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ABSTRACT 
Open source software systems are important components of 
many business software applications. Field defect 
predictions for open source software systems may allow 
organizations to make informed decisions regarding open 
source software components. In this paper, we remotely 
measure and analyze predictors (metrics available before 
release) mined from established data sources (the code 
repository and the request tracking system) as well as a 
novel source of data (mailing list archives) for nine 
releases of OpenBSD. First, we attempt to predict field 
defects by extending a software reliability model fitted to 
development defects. We find this approach to be 
infeasible, which motivates examining metrics-based field 
defect prediction. Then, we evaluate 139 predictors using 
established statistical methods: Kendall’ s rank correlation, 
Pearson’s rank correlation, and forward AIC model 
selection. The metrics we collect include product metrics, 
development metrics, deployment and usage metrics, and 
software and hardware configurations metrics. We find the 
number of messages to the technical discussion mailing list 
during the development period (a deployment and usage 
metric captured from mailing list archives) to be the best 
predictor of field defects. Our work identifies predictors of 
field defects in commonly available data sources for open 
source software systems and is a step towards metrics-
based field defect prediction for quantitatively-based 
decision making regarding open source software 
components. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – Process metrics, 
Product  metrics, Software science 
D.2.9 [Software Engineering]: Management – Software quality 
assurance 

General Terms 
Measurement, Documentation, Reliability, Experimentation  

Keywords 
Field defect prediction, open source software, reliability 
modeling, CVS repository, request tracking system, mailing list 
archives, deployment and usage metrics, software and hardware 
configurations metrics 

1. INTRODUCTION 
Open source software systems such as operating systems 
are important components of many business software 
applications. Being able to predict field defects (customer 
reported software problems requiring developer 
intervention to resolve) may allow existing quantitatively-
based decision making methods to be used to: 

1. Help organizations that are seeking to adopt open source 
software components to make informed choices between 
candidates 

2. Help organizations using open source software 
components to decide whether they should adopt the 
latest release 

3. Help organizations that adopt a release to better manage 
resources to deal with possible defects 

In this paper, we present a case study of the open source 
operating system OpenBSD in which we try two different 
approaches to predicting field defects: model fitting and a 
metrics-based approach.  

Prior work by Li et. al. [16] shows that the Weibull model 
is the preferred model for modeling the defect occurrence 
pattern of OpenBSD. In the work we report here, we 
attempt to predict field defects by extending a Weibull 
model from development to the field. We find that it is not 
possible to fit an acceptable Weibull model to development 
defects. The release dates of OpenBSD are consistently 
around the time when the rate of defect occurrences peaks. 
Hence, there is insufficient data to fit a Weibull model. This 
result is consistent with Kenny’s finding in [7]. Our finding 
that it is not possible to fit a Weibull model until the rate of 
defect occurrences establishes the need for metrics-based 
field defect prediction. 
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Identifying and collecting predictors (metrics available 
before release) are pre-requisites activities for metrics-
based field defect prediction. We attempt first steps toward 
a metrics-based field defect prediction model by identifying 
and collecting potentially important predictors of field 
defects for OpenBSD. Prior work has identified important 
predictors of field defects and has predicted field defects 
for commercial software systems (e.g. Khoshgoftaar et. al. 
[9], Ostrand et. al. [29], Mockus et. al. [22]). The categories 
of predictors used in prior work are product metrics, 
development metrics, deployment and usage (DU) metrics, 
and software and hardware configurations (SH) metrics. 
However, prior work has not examined open source 
software systems, has not examined all categories of 
predictors simultaneously, and has not identified commonly 
available data sources for each category of predictor. In this 
paper, we examine predictors of field defects for an open 
source software system.   

Our experiments show it is possible to collect product, 
development, DU, and SH predictors from data sources 
commonly available for open source projects. We identify 
seven important predictors collected from mailing list 
archives and the CVS code repository. Somewhat 
surprisingly, the most important predictor for the OpenBSD 
project is the number of messages to the technical 
discussion mailing list during the development period, 
which is a deployment and usage metric collected from 
mailing list archives.  

Section 2 discusses prior work and motivates our work. 
Section 3 describes OpenBSD. Section 4 and 5 discuss our 
data collection method and data analysis method. Section 6 
presents the results. Section 7 contains a discussion of our 
findings. Section 8 is the conclusion. 

2. PRIOR WORK AND MOTIVATION 
In this section, we motivate our work by discussing prior 
work. We define field defects as user-reported code-related 
problems requiring programmer intervention to correct. 
This is the same definition used by Li et. al. in [16]. We 
discuss software reliability modeling, software metrics as 
predictors, and methods used to establish predictors as 
important.  

2.1 Software reliability modeling 
Prior work by Li et. al. [16] shows that it is possible to 
model the rate of field defect occurrences of OpenBSD 
using the Weibull model. Software reliability modeling 
research summarized by Lyu in [17] suggests that it may be 
possible to predict field defects by fitting a Weibull model 
to development defects and then extending the model to the 
field. This leads to our first question:  

Is it possible to predict field defects by fitting a Weibull 
model to development defects and then extending the 
model to the field? 

Li et. al. use non-linear least squares (NLS) regression to fit 
defect occurrence data to the Weibull model. We will use 
the same regression technique to fit a Weibull model to 
development defects.  

2.2 Software metrics as predictors 
Metrics are defined by Fenton and Pfleeger in [4] as outputs 
of measurements, where measurement is defined as the 
process by which values are assigned to attributes of entities 
in the real world in such a way as to describe them 
according to clearly defined rules. Metrics available before 
release are predictors, which can be used to predict field 
defects. 

We categorize predictors used in prior work using an 
augmented version of the categorization schemes used by 
Fenton and Pfleeger in [4], Khoshgoftaar et. al. in [15], and 
the IEEE standard for software quality metrics methodology 
[3]: 

• Product metrics: metrics that measure the attributes of 
any intermediate or final product of the software 
development process [3]. The product metrics used in 
prior work are computed using a snapshot of the code. 
Product metrics have been shown to be important 
predictors by studies such as Khoshgoftaar et. al. [10], 
Jones et. al. [6], Khoshgoftaar et. al. [11], Khoshgoftaar 
et. al. [15], and Khoshgoftaar et. al. [13]. 

• Development metrics: metrics that measure attributes of 
the development process. The development metrics used 
in prior work are usually computed using information in 
the change management system or the CVS code 
repository. Development metrics have been shown to be 
important predictors by studies such as Khoshgoftaar et. 
al. [10], Khoshgoftaar et. al. [11], Khoshgoftaar et. al. 
[15], and Khoshgoftaar  et. al. [13]. 

• Deployment and usage metrics (DU): metrics that 
measure attributes of deployment of the software system 
and usage in the field. Little prior work has examined DU 
metrics, and no data source is consistently used. DU 
metrics have been shown to be important predictors by 
studies such as Jones et. al. [6], Khoshgoftaar et. al. [11], 
Khoshgoftaar et. al. [15], Khoshgoftaar et. al. [13], and 
Mockus et. al. [22]. 

• Software and hardware configurations metrics (SH): 
metrics that measure attributes of the software and 
hardware systems that interact with the software system 
in the field. Little prior work has examined SH metrics 
and no data source is consistently used. SH metrics have 
been shown to be important predictors by Mockus et. al. 
[22].  



 

Prior work has examined only commercial software 
systems, and no prior work has examined predictors in all 
the categories simultaneously. Product and development 
predictors commonly used in prior work can be computed 
for open source software systems since the data sources 
used to compute the predictors (e.g. snapshots of the code 
and information in the CVS code repositories) are 
commonly available for open source software projects. 
However, prior work examining DU and SH metrics has 
had accurate information about system deployment and the 
users, such as deployment logs and usage profiles (e.g. 
Khoshgoftaar et. al. [11]) or information from an customer 
monitoring system (Mockus et. al. [22]). The data sources 
used in those studies are not available for OpenBSD; 
therefore, the DU and SH metrics used in prior work are not 
available. These concerns lead us to two additional 
questions: 

Is it possible to collect DU, and SH predictors using data 
sources commonly available for open source software 
projects? 

What are the important predictors of field defects for 
OpenBSD?  

2.3 Methods of establishing the importance of 
predictors 
Three methods are commonly used to establish a predictor 
as important: 

1. Show high correlation between the predictor and field 
defects. This method is recommended by IEEE [3] and is 
used by Ohlsson and Alberg [25] and Ostrand and 
Weyuker [28].  

2. Show that the predictor is selected using a model 
selection method. This method is used by Jones et. al. [6]  
and Mockus et. al.[22]. 

3. Show that the accuracy of predictions improves with the 
predictor included in the prediction model. This method 
is used by Khoshgoftaar et. al. [10] and Jones et. al. [6]. 

We use methods 1 and 2 to determine important predictors 
in this paper. Since we examine predictors that may be 
included in a metrics-based field defect prediction model 
but do not actually produce a prediction model, we do not 
use method 3.  

3. SYSTEM DESCRIPTION 
In this section, we present the open source software system 
OpenBSD. We present project details, information on the 
code repository, information on the request tracking system, 
and information on the mailing list archives. 

3.1 Project details 
OpenBSD is a Unix-style operating system written 
primarily in C. The project dates back to 1995 and has 
developers (i.e. users who have the write access rights to 

the CVS code repository) in North America, South 
America, Europe, Australia, and Asia. This project is 
similar to the FreeBSD project examined by Dinh-Trong 
and Bieman [33].  

We examine the project between approximately 1998 and 
2004. During that time, there were 10 releases (of which we 
examine 9, as we explain below) and the CVS code 
repository documented development changes by 159 
different developers.  

The OpenBSD project uses the Berkley copyrights. The 
Berkley copyrights retain the rights of the copyright holder, 
while imposing minimal conditions on the use of the 
copyrighted material [26]; therefore, OpenBSD has been 
incorporated into several commercial products.  

The OpenBSD project puts out a release approximately 
every six months. The release dates are published on the 
web [26].  

3.2 The code repository 
The OpenBSD project manages its source code using a 
CVS code repository. Developers are users who have both 
read and write access rights. Someone becomes a 
“developer”  (i.e. getting an account on the main server) by 
“doing some good work and showing that he/she can work 
with the team” [26]. Everyone else has read access to the 
CVS code repository.  

3.3 The request tracking system 
The OpenBSD project uses a problem tracking system. 
Anyone can report a problem by using the sendbug 
command built into OpenBSD [26]. Each problem report is 
assigned a unique number and stored in the bugs database. 
The problem report can be tracked on-line using the unique 
number. A problem report can be assigned one of four 
classes: sw-bug (software bug), doc-bug (documentation 
bug), change request, and support. All problem reports are 
initially marked as open, and then a developer acts on the 
report and changes the status accordingly.  

Our measure of defects for OpenBSD is user submitted 
problem reports in the request tracking system of the class 
software bugs. We count each problem report (which may 
not be unique) because a user deemed the problem 
important enough to report. These software related problem 
reports require a developer’s intervention to resolve. This 
measure of defects is used by Li et. al. in [16]. Defects that 
occur after the release date are considered field defects. 
Defects that occur during the development and test period 
are considered development defects. 

3.4 Mailing lists 
The OpenBSD project has 23 mailing lists in five 
categories:  

• General interest lists 

• Developer’s lists 



 

• Platform specific lists 

• CVS changes mailing lists 

• CTM (emails out deltas to the source).  

Not all lists are active and not all lists are archived 
consistently. The two most complete archives are at 
sigmasoft [31] and MARC [18].  

4. DATA COLLECTION 
This section describes the data collection process we used 
to extract data from the request tracking system, the CVS 
repository, and the mailing lists. It also describes the 
predictors we collect.  

We consider the published date of release (announced on 
the OpenBSD website) rounded to the nearest month to be 
the release date for the release. We round the date to the 
nearest month due to the time it takes to install the 
operating system, use the system, and discover and report a 
problem. Someone reporting a bug right after the un-
rounded release date is unlikely to be using the latest 
release. This is the same approach taken by Mockus et. al. 
in [22]. 

We consider the date of the first reported defect rounded to 
the nearest month to be the start of development. The 
development period is then the duration between the start of 
development and the release date. 

4.1 The request tracking system  
We wrote Java programs and perl programs to download 
each problem report from the OpenBSD website and parse 
the report to extract the report open date, the class (e.g. sw-
bug, doc-bug, or change request), the release reported 
against, and the machine (i.e. the hardware configuration 
such as i386 or sparc).  

There was one anomaly. Three months of data were missing 
between August 2002 and October 2002. We verified this 
by examining the bugs mailing list archive (i.e. the mailing 
lists that records messages to the request tracking system). 
The mailing list archive showed no bugs recorded during 
that time interval even though there is activity on the bugs 
mailing list, which indicates that problems did occur. This 
happened during development and deployment of release 
3.2. As a result, we did not examine release 3.2.  

4.2 The CVS repository 
We used the CVS checkout command to download the 
tagged release version of the source code from the CVS 
repository for releases 2.4 to 3.3 (except release 3.2).  

We used four metrics tools and several scripts to compute 
product metrics from the C source files. The tools we used 
were: 

• RSM by M Squared Technologies [23] 

• SourceMonitor by Campwood Software [1] 

• c_count written by Thomas E. Dickey [2] 

• metrics written by Brian Renaud [19] 

We arrived at these tools by conducting a web search, 
asking experts for help, and posting to the comp.software-
eng and comp.software.measurement newsgroups. We 
evaluated the collection of tools and selected those listed 
above.  

We encountered an existing CVS bug when downloading 
the source code for release 2.4 and release 2.5. As a result, 
we had to bypass a directory that contained HTML help 
documents. We also encountered 10 files with coding 
anomalies that the metrics tools could not resolve. We 
skipped those files for all releases. These files constitute 
less than .1% of the number of C source files. 

We used the CVS log command to obtain information on 
changes to the source code. We used the log information 
between the start of development of release 2.4 and the 
release date of release 3.3. There were 97,566 committed 
changes in the development periods of the nine releases. 

4.3 Mailing list archives 
We wrote java programs to extract the number of messages 
posted each month in the mailing lists archives.   

Not all lists were archived consistently and not all lists were 
active. Consistent data was not available for many of the 
lists before 1998; therefore, we only considered releases 
after 1998. When an archive showed no messages for a 
certain month, we were often unable to determine if no 
messages were posted or if the archive failed to properly 
record messages (both of which occur). Therefore, lists that 
had intervals in which no messages were posted for more 
than three months were not considered.  

4.4 Metrics 
We provide a summary of the 139 predictors we collected. 
Due to space limitation, we do not present all the metrics. 

4.4.1 Product metrics 
We collected 101 product metrics using snapshots of the 
code from the CVS code repository. Due to tooling 
constraints, we did not collect all the product metrics used 
in the literature. However, we did collect metrics that 
covered all of the dimensions of variation in the product 
metrics identified by prior work. Munson and Khoshgoftaar 
identified the dimensions of product metrics (i.e. 
components of variance captured by product predictors) 
used in the literature using principal component analysis in 
[24]. Principal component analysis captures the dimensions 
of variance in a group of predictors. Predictors that load on 
the same principal component capture the same dimension 
of variance and are highly correlated with each other [24]; 
therefore, it may be sufficient to use a predictor from each 
dimension. We give the dimensions and examples of the 
product metrics we used to capture the variation in the 



 

dimension in table 1. The product metrics we used had been 
shown to load on the principal component by Munson and 
Khoshgoftaar in [24] 

Table 1. Product metrics 

Dimension Product metrics used in this study 

Control: metrics 
related the flow of 
program control 

Cyclo: Cyclomatic complexity 
KWbreak: Number of occurrences of the 
key word break (which is equivalent to 
possible program knot count as shown by 
Khoshgoftaar and Szabo [14]) 

Action: number of 
distinct operations 
and statements 

UOpand: Unique operands 
UOpator: Unique operators 

Size: size or item 
count of a program  

Statements: Total number of statements 
per file summed across all files 
LOC: Lines of code per file summed 
across all files 

Effort: Halstead’s 
effort metrics 

PGeffort: Halstead’s effort metric per file 
summed across all files 

Modularity: degree 
of modularity of a 
program 

DeepNest: Number of statements at 
nesting level >9 per file summed across 
all files 

4.4.2 Development metrics 
We collected 22 development metrics. Due to differences in 
the style of development, we were not able to collect the 
same development metrics used in the literature. However, 
we tried to collect metrics that captured the same intent as 
the metrics used in the literature in our study. We collected 
metrics that cover all of the independent dimensions of 
variation in the development metrics identified by 
Khoshgoftaar et. al. in [13] and [15] Khoshgoftaar et. al. 
used principal component analysis to identify the 
dimensions of  variation in their development metrics in 
[13] and [15]. Khoshgoftaar et. al. examined a commercial 
software system while we examined an open source 
software system; therefore, we made changes to the metrics 
to account for the differences between commercial and 
open source software systems. We offer an interpretation of 
the dimensions captured by each principal component 
(which is not offered by Khoshgoftaar et. al.), examples of 
the metrics belonging to each dimension in [13] and [15], 
and the metrics we used to capture the same sources of 
variance in table 2. We made one major modification. Since 
OpenBSD did not distinguish between designers and 
testers, we combined the dimensions identified by 
Khoshgoftaar et. al. that separated designers and testers. 
We believe our metrics captured the same source of 
variation as the referenced metrics since the only changes 
we made were to accommodate differences between 
commercial and open source styles of development. 
(Metrics collected using the CVS code repository are 
indicated by ‘CVS’, ones collected using the request 
tracking system are indicated by ‘RTS’, and ones collected 
using mailing list archives are indicated by ‘MLA’.) 

 

Table 2. Development metrics  

Dimensions  
[13] and [15] 

Example of 
metrics in 

dimensions [13] 

Development metrics 
used in this study 

Dimension 1: 
the number of 
changes 

Total number of 
changes to the 
code for any 
reason 

TotalUpdate (CVS): 
Total number of updates 
during the development 
period  

Dimension 2: 
experience of 
the people 
making changes 

Number of 
updates to this 
module by 
designers who 
had 10 or less 
total updates in 
entire company 
career 

BotHalfC (CVS): 
Number of different 
developers making 
changes to files that are c 
source files during the 
development period who 
are in the bottom 50% of 
all developers ranked 
based on the number of 
changes  

Dimension 3: 
amount of 
change to the 
code 

Net increase in 
lines of code   

Difference (CVS): Lines 
added to c source files 
minus  lines deleted from 
c source files during the 
development period  

Dimension  
4 and 7:  
problems found 
during the 
development of 
the prior release 

Number of 
problems fixed 
that were found 
by designers or 
during beta 
testing in the 
prior release 

PreBugsPrev (RTS): 
Total number of field 
defects reported during 
the development period 
of the previous release  

Dimension 5 : 
field problems 
found by 
customers in 
prior releases 

Number of 
problems fixed 
that were found 
by customer in 
the prior release 

PreBugsAll (RTS): Total 
number of field defects 
reported during the 
development period in all 
releases  
 

Dimension 
6 and 8: 
problems found 
during the 
development of 
the current 
release 

Number of 
problems found 
by designers  or 
during beta 
testing in the 
current release 

PreBugsCurrent (RTS): 
Number of field defects 
reported against the 
release under 
development during the 
development period  

4.4.3 Deployment and usage metrics 
We collected nine deployment and usage metrics. The 
metrics we collected fall into two categories: mailing list 
predictors and request tracking system predictors. Mailing 
list predictors counted the number of messages to non-
hardware related mailing lists during development. We 
believed our mailing list predictors captured characteristics 
of deployment and usage because they quantified the 
amount of interest in OpenBSD, which might be related to 
how many systems were deployed and how much the 
systems were used. Request tracking predictors counted the 
number of problem reports during development that were 
not defects. We believed our request tracking system 
predictors captured characteristics of deployment and usage 
because users had to install OpenBSD and use the system 



 

before they could report a problem. We present the two 
categories, examples of predictors in the categories, and 
short justifications for the predictors in table 3.  

Table 3. Deployment and usage metrics  

Category 
of 

predictors 

DU metrics used in this  
study 

Justification 

Mailing list 
predictors 

MiscMailings (MLA): 
number of messages to the 
miscellaneous mailing list, a 
general interest mailing list, 
during the development 
period  
 
AdvocayMailings (MLA): 
number of messages to the 
advocacy mailing list (which 
promotes the use of 
OpenBSD), a general interest 
mailing list, during the 
development period  

These metrics 
quantify the amount 
of interest in 
OpenBSD, which 
may be related to 
how many systems 
are deployed and 
how much the 
systems are used. 

Request 
tracking 
system 
predictors 
 

ChangeRequests (RTS): 
Number of change requests 
during the development 
period  
 
DocBugs (RTS): Number of 
reported documentation 
problems during the 
development period  

These metrics 
quantify the amount 
of deployment and 
usage because users 
must install 
OpenBSD and use 
the system before 
they can request 
changes or report 
documentation 
problems 

4.4.4 Software and hardware configurations metrics 
We collected seven software and hardware configurations 
metrics in all. The metrics we collected fall into two 
categories: mailing list predictors and request tracking 
system predictors. Mailing list predictors counted the 
number of messages to hardware specific mailing lists 
during development. We believed our mailing list 
predictors captured characteristics of software and 
hardware configurations because they reflect the amount of 
interest/activity related to the specific hardware, which 
might be related to how many of the specified hardware 
machines had OpenBSD installed. Request tracking 
predictors counted the number of defects (field defects and 
development defects) during development that identify the 
type of hardware used. We believed our request tracking 
system predictors captured characteristics of software and 
hardware configurations because users had to install 
OpenBSD on the specified HW before they could report a 
problem. We present the two categories, examples of 
predictors in the categories, and short justifications of the 
predictors in table 4.  

 

 

 

Table 4. Software and hardware configurations metrics  

Category of 
predictors 

SH metrics used in 
this  study 

Justification 

Mailing list 
predictors 

SparcMailing  (MLA) 
Number of messages 
to the sparc hardware 
specific mailing list, a 
platform specific 
mailing list, during the 
development period  
 

This metrics may reflect 
the amount of 
interest/activity related to 
the specific hardware, 
which may be related to 
how many of the specific 
hardware machines have 
OpenBSD installed.  

Request 
tracking 
system 
predictors 
 

CurrentBSDBugs 
i386HW (RTS): 
Number of field 
defects reported 
against the current 
release during the 
development period 
that identify the 
machine as type i386  

These metrics may 
quantify the number of 
machines with specific 
HW that have OpenBSD 
installed since users must 
install and use the system 
to report a problem  

5. DATA ANALYSIS 
First, we attempted to fit Weibull models to development 
defects. We used NLS regression to fit the Weibull models. 
NLS is a widely used model fitting method discussed in 
detail by Lyu in [17]. 

Next, we computed the correlations between the predictors 
and field defects in order to identify important predictors. 
We did not consider predictors that did not vary since they 
cannot predict field defects (e.g. we discarded the predictor 
measuring the number of instances of the key work ‘struct’  
in the code, which was zero for all releases). We computed 
Spearman’s rank correlation (� ), Kendall’s rank correlation 
(� ), and the statistical significance of the correlations. These 
are standard ways of computing rank correlation. Holland 
and Wolfe [5] recommended using rank correlation when 
the data are not be normally distributed. We determined 
that the data were not normally distributed by examining 
data plots. Refer to Weisberg [35], Venable and Ripley 
[34], and Hollander and Wolfe [5] for detailed explanations 
of rank correlation.  

Finally, we performed a forward AIC model selection to 
identify important predictors. The predictors selected using 
the forward AIC model selection method complement each 
other since each predictor improves the fit substantially (i.e. 
enough to overcome the AIC penalty) even with the other 
predictors already in the model. The forward AIC model 
selection method can be used to select a subset of predictors 
as a first step in a regression analysis even if the data is not 
normally distributed. Refer to Weisberg [35] for a detailed 
explanation. The model selection process usually continues 
until the AIC score does not improve with additional 
predictors; however, since we had 9 observations and 139 
predictors, we stopped at three iterations to prevent over 
fitting. Similar model selection methods were used by 
Ostrand et. al. in [29] and Khoshgoftaar et. al. in [12].  



 

For all our analysis, we used the open source statistical 
program R [30].  

6. RESULTS 
We present the results of fitting the Weibull model, 
evaluating the predictors using correlation, evaluating the 
predictors using forward AIC model selection, and 
comparing important predictors. We find that the number of 
messages to the technical mailing list during development is 
the best predictor. 

6.1 Prediction using a software reliability 
model 
We are not able to fit a Weibull model to development 
defects. The NLS model fitting procedure does not 
converge for any of the releases. Our finding that the 
modeling fitting procedure does not converge is consistent 
with Kenny’s findings in [7], which show that it is not 
possible to fit a Weibull model until most of the defects 
have occurred (i.e. past the hump in the number of defects). 
A typical release with the release date indicated is in shown 
figure 1. In 7 out of 9 releases, the release date is within 
two months of the time the rate of defect occurrences peak. 
In 8 out of 9 releases, the release date is either within one 
month or before the time the rate of defect occurrences 
peak.  We cannot predict field defects by fitting a Weibull 
model to development defects. 

 
Figure 1. Defects for OpenBSD release 3.0 

6.2 Analysis of predictors using correlations 
Table 5 presents predictors of field defect occurrences that 
are significant at the 95% confidence level (CL) using rank 
correlation (a blank indicates that a predictor’s correlation 
is not significant at the 95% CL). We briefly explain the 
predictors in this section.  

Product metrics (computed using a snapshot of the code 
from the CVS code repository and the RSM metrics 
tool):  

• TotMeth: Total number of methods.  

• PubMeth: Number of public methods.  

• InlineComment: Number of inline comments.  

• ProtMeth: Number of protected methods.  

• CommentsClass: Number of comments in classes 
summed across all classes.  

• InterfaceCompClass: Number of parameters + number of 
returns in classes summed across all classes.  

• TotalParamClass: Total number of parameters in classes 
summed across all classes.  

Development metric (computed using the CVS code 
repository): 

• UpdateNotCFiles: During the development period, the 
number of updates (deltas) to files that are not c source 
files.  

Deployment and usage metric (computed using mailing 
list archives): 

• TechMailing: Number of messages to the technical 
mailing list, a developer’s mailing list, during 
development.  

Software and hardware configuration metric (computed 
using mailing list archives): 

• SparcMailing: number of messages to the sparc hardware 
specific mailing list, a platform specific mailing list, 
during the development period.  

Table 5. Rank correlations 

Predictor 
Kendall 

Correlation 
p-value 

Spearman 
Correlation 

p-value 

 TechMailing  0.61   0.02  0.78  0.02 
 TotMeth  0.61   0.02  0.73   0.03 
 PubMeth  0.61   0.02  0.73   0.03 
 CommentsClass  0.61   0.02     -  - 
 ProtMeth  0.57   0.03  0.67  0.05 
 InlineComment  0.56   0.04  0.68  0.05 
 InterfaceCompClass  0.51   0.05     -     - 
 TotalParamClass  0.51   0.05     -     - 

6.3 Analysis of predictors using forward AIC 
model selection 
We use three iterations of the forward AIC model selection 
method to select important predictors. Due to space 
limitation, we present the final linear model in table 6. The 
predictors are listed in the order selected. The AIC score of 
the final model is 75.52. The r2 between the fitted model 
and field defects is 0.93. This high correlation suggests 
possible over fitting and confirms the need to stop at three 
iterations.  



 

Table 7. Correlations among important predictors  

  AIC selected predictors  Correlation selected predictors 

 
Field defects 

Sparc 
Mailing 

Updates 
NotCFiles 

Tech 
Mailing 

Tot 
Meth 

Pub 
Meth 

Inline 
Comment 

Prot 
Meth 

Field defects 1.000 0.278 -0.111 0.611 0.611 0.611 0.556 0.567 
SparcMailing 0.278 1.000 0.500 0.111 0.556 0.556 0.278 0.433 
UpdatesNotCFiles -0.111 0.500 1.000 0.167 0.278 0.278 0.222 0.367 
TechMailing 0.611 0.111 0.167 1.000 0.444 0.444 0.611 0.500 
TotMeth 0.611 0.556 0.278 0.444 1.000 1.000 0.722 0.767 
PubMeth 0.611 0.556 0.278 0.444 1.000 1.000 0.722 0.767 
InlineComment 0.556 0.278 0.222 0.611 0.722 0.722 1.000 0.833 
ProtMeth 0.567 0.433 0.367 0.500 0.767 0.767 0.833 1.000 
 

Table 6. AIC selected model 

Variable 
Estimate 

coefficient 
Std. 

Error 
t value Pr(>|t|) 

(Intercept)  134.32  18.06  7.437  0.0007 
TechMailing  0.1102  0.015  7.445  0.0007 
UpdatesNotCFiles  -0.0289  0.005  -5.757  0.0022 
SparcMailing  0.1406  0.045  3.153  0.0253 
The linear model in table 6 is not intended to be a valid 
prediction model. Additional steps need to be taken (e.g. 
adjust for non-constant variance) before the model can be 
used for prediction. Further validation of the predictors is 
also needed. We hope to do so in future work.  

The estimated coefficients require interpretation. Since 
ranges of the predictors differ and all predictors are 
statistically significant, it is sensible to examine only the 
direction of the estimated coefficients (i.e. if they positive 
or negative). The coefficient for TechMailing is positive, 
indicating that increases in the metric correspond to more 
field defects. TechMailing measures the amount of 
deployment and usage of the system. This metric quantifies 
the amount of interest in OpenBSD, which may be related 
to how many systems are deployed and how much the 
systems are used. Our finding that increased deployment 
and usage correspond to more field defects is consistent 
with findings in Jones et. al. [6] and Mockus et. al. [22].  

The coefficient for UpdatesNotCFiles is negative, 
indicating that increases correspond to fewer field defects. 
We think larger UpdatesNotCFiles may indicate 
maintenance (i.e. efforts to eliminate problems); therefore, 
it corresponds to fewer field defects. The coefficient for 
SparcMailing is positive indicating that increases in 
SparcMailing correspond to more field problems. Increase 
in SparcMailing may indicate increased activity/usage 
related to the sparc hardware, which may lead to field 
defects unaccounted for by the other predictors.  

6.4 Comparison of important predictors 
We compare the important predictors by examining the 
rank correlation among the predictors and field defects. 
This may allow us to determine which predictors may 
produce better predictions. We do not have enough 
observations to perform a principal component analysis.  

 

The correlations between important predictors selected 
using rank correlation and field defects in table 7 indicate 
that increases in each of the predictors correspond to more 
field defects. These correlations are consistent with findings 
in prior work. The relationship between TechMailing (a DU 
metrics) and field defects is consistent with findings in 
Jones et. al. [6] and Mockus et. al. [22]. All other important 
predictors are product metrics. Our finding that increases in 
the product correspond to more field defects is consistent 
with findings in Ostand et. al.[29] and Jones et. al. [6]. 
However, the predictors are highly correlated with each 
other. This suggests that it may be sufficient to use just one 
of the predictors and that including all the predictors in a 
model may result in the multi-co-linearity problem 
discussed in Feton and Pfleeger [4] . 

The correlation among important predictors selected using 
the forward AIC model selection method are lower than the 
correlation among important predictors selected using 
correlations. This confirms that the each predictor selected 
using model selection captures information not captured by 
the other predictors; therefore, they will complement each 
other in a prediction model and avoid the multi-co-linearity 
problem. 

7. Discussion 
We have established that it is not possible to fit a Weibull 
model to development defects for OpenBSD. We present 
results from fitting the Weibull model because prior work 
has identified the Weibull model as the preferred model. In 
addition, we also have results from experiments showing 
that it is not possible to make meaningful field defect 
predictions by extending other software reliability models 
fitted to development defects (i.e. the Gamma model, the 
Logarithmic model, the Exponential model, the Power 
model). Due to space limitations, those results are omitted. 
These results motivate the need to consider metrics-based 
field defect prediction. 

We find that it is possible to collect product, development, 
DU, and SH predictors using data sources commonly 
available for open source software systems. In addition to 
validating the CVS code repository and the request tracking 
system as sources of predictors, we establish mailing list 
archives as an important data source, one not considered by 
previous studies.  



 

We find that the most important predictor for the OpenBSD 
project is TechMailing collected from mailing list archives. 
The TechMailing predictor is the most highly rank 
correlated predictor with the number of defects and is the 
first variable selected using AIC forward model selection. 
We have validated this finding by talking with developers 
on the discussion forum. Feedback [27] indicates that this 
finding fits with the developers’  intuition that participation 
by active developers (reflected by postings to the 
TechMailing list) leads to more defect discoveries. A plot 
of TechMailing against field defects is shown in figure 3. 
Other important predictors selected include four product 
metrics collected from the CVS code repository, a 
development metric collected from the CVS code 
repository (UpdatesNotCFiles), and a software and 
hardware configurations metric  collected from mailing list 
archives (SparcMailings).  

 
Figure 3. TechMailing and field defects 

In contrast to findings in commercial software systems, (e.g. 
Mockus et. al. [21], Khoshgoftaar et. al. [10], and 
Khoshgoftaar et. al. [11]) predictors regarding changes to 
source files and those regarding developers are not 
important predictors for OpenBSD. We suspect this is due 
to the review and check-in process employed by the 
OpenBSD project (and possibly by other open source 
projects as well), which assures that all changes are of a 
certain quality regardless of the number of changes or the 
author of the change. All changes must be checked-in by a 
developer, who is someone that has shown ability to work 
on the code. This is supported by the explanation on the 
project webpage, which details how someone becomes a 
developer and gains the ability to check-in code. In 

addition, many changes are reviewed. We find evidence of 
this by observing logs of committed changes. Many logs 
contain markers (of the type “developer id”  followed by the 
@ sign, e.g. art@) indicating that another developer has 
reviewed the changes.  

8. CONCLUSION 
In our case study of OpenBSD, we find that it is not 
possible to predict field defects by extending a Weibull 
model fitted to development defects. This indicates the 
importance of metrics-based field defect prediction models 
for open source software systems. We also find that it is 
possible to collect product, development, DU, and SH 
metrics using commonly available data sources for opens 
source projects. In addition, we identify important 
predictors that can be used to construct a field defect 
prediction model for OpenBSD using modeling methods in 
the literature. Such a model can help organizations make 
informed decisions regarding open source software 
components.  

The paper presents novel and interesting findings, which 
are appropriate for a case study. However, our experiments 
need to be replicated on other open source projects. 
Replications can help verify that the relationships we have 
established are not due to chance alone. Future studies can 
include similar projects developing operating systems like 
FreeBSD or Debian and other types of systems like MySQL 
or JakartaTomcat.  

Replication of our experiments is relatively straightforward 
since data sources we use are commonly available for open 
source software systems. For example, all projects hosted 
by SourceForge [32] use a CVS code repository, a request 
tracking system, and have mailing lists.  

We do not consider non-c source files in our analysis (e.g. 
perl files and assembly files). These files may contain 
valuable information. However, since most of the system is 
written in c, we feel c source files are the most appropriate 
files to analyze. In release 3.4 (the most recent  release we 
examine), there are ~36384 files in total. Approximately 
17578 are c source files, 2378 are perl source files, and 
1624 are assembly files. The remaining files are mostly 
documentation, configuration, and installation files.  

There maybe other metrics we have failed to collect. For 
example, it may be possible to parse the defect reports for 
more detailed information regarding bugs, such as which 
software applications were running when the bug occurred. 
Since the data sources are available to everyone, we 
encourage others to explore other predictors.  

Results in this paper represent a promising step towards 
quantitatively-based decision making regarding open source 
software components. The next step is to use the results in 
this paper and metrics-based modeling methods in the 
literature to construct metrics-based field defect prediction 



 

models and then to compare their predictions (e.g. the trees 
based method used by Khoshgotaar et. al. in [13], the neural 
networks method used by Khoshgoftaar et. al. in [14], and 
the linear regression used by Mockus et. al. in [22]).  
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