

Finding Predictors of Field Defects for Open Source Software Systems in
Commonly Available Data Sources:

a Case Study of OpenBSD
Paul Luo Li Jim Herbsleb Mary Shaw
 Institute for Software Research, International,

School of Computer Science,
Carnegie Mellon University

Pittsburgh PA, 15213
1-412-268-3043

{paul.li, jdh, mary.shaw} @cs.cmu.edu

ABSTRACT
Open source software systems are important components of
many business software applications. Field defect
predictions for open source software systems may allow
organizations to make informed decisions regarding open
source software components. In this paper, we remotely
measure and analyze predictors (metrics available before
release) mined from established data sources (the code
repository and the request tracking system) as well as a
novel source of data (mailing list archives) for nine
releases of OpenBSD. First, we attempt to predict field
defects by extending a software reliability model fitted to
development defects. We find this approach to be
infeasible, which motivates examining metrics-based field
defect prediction. Then, we evaluate 139 predictors using
established statistical methods: Kendall’ s rank correlation,
Pearson’s rank correlation, and forward AIC model
selection. The metrics we collect include product metrics,
development metrics, deployment and usage metrics, and
software and hardware configurations metrics. We find the
number of messages to the technical discussion mailing list
during the development period (a deployment and usage
metric captured from mailing list archives) to be the best
predictor of field defects. Our work identifies predictors of
field defects in commonly available data sources for open
source software systems and is a step towards metrics-
based field defect prediction for quantitatively-based
decision making regarding open source software
components.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – Process metrics,
Product metrics, Software science
D.2.9 [Software Engineering]: Management – Software quality
assurance

General Terms
Measurement, Documentation, Reliability, Experimentation

Keywords
Field defect prediction, open source software, reliability
modeling, CVS repository, request tracking system, mailing list
archives, deployment and usage metrics, software and hardware
configurations metrics

1. INTRODUCTION
Open source software systems such as operating systems
are important components of many business software
applications. Being able to predict field defects (customer
reported software problems requiring developer
intervention to resolve) may allow existing quantitatively-
based decision making methods to be used to:

1. Help organizations that are seeking to adopt open source
software components to make informed choices between
candidates

2. Help organizations using open source software
components to decide whether they should adopt the
latest release

3. Help organizations that adopt a release to better manage
resources to deal with possible defects

In this paper, we present a case study of the open source
operating system OpenBSD in which we try two different
approaches to predicting field defects: model fitting and a
metrics-based approach.

Prior work by Li et. al. [16] shows that the Weibull model
is the preferred model for modeling the defect occurrence
pattern of OpenBSD. In the work we report here, we
attempt to predict field defects by extending a Weibull
model from development to the field. We find that it is not
possible to fit an acceptable Weibull model to development
defects. The release dates of OpenBSD are consistently
around the time when the rate of defect occurrences peaks.
Hence, there is insufficient data to fit a Weibull model. This
result is consistent with Kenny’s finding in [7]. Our finding
that it is not possible to fit a Weibull model until the rate of
defect occurrences establishes the need for metrics-based
field defect prediction.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

11th International Software Metrics Symposium (METRICS 2005), Como, Italy, September, 2005

Identifying and collecting predictors (metrics available
before release) are pre-requisites activities for metrics-
based field defect prediction. We attempt first steps toward
a metrics-based field defect prediction model by identifying
and collecting potentially important predictors of field
defects for OpenBSD. Prior work has identified important
predictors of field defects and has predicted field defects
for commercial software systems (e.g. Khoshgoftaar et. al.
[9], Ostrand et. al. [29], Mockus et. al. [22]). The categories
of predictors used in prior work are product metrics,
development metrics, deployment and usage (DU) metrics,
and software and hardware configurations (SH) metrics.
However, prior work has not examined open source
software systems, has not examined all categories of
predictors simultaneously, and has not identified commonly
available data sources for each category of predictor. In this
paper, we examine predictors of field defects for an open
source software system.

Our experiments show it is possible to collect product,
development, DU, and SH predictors from data sources
commonly available for open source projects. We identify
seven important predictors collected from mailing list
archives and the CVS code repository. Somewhat
surprisingly, the most important predictor for the OpenBSD
project is the number of messages to the technical
discussion mailing list during the development period,
which is a deployment and usage metric collected from
mailing list archives.

Section 2 discusses prior work and motivates our work.
Section 3 describes OpenBSD. Section 4 and 5 discuss our
data collection method and data analysis method. Section 6
presents the results. Section 7 contains a discussion of our
findings. Section 8 is the conclusion.

2. PRIOR WORK AND MOTIVATION
In this section, we motivate our work by discussing prior
work. We define field defects as user-reported code-related
problems requiring programmer intervention to correct.
This is the same definition used by Li et. al. in [16]. We
discuss software reliability modeling, software metrics as
predictors, and methods used to establish predictors as
important.

2.1 Software reliability modeling
Prior work by Li et. al. [16] shows that it is possible to
model the rate of field defect occurrences of OpenBSD
using the Weibull model. Software reliability modeling
research summarized by Lyu in [17] suggests that it may be
possible to predict field defects by fitting a Weibull model
to development defects and then extending the model to the
field. This leads to our first question:

Is it possible to predict field defects by fitting a Weibull
model to development defects and then extending the
model to the field?

Li et. al. use non-linear least squares (NLS) regression to fit
defect occurrence data to the Weibull model. We will use
the same regression technique to fit a Weibull model to
development defects.

2.2 Software metrics as predictors
Metrics are defined by Fenton and Pfleeger in [4] as outputs
of measurements, where measurement is defined as the
process by which values are assigned to attributes of entities
in the real world in such a way as to describe them
according to clearly defined rules. Metrics available before
release are predictors, which can be used to predict field
defects.

We categorize predictors used in prior work using an
augmented version of the categorization schemes used by
Fenton and Pfleeger in [4], Khoshgoftaar et. al. in [15], and
the IEEE standard for software quality metrics methodology
[3]:

• Product metrics: metrics that measure the attributes of
any intermediate or final product of the software
development process [3]. The product metrics used in
prior work are computed using a snapshot of the code.
Product metrics have been shown to be important
predictors by studies such as Khoshgoftaar et. al. [10],
Jones et. al. [6], Khoshgoftaar et. al. [11], Khoshgoftaar
et. al. [15], and Khoshgoftaar et. al. [13].

• Development metrics: metrics that measure attributes of
the development process. The development metrics used
in prior work are usually computed using information in
the change management system or the CVS code
repository. Development metrics have been shown to be
important predictors by studies such as Khoshgoftaar et.
al. [10], Khoshgoftaar et. al. [11], Khoshgoftaar et. al.
[15], and Khoshgoftaar et. al. [13].

• Deployment and usage metrics (DU): metrics that
measure attributes of deployment of the software system
and usage in the field. Little prior work has examined DU
metrics, and no data source is consistently used. DU
metrics have been shown to be important predictors by
studies such as Jones et. al. [6], Khoshgoftaar et. al. [11],
Khoshgoftaar et. al. [15], Khoshgoftaar et. al. [13], and
Mockus et. al. [22].

• Software and hardware configurations metrics (SH):
metrics that measure attributes of the software and
hardware systems that interact with the software system
in the field. Little prior work has examined SH metrics
and no data source is consistently used. SH metrics have
been shown to be important predictors by Mockus et. al.
[22].

Prior work has examined only commercial software
systems, and no prior work has examined predictors in all
the categories simultaneously. Product and development
predictors commonly used in prior work can be computed
for open source software systems since the data sources
used to compute the predictors (e.g. snapshots of the code
and information in the CVS code repositories) are
commonly available for open source software projects.
However, prior work examining DU and SH metrics has
had accurate information about system deployment and the
users, such as deployment logs and usage profiles (e.g.
Khoshgoftaar et. al. [11]) or information from an customer
monitoring system (Mockus et. al. [22]). The data sources
used in those studies are not available for OpenBSD;
therefore, the DU and SH metrics used in prior work are not
available. These concerns lead us to two additional
questions:

Is it possible to collect DU, and SH predictors using data
sources commonly available for open source software
projects?

What are the important predictors of field defects for
OpenBSD?

2.3 Methods of establishing the importance of
predictors
Three methods are commonly used to establish a predictor
as important:

1. Show high correlation between the predictor and field
defects. This method is recommended by IEEE [3] and is
used by Ohlsson and Alberg [25] and Ostrand and
Weyuker [28].

2. Show that the predictor is selected using a model
selection method. This method is used by Jones et. al. [6]
and Mockus et. al.[22].

3. Show that the accuracy of predictions improves with the
predictor included in the prediction model. This method
is used by Khoshgoftaar et. al. [10] and Jones et. al. [6].

We use methods 1 and 2 to determine important predictors
in this paper. Since we examine predictors that may be
included in a metrics-based field defect prediction model
but do not actually produce a prediction model, we do not
use method 3.

3. SYSTEM DESCRIPTION
In this section, we present the open source software system
OpenBSD. We present project details, information on the
code repository, information on the request tracking system,
and information on the mailing list archives.

3.1 Project details
OpenBSD is a Unix-style operating system written
primarily in C. The project dates back to 1995 and has
developers (i.e. users who have the write access rights to

the CVS code repository) in North America, South
America, Europe, Australia, and Asia. This project is
similar to the FreeBSD project examined by Dinh-Trong
and Bieman [33].

We examine the project between approximately 1998 and
2004. During that time, there were 10 releases (of which we
examine 9, as we explain below) and the CVS code
repository documented development changes by 159
different developers.

The OpenBSD project uses the Berkley copyrights. The
Berkley copyrights retain the rights of the copyright holder,
while imposing minimal conditions on the use of the
copyrighted material [26]; therefore, OpenBSD has been
incorporated into several commercial products.

The OpenBSD project puts out a release approximately
every six months. The release dates are published on the
web [26].

3.2 The code repository
The OpenBSD project manages its source code using a
CVS code repository. Developers are users who have both
read and write access rights. Someone becomes a
“developer” (i.e. getting an account on the main server) by
“doing some good work and showing that he/she can work
with the team” [26]. Everyone else has read access to the
CVS code repository.

3.3 The request tracking system
The OpenBSD project uses a problem tracking system.
Anyone can report a problem by using the sendbug
command built into OpenBSD [26]. Each problem report is
assigned a unique number and stored in the bugs database.
The problem report can be tracked on-line using the unique
number. A problem report can be assigned one of four
classes: sw-bug (software bug), doc-bug (documentation
bug), change request, and support. All problem reports are
initially marked as open, and then a developer acts on the
report and changes the status accordingly.

Our measure of defects for OpenBSD is user submitted
problem reports in the request tracking system of the class
software bugs. We count each problem report (which may
not be unique) because a user deemed the problem
important enough to report. These software related problem
reports require a developer’s intervention to resolve. This
measure of defects is used by Li et. al. in [16]. Defects that
occur after the release date are considered field defects.
Defects that occur during the development and test period
are considered development defects.

3.4 Mailing lists
The OpenBSD project has 23 mailing lists in five
categories:

• General interest lists

• Developer’s lists

• Platform specific lists

• CVS changes mailing lists

• CTM (emails out deltas to the source).

Not all lists are active and not all lists are archived
consistently. The two most complete archives are at
sigmasoft [31] and MARC [18].

4. DATA COLLECTION
This section describes the data collection process we used
to extract data from the request tracking system, the CVS
repository, and the mailing lists. It also describes the
predictors we collect.

We consider the published date of release (announced on
the OpenBSD website) rounded to the nearest month to be
the release date for the release. We round the date to the
nearest month due to the time it takes to install the
operating system, use the system, and discover and report a
problem. Someone reporting a bug right after the un-
rounded release date is unlikely to be using the latest
release. This is the same approach taken by Mockus et. al.
in [22].

We consider the date of the first reported defect rounded to
the nearest month to be the start of development. The
development period is then the duration between the start of
development and the release date.

4.1 The request tracking system
We wrote Java programs and perl programs to download
each problem report from the OpenBSD website and parse
the report to extract the report open date, the class (e.g. sw-
bug, doc-bug, or change request), the release reported
against, and the machine (i.e. the hardware configuration
such as i386 or sparc).

There was one anomaly. Three months of data were missing
between August 2002 and October 2002. We verified this
by examining the bugs mailing list archive (i.e. the mailing
lists that records messages to the request tracking system).
The mailing list archive showed no bugs recorded during
that time interval even though there is activity on the bugs
mailing list, which indicates that problems did occur. This
happened during development and deployment of release
3.2. As a result, we did not examine release 3.2.

4.2 The CVS repository
We used the CVS checkout command to download the
tagged release version of the source code from the CVS
repository for releases 2.4 to 3.3 (except release 3.2).

We used four metrics tools and several scripts to compute
product metrics from the C source files. The tools we used
were:

• RSM by M Squared Technologies [23]

• SourceMonitor by Campwood Software [1]

• c_count written by Thomas E. Dickey [2]

• metrics written by Brian Renaud [19]

We arrived at these tools by conducting a web search,
asking experts for help, and posting to the comp.software-
eng and comp.software.measurement newsgroups. We
evaluated the collection of tools and selected those listed
above.

We encountered an existing CVS bug when downloading
the source code for release 2.4 and release 2.5. As a result,
we had to bypass a directory that contained HTML help
documents. We also encountered 10 files with coding
anomalies that the metrics tools could not resolve. We
skipped those files for all releases. These files constitute
less than .1% of the number of C source files.

We used the CVS log command to obtain information on
changes to the source code. We used the log information
between the start of development of release 2.4 and the
release date of release 3.3. There were 97,566 committed
changes in the development periods of the nine releases.

4.3 Mailing list archives
We wrote java programs to extract the number of messages
posted each month in the mailing lists archives.

Not all lists were archived consistently and not all lists were
active. Consistent data was not available for many of the
lists before 1998; therefore, we only considered releases
after 1998. When an archive showed no messages for a
certain month, we were often unable to determine if no
messages were posted or if the archive failed to properly
record messages (both of which occur). Therefore, lists that
had intervals in which no messages were posted for more
than three months were not considered.

4.4 Metrics
We provide a summary of the 139 predictors we collected.
Due to space limitation, we do not present all the metrics.

4.4.1 Product metrics
We collected 101 product metrics using snapshots of the
code from the CVS code repository. Due to tooling
constraints, we did not collect all the product metrics used
in the literature. However, we did collect metrics that
covered all of the dimensions of variation in the product
metrics identified by prior work. Munson and Khoshgoftaar
identified the dimensions of product metrics (i.e.
components of variance captured by product predictors)
used in the literature using principal component analysis in
[24]. Principal component analysis captures the dimensions
of variance in a group of predictors. Predictors that load on
the same principal component capture the same dimension
of variance and are highly correlated with each other [24];
therefore, it may be sufficient to use a predictor from each
dimension. We give the dimensions and examples of the
product metrics we used to capture the variation in the

dimension in table 1. The product metrics we used had been
shown to load on the principal component by Munson and
Khoshgoftaar in [24]

Table 1. Product metrics

Dimension Product metrics used in this study

Control: metrics
related the flow of
program control

Cyclo: Cyclomatic complexity
KWbreak: Number of occurrences of the
key word break (which is equivalent to
possible program knot count as shown by
Khoshgoftaar and Szabo [14])

Action: number of
distinct operations
and statements

UOpand: Unique operands
UOpator: Unique operators

Size: size or item
count of a program

Statements: Total number of statements
per file summed across all files
LOC: Lines of code per file summed
across all files

Effort: Halstead’s
effort metrics

PGeffort: Halstead’s effort metric per file
summed across all files

Modularity: degree
of modularity of a
program

DeepNest: Number of statements at
nesting level >9 per file summed across
all files

4.4.2 Development metrics
We collected 22 development metrics. Due to differences in
the style of development, we were not able to collect the
same development metrics used in the literature. However,
we tried to collect metrics that captured the same intent as
the metrics used in the literature in our study. We collected
metrics that cover all of the independent dimensions of
variation in the development metrics identified by
Khoshgoftaar et. al. in [13] and [15] Khoshgoftaar et. al.
used principal component analysis to identify the
dimensions of variation in their development metrics in
[13] and [15]. Khoshgoftaar et. al. examined a commercial
software system while we examined an open source
software system; therefore, we made changes to the metrics
to account for the differences between commercial and
open source software systems. We offer an interpretation of
the dimensions captured by each principal component
(which is not offered by Khoshgoftaar et. al.), examples of
the metrics belonging to each dimension in [13] and [15],
and the metrics we used to capture the same sources of
variance in table 2. We made one major modification. Since
OpenBSD did not distinguish between designers and
testers, we combined the dimensions identified by
Khoshgoftaar et. al. that separated designers and testers.
We believe our metrics captured the same source of
variation as the referenced metrics since the only changes
we made were to accommodate differences between
commercial and open source styles of development.
(Metrics collected using the CVS code repository are
indicated by ‘CVS’, ones collected using the request
tracking system are indicated by ‘RTS’, and ones collected
using mailing list archives are indicated by ‘MLA’.)

Table 2. Development metrics

Dimensions
[13] and [15]

Example of
metrics in

dimensions [13]

Development metrics
used in this study

Dimension 1:
the number of
changes

Total number of
changes to the
code for any
reason

TotalUpdate (CVS):
Total number of updates
during the development
period

Dimension 2:
experience of
the people
making changes

Number of
updates to this
module by
designers who
had 10 or less
total updates in
entire company
career

BotHalfC (CVS):
Number of different
developers making
changes to files that are c
source files during the
development period who
are in the bottom 50% of
all developers ranked
based on the number of
changes

Dimension 3:
amount of
change to the
code

Net increase in
lines of code

Difference (CVS): Lines
added to c source files
minus lines deleted from
c source files during the
development period

Dimension
4 and 7:
problems found
during the
development of
the prior release

Number of
problems fixed
that were found
by designers or
during beta
testing in the
prior release

PreBugsPrev (RTS):
Total number of field
defects reported during
the development period
of the previous release

Dimension 5 :
field problems
found by
customers in
prior releases

Number of
problems fixed
that were found
by customer in
the prior release

PreBugsAll (RTS): Total
number of field defects
reported during the
development period in all
releases

Dimension
6 and 8:
problems found
during the
development of
the current
release

Number of
problems found
by designers or
during beta
testing in the
current release

PreBugsCurrent (RTS):
Number of field defects
reported against the
release under
development during the
development period

4.4.3 Deployment and usage metrics
We collected nine deployment and usage metrics. The
metrics we collected fall into two categories: mailing list
predictors and request tracking system predictors. Mailing
list predictors counted the number of messages to non-
hardware related mailing lists during development. We
believed our mailing list predictors captured characteristics
of deployment and usage because they quantified the
amount of interest in OpenBSD, which might be related to
how many systems were deployed and how much the
systems were used. Request tracking predictors counted the
number of problem reports during development that were
not defects. We believed our request tracking system
predictors captured characteristics of deployment and usage
because users had to install OpenBSD and use the system

before they could report a problem. We present the two
categories, examples of predictors in the categories, and
short justifications for the predictors in table 3.

Table 3. Deployment and usage metrics

Category
of

predictors

DU metrics used in this
study

Justification

Mailing list
predictors

MiscMailings (MLA):
number of messages to the
miscellaneous mailing list, a
general interest mailing list,
during the development
period

AdvocayMailings (MLA):
number of messages to the
advocacy mailing list (which
promotes the use of
OpenBSD), a general interest
mailing list, during the
development period

These metrics
quantify the amount
of interest in
OpenBSD, which
may be related to
how many systems
are deployed and
how much the
systems are used.

Request
tracking
system
predictors

ChangeRequests (RTS):
Number of change requests
during the development
period

DocBugs (RTS): Number of
reported documentation
problems during the
development period

These metrics
quantify the amount
of deployment and
usage because users
must install
OpenBSD and use
the system before
they can request
changes or report
documentation
problems

4.4.4 Software and hardware configurations metrics
We collected seven software and hardware configurations
metrics in all. The metrics we collected fall into two
categories: mailing list predictors and request tracking
system predictors. Mailing list predictors counted the
number of messages to hardware specific mailing lists
during development. We believed our mailing list
predictors captured characteristics of software and
hardware configurations because they reflect the amount of
interest/activity related to the specific hardware, which
might be related to how many of the specified hardware
machines had OpenBSD installed. Request tracking
predictors counted the number of defects (field defects and
development defects) during development that identify the
type of hardware used. We believed our request tracking
system predictors captured characteristics of software and
hardware configurations because users had to install
OpenBSD on the specified HW before they could report a
problem. We present the two categories, examples of
predictors in the categories, and short justifications of the
predictors in table 4.

Table 4. Software and hardware configurations metrics

Category of
predictors

SH metrics used in
this study

Justification

Mailing list
predictors

SparcMailing (MLA)
Number of messages
to the sparc hardware
specific mailing list, a
platform specific
mailing list, during the
development period

This metrics may reflect
the amount of
interest/activity related to
the specific hardware,
which may be related to
how many of the specific
hardware machines have
OpenBSD installed.

Request
tracking
system
predictors

CurrentBSDBugs
i386HW (RTS):
Number of field
defects reported
against the current
release during the
development period
that identify the
machine as type i386

These metrics may
quantify the number of
machines with specific
HW that have OpenBSD
installed since users must
install and use the system
to report a problem

5. DATA ANALYSIS
First, we attempted to fit Weibull models to development
defects. We used NLS regression to fit the Weibull models.
NLS is a widely used model fitting method discussed in
detail by Lyu in [17].

Next, we computed the correlations between the predictors
and field defects in order to identify important predictors.
We did not consider predictors that did not vary since they
cannot predict field defects (e.g. we discarded the predictor
measuring the number of instances of the key work ‘struct’
in the code, which was zero for all releases). We computed
Spearman’s rank correlation (�), Kendall’s rank correlation
(�), and the statistical significance of the correlations. These
are standard ways of computing rank correlation. Holland
and Wolfe [5] recommended using rank correlation when
the data are not be normally distributed. We determined
that the data were not normally distributed by examining
data plots. Refer to Weisberg [35], Venable and Ripley
[34], and Hollander and Wolfe [5] for detailed explanations
of rank correlation.

Finally, we performed a forward AIC model selection to
identify important predictors. The predictors selected using
the forward AIC model selection method complement each
other since each predictor improves the fit substantially (i.e.
enough to overcome the AIC penalty) even with the other
predictors already in the model. The forward AIC model
selection method can be used to select a subset of predictors
as a first step in a regression analysis even if the data is not
normally distributed. Refer to Weisberg [35] for a detailed
explanation. The model selection process usually continues
until the AIC score does not improve with additional
predictors; however, since we had 9 observations and 139
predictors, we stopped at three iterations to prevent over
fitting. Similar model selection methods were used by
Ostrand et. al. in [29] and Khoshgoftaar et. al. in [12].

For all our analysis, we used the open source statistical
program R [30].

6. RESULTS
We present the results of fitting the Weibull model,
evaluating the predictors using correlation, evaluating the
predictors using forward AIC model selection, and
comparing important predictors. We find that the number of
messages to the technical mailing list during development is
the best predictor.

6.1 Prediction using a software reliability
model
We are not able to fit a Weibull model to development
defects. The NLS model fitting procedure does not
converge for any of the releases. Our finding that the
modeling fitting procedure does not converge is consistent
with Kenny’s findings in [7], which show that it is not
possible to fit a Weibull model until most of the defects
have occurred (i.e. past the hump in the number of defects).
A typical release with the release date indicated is in shown
figure 1. In 7 out of 9 releases, the release date is within
two months of the time the rate of defect occurrences peak.
In 8 out of 9 releases, the release date is either within one
month or before the time the rate of defect occurrences
peak. We cannot predict field defects by fitting a Weibull
model to development defects.

Figure 1. Defects for OpenBSD release 3.0

6.2 Analysis of predictors using correlations
Table 5 presents predictors of field defect occurrences that
are significant at the 95% confidence level (CL) using rank
correlation (a blank indicates that a predictor’s correlation
is not significant at the 95% CL). We briefly explain the
predictors in this section.

Product metrics (computed using a snapshot of the code
from the CVS code repository and the RSM metrics
tool):

• TotMeth: Total number of methods.

• PubMeth: Number of public methods.

• InlineComment: Number of inline comments.

• ProtMeth: Number of protected methods.

• CommentsClass: Number of comments in classes
summed across all classes.

• InterfaceCompClass: Number of parameters + number of
returns in classes summed across all classes.

• TotalParamClass: Total number of parameters in classes
summed across all classes.

Development metric (computed using the CVS code
repository):

• UpdateNotCFiles: During the development period, the
number of updates (deltas) to files that are not c source
files.

Deployment and usage metric (computed using mailing
list archives):

• TechMailing: Number of messages to the technical
mailing list, a developer’s mailing list, during
development.

Software and hardware configuration metric (computed
using mailing list archives):

• SparcMailing: number of messages to the sparc hardware
specific mailing list, a platform specific mailing list,
during the development period.

Table 5. Rank correlations

Predictor
Kendall

Correlation
p-value

Spearman
Correlation

p-value

 TechMailing 0.61 0.02 0.78 0.02
 TotMeth 0.61 0.02 0.73 0.03
 PubMeth 0.61 0.02 0.73 0.03
 CommentsClass 0.61 0.02 - -
 ProtMeth 0.57 0.03 0.67 0.05
 InlineComment 0.56 0.04 0.68 0.05
 InterfaceCompClass 0.51 0.05 - -
 TotalParamClass 0.51 0.05 - -

6.3 Analysis of predictors using forward AIC
model selection
We use three iterations of the forward AIC model selection
method to select important predictors. Due to space
limitation, we present the final linear model in table 6. The
predictors are listed in the order selected. The AIC score of
the final model is 75.52. The r2 between the fitted model
and field defects is 0.93. This high correlation suggests
possible over fitting and confirms the need to stop at three
iterations.

Table 7. Correlations among important predictors

 AIC selected predictors Correlation selected predictors

Field defects

Sparc
Mailing

Updates
NotCFiles

Tech
Mailing

Tot
Meth

Pub
Meth

Inline
Comment

Prot
Meth

Field defects 1.000 0.278 -0.111 0.611 0.611 0.611 0.556 0.567
SparcMailing 0.278 1.000 0.500 0.111 0.556 0.556 0.278 0.433
UpdatesNotCFiles -0.111 0.500 1.000 0.167 0.278 0.278 0.222 0.367
TechMailing 0.611 0.111 0.167 1.000 0.444 0.444 0.611 0.500
TotMeth 0.611 0.556 0.278 0.444 1.000 1.000 0.722 0.767
PubMeth 0.611 0.556 0.278 0.444 1.000 1.000 0.722 0.767
InlineComment 0.556 0.278 0.222 0.611 0.722 0.722 1.000 0.833
ProtMeth 0.567 0.433 0.367 0.500 0.767 0.767 0.833 1.000

Table 6. AIC selected model

Variable
Estimate

coefficient
Std.

Error
t value Pr(>|t|)

(Intercept) 134.32 18.06 7.437 0.0007
TechMailing 0.1102 0.015 7.445 0.0007
UpdatesNotCFiles -0.0289 0.005 -5.757 0.0022
SparcMailing 0.1406 0.045 3.153 0.0253
The linear model in table 6 is not intended to be a valid
prediction model. Additional steps need to be taken (e.g.
adjust for non-constant variance) before the model can be
used for prediction. Further validation of the predictors is
also needed. We hope to do so in future work.

The estimated coefficients require interpretation. Since
ranges of the predictors differ and all predictors are
statistically significant, it is sensible to examine only the
direction of the estimated coefficients (i.e. if they positive
or negative). The coefficient for TechMailing is positive,
indicating that increases in the metric correspond to more
field defects. TechMailing measures the amount of
deployment and usage of the system. This metric quantifies
the amount of interest in OpenBSD, which may be related
to how many systems are deployed and how much the
systems are used. Our finding that increased deployment
and usage correspond to more field defects is consistent
with findings in Jones et. al. [6] and Mockus et. al. [22].

The coefficient for UpdatesNotCFiles is negative,
indicating that increases correspond to fewer field defects.
We think larger UpdatesNotCFiles may indicate
maintenance (i.e. efforts to eliminate problems); therefore,
it corresponds to fewer field defects. The coefficient for
SparcMailing is positive indicating that increases in
SparcMailing correspond to more field problems. Increase
in SparcMailing may indicate increased activity/usage
related to the sparc hardware, which may lead to field
defects unaccounted for by the other predictors.

6.4 Comparison of important predictors
We compare the important predictors by examining the
rank correlation among the predictors and field defects.
This may allow us to determine which predictors may
produce better predictions. We do not have enough
observations to perform a principal component analysis.

The correlations between important predictors selected
using rank correlation and field defects in table 7 indicate
that increases in each of the predictors correspond to more
field defects. These correlations are consistent with findings
in prior work. The relationship between TechMailing (a DU
metrics) and field defects is consistent with findings in
Jones et. al. [6] and Mockus et. al. [22]. All other important
predictors are product metrics. Our finding that increases in
the product correspond to more field defects is consistent
with findings in Ostand et. al.[29] and Jones et. al. [6].
However, the predictors are highly correlated with each
other. This suggests that it may be sufficient to use just one
of the predictors and that including all the predictors in a
model may result in the multi-co-linearity problem
discussed in Feton and Pfleeger [4] .

The correlation among important predictors selected using
the forward AIC model selection method are lower than the
correlation among important predictors selected using
correlations. This confirms that the each predictor selected
using model selection captures information not captured by
the other predictors; therefore, they will complement each
other in a prediction model and avoid the multi-co-linearity
problem.

7. Discussion
We have established that it is not possible to fit a Weibull
model to development defects for OpenBSD. We present
results from fitting the Weibull model because prior work
has identified the Weibull model as the preferred model. In
addition, we also have results from experiments showing
that it is not possible to make meaningful field defect
predictions by extending other software reliability models
fitted to development defects (i.e. the Gamma model, the
Logarithmic model, the Exponential model, the Power
model). Due to space limitations, those results are omitted.
These results motivate the need to consider metrics-based
field defect prediction.

We find that it is possible to collect product, development,
DU, and SH predictors using data sources commonly
available for open source software systems. In addition to
validating the CVS code repository and the request tracking
system as sources of predictors, we establish mailing list
archives as an important data source, one not considered by
previous studies.

We find that the most important predictor for the OpenBSD
project is TechMailing collected from mailing list archives.
The TechMailing predictor is the most highly rank
correlated predictor with the number of defects and is the
first variable selected using AIC forward model selection.
We have validated this finding by talking with developers
on the discussion forum. Feedback [27] indicates that this
finding fits with the developers’ intuition that participation
by active developers (reflected by postings to the
TechMailing list) leads to more defect discoveries. A plot
of TechMailing against field defects is shown in figure 3.
Other important predictors selected include four product
metrics collected from the CVS code repository, a
development metric collected from the CVS code
repository (UpdatesNotCFiles), and a software and
hardware configurations metric collected from mailing list
archives (SparcMailings).

Figure 3. TechMailing and field defects

In contrast to findings in commercial software systems, (e.g.
Mockus et. al. [21], Khoshgoftaar et. al. [10], and
Khoshgoftaar et. al. [11]) predictors regarding changes to
source files and those regarding developers are not
important predictors for OpenBSD. We suspect this is due
to the review and check-in process employed by the
OpenBSD project (and possibly by other open source
projects as well), which assures that all changes are of a
certain quality regardless of the number of changes or the
author of the change. All changes must be checked-in by a
developer, who is someone that has shown ability to work
on the code. This is supported by the explanation on the
project webpage, which details how someone becomes a
developer and gains the ability to check-in code. In

addition, many changes are reviewed. We find evidence of
this by observing logs of committed changes. Many logs
contain markers (of the type “developer id” followed by the
@ sign, e.g. art@) indicating that another developer has
reviewed the changes.

8. CONCLUSION
In our case study of OpenBSD, we find that it is not
possible to predict field defects by extending a Weibull
model fitted to development defects. This indicates the
importance of metrics-based field defect prediction models
for open source software systems. We also find that it is
possible to collect product, development, DU, and SH
metrics using commonly available data sources for opens
source projects. In addition, we identify important
predictors that can be used to construct a field defect
prediction model for OpenBSD using modeling methods in
the literature. Such a model can help organizations make
informed decisions regarding open source software
components.

The paper presents novel and interesting findings, which
are appropriate for a case study. However, our experiments
need to be replicated on other open source projects.
Replications can help verify that the relationships we have
established are not due to chance alone. Future studies can
include similar projects developing operating systems like
FreeBSD or Debian and other types of systems like MySQL
or JakartaTomcat.

Replication of our experiments is relatively straightforward
since data sources we use are commonly available for open
source software systems. For example, all projects hosted
by SourceForge [32] use a CVS code repository, a request
tracking system, and have mailing lists.

We do not consider non-c source files in our analysis (e.g.
perl files and assembly files). These files may contain
valuable information. However, since most of the system is
written in c, we feel c source files are the most appropriate
files to analyze. In release 3.4 (the most recent release we
examine), there are ~36384 files in total. Approximately
17578 are c source files, 2378 are perl source files, and
1624 are assembly files. The remaining files are mostly
documentation, configuration, and installation files.

There maybe other metrics we have failed to collect. For
example, it may be possible to parse the defect reports for
more detailed information regarding bugs, such as which
software applications were running when the bug occurred.
Since the data sources are available to everyone, we
encourage others to explore other predictors.

Results in this paper represent a promising step towards
quantitatively-based decision making regarding open source
software components. The next step is to use the results in
this paper and metrics-based modeling methods in the
literature to construct metrics-based field defect prediction

models and then to compare their predictions (e.g. the trees
based method used by Khoshgotaar et. al. in [13], the neural
networks method used by Khoshgoftaar et. al. in [14], and
the linear regression used by Mockus et. al. in [22]).

9. ACKNOWLEDGMENTS
This research was supported by the National Science
Foundation under Grants ITR-0086003, IIS-0414698, and
CCF-0438929, by the Carnegie Mellon Sloan Software
Center, and by the High Dependability Computing Program
from NASA Ames cooperative agreement NCC-2-1298.
We thank the developers of OpenBSD for answering our
postings. We thank the tool vendor who gave us trial
licenses. We thank George Fairbanks, Patrick Riley, and
Greg Wolfson for their help and insight.

10. REFERENCES
[1] Campwood Software. http://www.campwoodsw.com/

[2] c_count. http://dickey.his.com/c_count/c_count.html

[3] IEEE standard for a software quality metrics methodology. In
IEEE Std 1061-1998, 1998.

[4] Norman Fenton and Shari Pfleeger. Software Metrics - A
Rigorous and Practical Approach. Chapmann & Hall,
London, 1997

[5] Myles Hollander and Douglas A. Wolfe. Nonparametric
statistical inference. Wiley & Sons, 1973.

[6] Wendell Jones, John P. Hudepohl, Taghi M. Khoshgoftaar,
and Edware B. Allen. Application of a Usage Profile in
Software Quality Models. In 3rd European Conference on
Software Maintenance and Reengineering, 1999.

[7] Garrison Kenny. Estimating defects in commercial software
during operational use. In IEEE TR on Reliability, 1993.

[8] Taghi M. Khoshgoftaar, Edward B. Allen, Wendell Jones,
and John Hudepohl. Which software modules will have
faults that will be discovered by customers? In Journal of
Software Maintenance: Research and Practice, 1999

[9] Taghi M. Khoshgoftaar, Edward B. Allen, Kalai S.
Kalaichelvan, and Nitith Goel. Predictive modeling of
software quality for very large telecommunications systems.
In IEEE International Conference on Communications,
1996.

[10] Taghi M. Khoshgoftaar, Edward B. Allen, Kalai S.
Kalaichelvan, Nitith Goel, John Hedepohl, and Jean
Mayrand. Detection of fault-prone program modules in a
very large telecommunications system. In Proceedings of
ISSRE, 1995.

[11] Taghi M. Khoshgoftaar, Edward B. Allen, Xiaojing Yuan,
Wendell D. Jones, and John P. Hudepohl. Preparing
measurements of legacy software for predicting operational
faults. In ICSM, 1999.

[12] Taghi Khoshgoftaar, Adhijit Pandya, and David Lanning.
Application of neural networks for predicting program faults.
In Annals of Software Engineering, 1995.

[13] Taghi M. Khoshgoftaar, Ruqun Shan, and Edward B. Allen.
Using product, process, and execution metrics to predict

fault-prone software modules with classification trees. In
HASE, 2000.

[14] Taghi Khoshgoftaar and Robert Szabo. Using neural
networks to predict software faults during testing. In IEEE
Transaction on Reliability, 1996.

[15] Taghi M. Khoshgoftaar and Vishal Thaker and Edward
Allen. Modeling fault-prone modules of subsystems. In
Proceedings of ISSRE, 2000.

[16] Paul Luo Li, Mary Shaw, Jim Herbsleb, Bonnie Ray, and P.
Santhanam. Empirical Evaluation of Defect Projection
Models for Widely-deployed Production Software Systems.
FSE, 2004.

[17] Michael Lyu. Handbook of Software Reliability Engineering.
IEEE Society Press, USA, 1996.

[18] MARC. http://marc.theaimsgroup.com/

[19] metrics. http://www.chris-lott.org/resources/cmetrics/

[20] Audris Mockus, Roy Fielding, and James Herbsleb. A case
study of open source software development: the Apache
server. ICSE, 2000.

[21] Audris Mockus, David Weiss, and Ping Zhang.
Understanding and predicting effort in software projects. In
ICSE, 2003

[22] Audris Mockus and Ping Zhang and Paul Luo Li. Drivers for
Customer Perceived Quality. In ICSE, 2005.

[23] M Squared Technologies. http://msquaredtechnologies.com

[24] John Munson and Taghi Khoshgoftaar. The dimensionality
of program complexity. In ICSE, 1989.

[25] Niclas Ohlsson and Hans Alberg. Predicting fault-prone
software modules in telephone switches. In IEEE
Transactions on Software Engineering, 1996

[26] OpenBSD. www.openbsd.org.

[27] OpenBSD discussion thread.
http://marc.theaimsgroup.com/?t=110788031900001&r=1&
w=2

[28] Thomas J. Ostrand and Elaine J. Weyuker. The Distribution
of Faults in a Large Industrial Software System. In ISSTA,
2002.

[29] Thomas J. Ostrand and Elaine J. Weyuker and Thomas
Robert M. Bell. Where the bugs are. In ISSTA, 2004.

[30] R. http://www.r-project.org/

[31] Sigmasoft. http://www.sigmasoft.com/~openbsd/

[32] SourceForge. http://sourceforge.net/

[33] Trimg Dinh-Trong and James M. Bieman, Open source
software development: a case study of FreeBSD. Metrics,
2004.

[34] W.N. Venables and Brian D. Ripley. Modern Applied
Statistics with S-plus, 4th edition. Springer-Verlag, 2000.

[35] Sanford Weisberg. Applied Linear Regression, 2nd Edition.
Wiley and Son, 1985.

[36] Xiaohong Yuan, Taghi Khoshgoftaar, Edward Allen, and K
Gasesan. An application of fuzzy clustering to software
quality prediction. In IEEE Symposium on Application-
Specific Systems and Software Engineering Technology,
2000.

