or managers; managers and analysts are not present at the
same time.

Each analyst (subject) was given a series of simple “radar classification
problems.” Each problem involves two simple steps. Step 1, each analyst
receives three parameter readings about an aircraft in the air space, such as:
SPEED = Low, RANGE = Short, SIZE = Small. Step 2, on the basis of this infor-
mation, each analyst classifies the aircraft as either: HOSTILE, NEUTRAL, or
FRIENDLY. Information was given to the subjects and collected from them
electronically. In Fig. 20.2 an illustrative display is shown. After the subject
makes his or her decision, he or she is asked to provide an estimate of con-
fidence in that decision. The subject’s decision, speed, and confidence are
stored.

The same procedure is repeated for the subjects acting as managers.
There are two differences between the analyst and managerial condition.
First, in the analyst condition the subjects receive raw information on the
aircraft. Whereas, in the managerial condition the subjects receive the deci-
sions of a set of nine human subjects. Second, in the analyst condition the
subjects are told that their decision is not the final organizational decision,
that they are working as part of a team, and that they are receiving reduced
information about aircraft from scanners. In contrast, the subjects acting as

“The human experimental data reported on here is a subset of that collected by Carley and
Prietula. The automated data collection procedure was written by Prietula.
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FIG. 20.2. [llustrative data collection screen.

managers are told that their decision is the final organizational decision,
that they are receiving information from a set of nine analysts as to what
those analysts think is the true state of the aircraft.

PERFORMANCE

Performance is measured at the organizational level. Each organization for
each problem makes a single decision. For teams with voting the organiza-
tional decision is the majority vote of the group. For teams with manager the
organizational decision is the decision made by the manager. For each prob-
lem there is a “correct” answer, the true state of the aircraft. Performance is
measured in terms of the number of times the organizational decision is the
correct decision.

Overall performance is defined as the percentage of decisions made by
the organization that match the true state of the aircraft. For example, a
match occurs if the organizational decision is that the aircraft is FRIENDLY
and the true state of the aircraft is FRIENDLY. A second measure is “slight
error’—the percentage of decisions that are one step different from the true
state of the aircraft. This can happen, for example, when the true state of the
aircraft is NEUTRAL, and the organization thinks it is either FRIENDLY or
HOSTILE. A third measure is “severe error"—the percentage of the decisions
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that are two steps different from the true state of the aircraft. This can hap-
pen, for example, when the true state of the aircraft is FRIENDLY and the
organization thinks it is HOSTILE. Table 20.1 shows the mapping between
organizational decision, true state, and these measures. These three meas-
ures are calculated separately for each phase. Thus, the percentage in each
phase is based on 30 decisions.

RESEARCH DESIGN

A series of organizations varying in their coordination structure and the cog-
nitive structure of the agent were analyzed. A total of 12 organizations were
examined, four coordination schemes (two organizational structures by two
resource access structures) by three types of agents. All agents, regardless
of the organization or cognitive abilities are pretrained on a random sample
of 10 problems. Each organization was then faced with a series of 60 prob-
lems/aircrafts. These 60 cases are divided into two phases, each of which
has 30 cases. The difference between the first phase and second phase is
that during the first phase the agents are learning and during the second
phase the agents are not learning. During the first phase the agents receive
feedback and during the second phase they do not. The 60 problems are
drawn randomly from the possible 19,683, with the constraint that for each
set of 30 one third of them have a true state of FRIENDLY, another one third
have a true state of NEUTRAL, and the final one third have a true state of
HOSTILE. All organizations get the same set of problems. Analyses using
ELM reveal that these problems are typical of the overall set of 19,683 prob-
lems; that is, performance is not significantly different on this set than it is
for the overall set. This suggests that the results should generalize to others
sets of problems for this task.

TABLE 20.1
Definition of Organizational Performance Measures

O
Decision True State

FRIENDLY NEUTRAL HOSTILE
NEUTRAL correct onc away two away
NEUTRAL one away correct one away
HOSTILE two away one away correct
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RESULTS

Overall the organizations examined make the correct decision 58.1% of the
time. Further, these organizations make slight errors (off by one) 34.7% of
the time, and a severe error (off by two) 7.2% of the time. The agent’s nature
does affect the organization's performance (see Table 20.2). First, all agents
do better than simply guessing. Secondly, ELM agents are more similar to
Human agents than are Soar agents. Further, cognitively sophisticated
agents tend to make fewer severe errors. On the one hand, what these
results are suggesting is simply that humans are not particularly well suited
to this task, in general, and that information aids that admit keeping track of
past performance (as is done in ELM or Soar) improve organizational per-
formance. A supporting point is that ELM agents who were trained not just
on the training set, but on all 19,683 possible tasks, have higher performance
than any of the agents shown here. A corroborating point is made by
researchers interested in technology to support group decision making
(Olson, 1989). However, these information aids may aid in overall perform-
ance but they may serve to mask critical failures that humans appear to pick
up on. On the other hand, and more to the point of this chapter, what these
results are suggesting is that organizational performance can be dramati-
cally affected by how the agents in the organization are modeled.

In Table 20.2 we see that organizations of Soar agents tend to outperform
organizations of either ELM or Human agents. This is true even though there
is no transference of learned productions among Soar agents. The reason has
to do with the variance among the individual agents. Soar agents, because
they are choosing among rules in a stochastic fashion, can see exactly the
same information and yet make slightly different decisions. ELM agents, on
the other hand, given similar experiences, will make exactly the same deci-

TABLE 20.2
Agents and Organizational Behavior
g:lum'or

Overall Light Error Severe Error
Agent Performance (One Away) (Two Away)
ELM 0.567 0338 0.096

(0.497) 0.474) (0.295)
Soar 0.654 0317 0.029

0477) (0.466) (0.169)
Human 0.521 0.388 : 0.092

(0.501) (0.488) (0.289)
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sion given the same information. Human agents, see exactly the same infor-
mation and yet can make very different decisions. Thus, these results are
suggesting that slight variations in individual response given the same infor-
mation can lead to improved organizational decisions; whereas, extreme
variation in individual response can lead to worse organizational decisions.

Overall, these results suggest that researchers interested in exploring
organizational behavior resulting from agent behavior need to be careful
about how they model the agents. Such a conclusion is of little import, how-
ever, if the difference in organizational behavior is simply scaled by agent
type. In other words, if regardless of the type of coordination scheme or of
whether or not the agents are undergoing training, organizational perform-
ance for organizations of Soar agents was always proportionally higher than
that for ELM agents, which was in turn always proportionally higher than
that for Human agents, the impact of the agent model would be less critical
to the study of organizational behavior. Whereas, if there are interaction
effects among agent cognition, coordination, and training, then in fact the
model of the agent is critical to the study of organizational behavior.

In fact, there are interaction effects. All organizations, regardless of the
agents’ cognitive capabilities exhibit poorer performance when there is a
manager (see Fig. 20.3). This is due largely to the fact that as decisions move
up the hierarchy information is lost. This effect is quite robust and has been
discussed by numerous organizational theorists using terms such as infor-

Performance

1.0000

0.8666

0.7332 F

0.5998 |- Soar
Human

0.4664 |-
ELM

0.3330 L 1

Voting Manager
Organizational Structure

FIG. 20.3. Interaction between organizational structure and cognition.
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mation condensation (Jablin, Putnam, Roberts, & Porter, 1986) and uncertain-
ty absorption (March & Simon, 1958). Additionally, this analysis shows that
organizations of ELM agents are relatively more disadvantaged by the man-
ager than are Soar organizations which are relatively more disadvantaged
than are human organizations. Part of ELM’s relative disadvantage comes
from the fact that the managers have rarely observed the patterns before
and so are often guessing. However, organizations of ELM agents where the
managers have seen all possible patterns still exhibit a greater reduction in
performance when they have a manager than do organizations of other
types of agents. The more cognitively sophisticated managers, Soar and
human, do relatively better at this task than the ELM managers because they
are not overcommitted to the lessons of history and can respond in a sto-
chastic or “strategic” fashion. This ability, to overcome history through the
fortuitous guess, causes organizations of these agents to be less disadvan-
taged by the information loss inherent in more hierarchical structures.
There are also interaction effects between the resource access structure
and agent cognition. In particular, while the organizations of artificial agents
tend to exhibit lower performance when information is distributed, organi-
zations of humans tend to do better. Soar organizations are less disadvan-
taged by a distributed structure than are ELM organizations. The potential
lack of consensus among analysts despite common incoming information
results in worse decisions for Radar-Soar and ELM organizations; but, bet-
ter decisions for human organizations. Further, Soar organizations are less

Performance
1.0000

0.8666 |-
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Blocked Distributed
Resource Access Structure

FIG. 20.4. Interaction between resource access structure and cognition.

——



Olson chpt 20.gxd 10/27/00 4:29 PM Page $

20. ORGANIZATIONAL PERFORMANCE 615

disadvantaged by this lack of consensus, than are ELM organizations, as it
occurs in both resource access structures. In the blocked structure the lack
of consensus among Radar-Soar analysts is caused by interpretation (ana-
lysts seeing the same information but stochastically making different choic-
es). In the distributed structure the lack of consensus among Radar-Soar
analysts is caused by different information (analysts see different informa-
tion and make different choices). For Soar agents the lack of consensus, cou-
pled with the ability to respond stochastically results in overall better per-
formance. For ELM, who learn slowly and respond consistently, the low level
of training results in worse performance in a distributed environment
because on average, more of the agents in the organizations will be guess-
ing. In fact, had the ELM agents been fully trained (not shown) then the ELM
organization, like the human organization, would have had an increase in
performance when the resource access structure was distributed. Humans
can take advantage of the greater resolution afforded by the distributed
structure as can more fully trained ELM organizations.

Now consider these impacts only in organizations with managers. In Fig.
20.5, the relative impact of the different types of cognitive agents under
these resource schemes for just teams with managers are shown. As note
previously, ELM organizations when they have managers, the managers
have less to learn in a blocked than in a distributed structure. As a result,

Performance
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FIG. 20.5. Interaction between resource access structure and cognition in
teams with managers.
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they should and do, do better in this structure when they are only minimal-
ly trained as in this experiment. This lowering in performance for the ELM
organizations is due simply to lack of training. Soar and human organiza-
tions can overcome this in two ways. First, differences in agent interpreta-
tion by the analysts (which should lead to the problem being “harder” from
the manager’s standpoint as it increases the number of patterns actually
improves performance as the organization does not get trapped by an erro-
neous understanding of historical precedence as do the ELM organizations.

TRAINING

Now consider the impact of training. Both ELM and Soar organizations do
better in Phase two when they are not receiving feedback than they did in
Phase one when they did receive feedback. This is caused, not by some per-
verse ability to do better in the absence of feedback but simply because the
only impact feedback to these artificial organizations into alter what deci-
sions they have made. During phase one, the individuals in all organizations
are learning. Feedback moves the agents, whether human, Soar, or ELM, out
of the realm of guessing and improves their accuracy. Soar and ELM organi-
zations do better in phase two as they remember the lessons of phase one
and are less likely to guess during the second phase than the first. The
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FIG. 20.6. Impact of training.
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absence of feedback keeps them from learning more but does not inhibit
them from applying the lessons of history. In contrast, within human organ-
izations feedback appears to be necessary both for learning and for con-
vincing the humans to continue to apply the lessons of history.

DISCUSSION

In interpreting the foregoing results the reader should keep in mind the fol-
lowing caveats. First, these results are based on only 30 problems per phase
where the 30 problems were chosen at random from a set of 19,683 possible
problems. This is a very small proportion of the possible problems. Future
work should consider increasing the sample size, or running the overall
study multiple times with different sample problems.

Second, the results for each type of agent are based on a single organiza-
tion. For ELM, this is not a problem as all ELM organizations faced with the
same set of problems in the same order will respond in the same way. For
Soar, this is more of a problem as the stochastic nature of the decision mak-
ing will lead to slight differences in performance across different Soar organi-
zations. For Humans, this is yet more of a problem. That is, we expect that
there is even greater variance in the behavior of individual humans than there
is in behavior of Soar agents and certainly more than in the behavior of ELM
agents. Future studies should run a Monte-Carlo analysis for Soar organiza-
tions and should average the behavior for multiple Human organizations.

Third, the results presented have been at the organizational level. They
provide no insight into whether at the individual level Soar agents acts more
like Human agents than do ELM agents. Future work should explore this
issue through a more detailed analysis of individual action. Such an explo-
ration could look at both individual performance, and also at the impact of
the order of decisions on the specific learning pattern achieved by the vari-
ous types of agents. Such analyses would provide greater insight into how
agent level actions change in response to cognition and coordination.

Fourth, the radar task that we used is highly stylized and differs from a
real radar task in interesting ways. For example, there is no autocorrelation
among aircraft features. Whereas, in reality these features tend to clump.
For example, aircraft with weapons emission signals also are often traveling
very fast. At issue Is whether this lack of clumpiness makes the problem rel-
atively more difficult for humans than for the simulated agents. The data we
have collected cannot completely address this question. However, when the
presence of features is not uniform (as in this study) and when sets of fea-
tures tend to go together in predicting some outcome the problem is “easi-
er” for humans. Certainly, for ELM agents, such clumpiness or bias reduces
uncertainty and increases performance (Carley & Lin, 1995). Given the Soar
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agent model, it will also be the case that for Soar agents clumpiness will
improve performance. Because the performance of all agents will improve in
such a situation, it is not clear whether in fact humans will be relatively more
advantaged. Future research might address this question.

All these caveats aside, the import of this study is that it demonstrates that
the model of cognition affects organizational performance results in complex
and interesting ways, and that interactions between the organizational struc-
ture and the model of cognition are important in determining overall organi-
zational performance. This research on coordination using computational
models differs from other work in this venue in two ways. First, studies of
coordination that employ computational models of agents rarely contrast the
behavior of the simulated agents with humans (Durfee, 1988). Such a contrast
is important when the goal is predicting actual organization behavior. Here-
in, a basic attempt at making such comparisons is made. Second, many of the
computational studies of coordination employ large models that emulate the
organizations in question (Gasser & Majchrzak, 1992, 1994; Levitt et al., 1994)
rather than examine the behavior of highly stylized coordination schemes
such as those examined here. The models examined herein are less “accu-
rate” in describing organizational coordination, but are better models of indi-
vidual cognition. Important advances in understanding organizational per-
formance can be made by contrasting the results from the two styles of
computational modeling. Future studies should consider extending these
results by contrasting alternate models of individual behavior and by attend-
ing to the limits of the current study.

CONCLUSION

This research suggests that complex adaptive agent models can be fruitful-
ly applied to the study of organizations. Two different complex adaptive
agent models of humans were constructed, these agent models were placed
within models of organizational coordination, and the resulting organiza-
tional performance was examined. These simulated results were compared ’
with the actual performance of humans engaged in the same coordination
structures. This combination of simulation and human experiments is par-
ticularly valuable in understanding the veridicality of the computational
models. Moreover, this combination is valuable in understanding how the
veridicality of the agent model interacts with structural and task changes in
affecting organizational performance. Consider the following two examples.

Clearly, the forgoing analysis supports previous research that teams out-
perform hierarchies (regardless of the type of agent) and that organizations
of artificlal agents often outperform organizations of humans. More impor-
tantly, this analysis refines these points by pointing to important interactions
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between structure and cognition. For example, for managers, the ability to
respond stochastically, to make “strategic” decisions, improves performance.
The result of these “guesses,” is that differences in performance due to the
organizational structure are minimized when the agents in the organizations
are more cognitively capable. The fortuitous guess has advantages. This
compliments earlier work by Carley and Lin (1995) showing that factors facil-
itating managerial decision making, such as bias in the task, serve not only to
improve performance but to mitigate the impact of structure. Ouchi (1980)
suggested that as task complexity and information uncertainty increases new
forms of coordination may be needed. This chapter, in contrast, suggests that
new coordination qua mechanisms for linking individuals together, may have
little impact as the agents in these organizations are generally intelligent. Per-
formance should become not just a function of the coordination scheme link-
ing individuals (Malone, 1986); but also, the specific messages being commu-
nicated among linked positions. Thus improvements in coordination might
be achievable not through structure, but through content.

Previous research suggested that specialization, much as we see in the
blocked structure, is disadvantageous. For instance, in blocked structures
agents develop unique skills, perspectives, and ways of thinking (Brewer &
Kramer, 1985) that can reduce the group's flexibility in a crisis (Carley, 1991)
and exacerbate conflict when it occurs (Dearborn & Simon, 1958; Jablin, 1979;
Monge, Rothman, Eisenberg, Miller, & Kirste, 1985). This suggests that con-
sensus is valuable to the organization. In this chapter, however, it was found
that for organizations the lack of consensus among agents caused by inter-
pretation (different decision on same information) results in improved per-
formance; but the lack of consensus among agents caused by resolution
(seeing different information) tends to degrade performance. In other words
a shared perspective, whether or not it results in consensus seems to be
important in increasing performance. However, whether the observed
results are actually the result of having a shared perspective, or a function
of the degree of disagreement, needs further study.

Complex interactions among agent cognitive capacity, task complexity,
and organizational design affect overall organizational performance. The
implication of this finding is that researchers must be very careful in inter-
preting results of studies of organizational performance based on modeling
organizations as collections of intelligent adaptive agents as such results
maybe highly dependent on the agent model.
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