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SIMULATION MODELING  

IN ORGANIZATIONAL AND MANAGEMENT RESEARCH 
 

 

ABSTRACT 

With the recognition that much behavior of interest results from the simultaneous 

operation of interdependent processes, management theory is rightfully becoming 

increasingly complex. Simulation modeling provides a powerful methodology for 

advancing theory and research on complex behaviors and systems. Yet, researchers in the 

field of management have embraced this methodology more slowly than in some 

associated social science disciplines. We suspect that part of the reason is that simulation 

methods are not well understood.  Accordingly, in this article we aim to promote 

understanding of simulation methodology and to develop an appreciation of its potential 

contributions to management theory. Our efforts here involve describing the nature of 

simulations, its attractions and special problems, as well as some uses of computational 

modeling in management research. 
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Managerial behaviors and organizational outcomes are increasingly recognized to 

be the result of the interaction of multiple interdependent processes. Progress in 

understanding these phenomena depends in part on the ability to incorporate more 

complexity into management theory and to conduct research on the consequences of the 

resulting theory. 

Traditional approaches to theory development are limited in their ability to analyze 

multiple interdependent processes operating simultaneously. Even when the individual 

processes are well understood, analyzing their interdependent behavior poses difficulties 

because the processes involved may interact in complicated and unforeseen ways. And, 

because the interactions typically produce nonlinear system behavior with feedback, 

empirical analysis using the general linear model has limited value, especially when (as is 

typical) samples are sparse in the regions of greatest interest. 

In studying the complexities of managerial and organizational behavior, a more 

systematic methodology for theory development and analysis may prove useful. 

Specifically, we believe that simulation or computational modeling has unique 

advantages in this respect (Axelrod, 1997; Taber & Timpone, 1996). Well-suited for the 

study of complex behavioral systems, simulations show greatest utility for gaining 

theoretical insight through developing theories and exploring their consequences (Cohen 

& Cyert, 1965).  

Yet the academic field of management has been slow to take advantage of 

simulation methods. Some related social science disciplines, most notably psychology, 

seem to be far ahead.  And, the application of simulations by management practitioners to 

set policy and study organizational problems is quite extensive (Carley, 2003).  So 
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management theory has the opportunity to benefit by taking fuller advantage of 

simulation methods.  

Our aim in this article is to provide an explanation and overview of simulation 

methodology. By doing so, we seek to encourage management scholars to become users 

of simulation methods and to become better informed consumers of simulation-based 

research. An understanding of what simulations are and how they work is a prerequisite 

for appreciating the potential contributions of simulation analysis to management theory, 

as well as for identifying problems and shortcomings in simulation work. We begin by 

providing some background on the science of simulation. We then show that simulation 

research in management has had less impact than in other social sciences, at least as 

indicated by publications in leading journals. After addressing the benefits of formal 

models in general, we consider simulation modeling in detail. We discuss what 

simulations are and how they work. We describe different types of simulation models, 

discuss some common research uses of simulations, and consider some key issues and 

problems in the process of doing simulation research. We conclude by summarizing the 

benefits and limitations of simulation-based work. 

A BRIEF HISTORY OF COMPUTER SIMULATIONS 

Historically, scientific progress has relied on two approaches: theoretical analysis or 

deduction, and empirical analysis or induction. In the deductive form of science, a set of 

assumptions is formulated and then the consequences of those assumptions are deduced. 

Often the assumptions are stated as mathematical relationships and their consequences 

deduced through mathematical proof or derivation. This strategy has led to some 

extraordinary successes, particularly in physics; the general theory of relativity is the 
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prime example. A major problem with this approach, however, is that derivation can be 

mathematically intractable—mathematical techniques may be inadequate to determine 

the consequences of assumptions analytically. This problem seems to be common in the 

social sciences, perhaps due to the complexity and stochastic nature of social processes, 

and has led researchers to choose assumptions (such as perfect rationality, perfect 

information, and unlimited budgets) on the basis of their usefulness for deriving 

consequences rather than because they correspond to realistic behavior. Even when 

elegant results can be obtained in the form of mathematical equations, sometimes these 

equations can be solved only for special cases; for example, the equations of general 

relativity can be solved for the case of spherical symmetry, but no general solutions are 

known.  

The inductive form of science proceeds by obtaining observations of variables 

(data) and then analyzing the data to uncover relationships among the variables. This 

approach has also been highly successful; an important example is the development of 

the periodic table of the elements before atomic structure was understood. A variant of 

this approach has been used to test the predictions of theoretical analysis. A major 

problem with empirical work is the availability of data. Variables may be unobservable 

(e.g., secret agreements) or difficult to measure (e.g., the power of organizational 

subunits); the problems compound with the need for comparable measures across a 

sample and, in the case of dynamic analysis, across an extended time frame. Consider the 

prospects for obtaining reliable data on subunit power across a sample of organizations 

over a period of many years. 

Computer simulation is now recognized as a third way of doing science (Axelrod, 
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1997; Waldrop, 1992).1 It renders irrelevant the deductive problem of analytic 

intractability—mathematical relationships can be handled computationally using 

numerical methods. It also partially overcomes the empirical problem of data availability 

since a simulation produces its own “virtual” data. Because of these features, computer 

simulation can aid enormously in theory construction. It allows theorists to make realistic 

assumptions rather than compromise with analytically convenient ones, as is common in 

deductive theory. Finally, a computer simulation can be used to generate hypotheses that 

are integrated and consistent (Carley, 1999). 

         While simulation can be distinguished from deduction and induction, it possesses 

similarities to these other methods. Simulations resemble deduction in that the outcomes 

follow directly from the assumptions made (without the constraint of analytic 

tractability). And simulations resemble induction in that relationships among variables 

may be inferred from analyzing the output data (although the data are generated by 

simulation programs rather than obtained from “real-world” observations).  

The first well-known computer simulation involved the design of the atomic bomb 

in the Manhattan Project during World War II. The complex systems of equations used in 

the design process could not be solved analytically, and data were impractical—besides 

the unknown risks of attempting to set off atomic explosions, there was not enough 

fissionable material available at the time for even one test. The atomic bomb simulations 

began before the advent of programmable digital computers and involved a complex 

process of using punch card sorters (Feynman, 1985; Gleick, 1992). The modern method 

for conducting simulations on programmable computers using Monte Carlo techniques 

                                                 
1 Physical scientists, who have used simulations for over half a century, are now adding a fourth way of 
doing science: data mining (Schechter, 2003). 
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(described later in this article) was developed by Stanislaw Ulam in 1946 in 

conversations with John von Neumann and implemented shortly thereafter when the 

digital computer MANIAC arrived at Los Alamos (Ulam, 1991). Over the decades 

following the war, simulation became an accepted and widely used approach in physics, 

biology, and other natural sciences, with the social sciences lagging behind.  

In the social sciences, the use of computer simulation methodology was pioneered 

by James March and colleagues (Cohen, March, & Olsen, 1972; Cyert & March, 1963). 

Early computational work played a central role in developing theories of organizations 

(Lomi & Larsen, 2001). But during the 1970s and 1980s, computer simulation “settled 

into a tiny niche, mostly on the periphery of mainline social and organizational science” 

(March, 2001: xi). One reason for this may be accessibility; simulation is given short 

shrift in most social science methodological training curricula, so many researchers lack 

the background to evaluate and interpret simulation studies. Many social scientists—in 

contrast to most natural scientists— may also be averse to the level of abstraction 

involved in simulations (as well as in mathematical modeling in general). And, the 

development of simulation models requires a theoretical grasp of underlying micro-level 

processes, which are often better understood for natural science phenomena than for 

social behavior. Social simulation has gradually become more accepted due to a variety 

of developments, including the spreading recognition of the efficacy of simulation 

methods, the increasingly sophisticated simulation infrastructure, the growing base of 

researchers with simulation training, and the development of specialized journals 

supporting simulation work—but, in our view, it still falls short of the methodology’s 

potential for contributing to management theory. 
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THE IMPACT OF SIMULATION RESEARCH IN MANAGEMENT 

Although some simulation studies were published in major management journals in 

the 1980s (e.g., Burton & Obel, 1980; Malone, 1986; Masuch & LaPotin, 1989; Padgett, 

1980) as well as in books (e.g., Nelson & Winter, 1982), simulation-based work did not 

begin to appear in management and social science journals with any regularity until the 

1990s. To assess the impact of simulation, we examined its use in management journal 

articles and compared it with journals of other social sciences. Specifically, we calculated 

the proportion of simulation-based articles appearing in leading journals across various 

disciplines for the past ten years. We counted all those articles that employ computer 

simulation methods, including papers where simulation was used in conjunction with 

other methods, such as experiments and empirical analysis, but excluding simulation-

assisted human experiments, comments, and replies, etc. Our findings are summarized in 

Table 1. 

_______________ 

Insert Table 1 here 
_______________ 

Table 1 shows that in the leading management and social science journals, about 8 

percent of the published papers used simulation methodology. Among leading 

management journals, Management Science has published a substantial proportion of 

simulation papers. This is somewhat misleading, however, since many of these 

simulations do not address social or behavioral issues. Except for Management Science, 

the rate for management journals is much lower, varying from 3.7 percent in 

Organization Science to 0.3 percent (only two papers in ten years) for Academy of 

Management Journal. 



- 9 - 

Among the social science journals, sociology shows a low-frequency pattern similar 

to management. But simulations are more prevalent in the other social science 

disciplines, led by psychology’s Psychological Review, for which in some years more 

than half of the articles were simulation papers. The results for economics may actually 

understate the use of simulation in this field, since these journals typically publish more 

papers; for the ten-year period we examined, American Economic Review published 118 

simulation papers. 

It is unclear why management and sociology lag behind psychology, economics, 

and political science in simulation papers in leading journals. But the pattern implies that 

simulation methods have made less of an impact in management than in most social 

sciences. While the emergence of specialized simulation journals (such as Computational 

and Mathematical Organization Theory, Journal of Artificial Societies and Social 

Simulation, and Simulation Modelling Practice and Theory) has been a boon to 

simulation work, the readership of these journals tends to be limited to simulation 

specialists. Publication in leading journals is necessary for simulation research to 

disseminate to a wider audience and to inform the development of management theory 

more generally.   

We believe that the field of management will benefit from a better understanding of 

what simulations are and a broader recognition of what they can contribute to theory 

development. We further suggest that the payoffs are expected to be especially high for 

research involving complex interactive systems. By requiring formal modeling, 

simulations also impose theoretical rigor and promote scientific progress (Burton & Obel, 

1995). So before describing simulations and their uses, we briefly discuss formal models 
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in general.  

FORMAL MODELING 

Simulations are based on formal models. For our purposes, we define a formal 

model as a precise formulation of the relationships among variables, including the 

formulation of the processes through which the values of variables change over time, 

based on theoretical reasoning. The formalism may specify mathematical relationships, 

such as equations, or sets of explicit rules, such as “when X occurs, then do Y,” or a 

combination of the two. We find great value in using formal models, although we would 

be the first to admit that they provide only one of several possible avenues for theory 

development and are no substitute for substance and insight. 

 Consider, for instance, the views of David Kreps, a distinguished economist who is 

widely considered a premier formal model builder. According to Kreps (1990: 6-7), the 

main advantages of a good formal model are:  

(1) clarity (“It gives a clear and precise language for communicating insights and 

contributions.”);  

(2) ease of comparability (“It provides us with general categories of assumptions so 

that insights and intuitions can be transferred from one context to another and can be 

cross-checked between different contexts.”);  

(3) logical power (“It allows us to subject particular insights and intuitions to the 

test of logical consistency.”); and  

(4) transparency (“It helps us to trace back from 'observational' to underlying 

assumptions to see what assumptions are really at the heart of particular conclusions.”). 

In a more casual vein, we would add that a model provides a different perspective on a 
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research problem and this fresh look often proves insightful in and of itself. 

Kreps’ list makes clear that model-building and models are tools of research, not 

ends unto themselves. It is hard for us to understand why anyone would object to the use 

of potentially useful tools. This is not to say, of course, that models will necessarily lead 

to Kreps' outcomes, or that such a list will always provide the only direction for today’s 

computational models, which have been increasingly focusing on multi-level phenomena 

that are often mathematically intractable. The point is to evaluate what can be gained 

from using the model, not the model-building enterprise itself.  

SIMULATION MODELING 

What is a computer simulation? How is it used? What special issues are associated 

with its use? While experienced simulators may find these questions unproductive, we 

believe it is important to make simulation understandable to researchers without 

extensive backgrounds in computer programming or mathematical analysis.  

Simulations as Formal Models 

As with any formal model, the development of a simulation model constitutes an 

exercise in theory development. Constructing a simulation model involves identifying the 

underlying processes thought to play key roles for the behavior of an actor (or 

organizational system) and formalizing them as mathematical equations or sets of 

computational rules. Determining the key processes and how they interact is essentially a 

theoretical endeavor; formally specifying the operation of the underlying processes is 

also such an endeavor, since previous research rarely provides a formal specification of 

the processes, necessitating the development of new ideas. The resulting model not only 

is the outcome of theoretical development, but also is the theory in the sense that it 
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embodies the theoretical ideas (Carley & Gasser, 1999; Cohen & Cyert, 1965), just as the 

field equations embody the theory of general relativity or the Black-Scholes model 

embodies the theory of option pricing. Hypotheses are not normally offered in simulation 

research, since the consequences of the complex interactions of the model’s components 

are not logically obvious (if they were, a simulation would not be necessary); instead, the 

model’s consequences are determined computationally, and the findings may themselves 

be regarded as hypotheses or theoretical conclusions. In other words, the entire 

simulation process constitutes a methodology for theory development, starting with 

assumptions and model construction and ending with predictions of the theory (findings).  

A strength of simulation comes from the theoretical rigor introduced by formal 

modeling.  A process may appear to be well understood, but attempting to specify an 

equation for the operation of the process over time often exposes gaps in this 

understanding. Formalizing processes imposes a discipline on theorizing, forcing 

researchers to come to grips with thorny issues that have previously been dealt with only 

by handwaving, or were not even recognized.  At a minimum, formalization promotes 

scientific advancement by forcing cloudy areas to be addressed, resulting in a clear 

specification that can be subjected to analysis and subsequent refinement. 

What Is a Computer Simulation? 

A computer simulation begins with a model of the behavior of some system the 

researcher wishes to investigate. The model consists of a set of equations and/or 

transformation rules for the processes by which the variables in the system change over 

time. The model is then translated into computer code and the resulting program is run on 
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the computer for multiple time periods to produce the outcomes of interest.2  

We focus here on computer simulations of organizational processes using formal 

simulation models with discrete-time designs. While a few simulations use or 

approximate continuous time (Sastry, 1997), most simulations model time in discrete 

intervals, where the simulation uses predetermined time intervals (e.g., a simulation day, 

month, or year) with the state of the simulated system updated each time interval as the 

simulation clock advances during the computer run. 

Simulation models may be either stochastic or deterministic. Stochastic models 

contain probabilistic components, so that the behavior of a model in any particular 

instance depends to some extent on chance. Stochastic simulations typically use Monte 

Carlo methods. Essentially, a Monte Carlo approach relies on the idea that the 

probabilistic components have distributions that can be sampled to obtain values used as 

inputs for the computations in a model, using random number generators. Single draws 

from these distributions may not, of course, produce representative outcomes for the 

model. But by repeating the process a large number of times, a simulation produces sets 

of output values with distributions that characterize the model’s behavior. Deterministic 

models have no probabilistic elements and produce the same outputs each time, so need 

to be run only once for a given model.   

To illustrate some simulation concepts, we use Harrison and Carroll’s (1991; 2006) 

simulation of cultural transmission in organizations. This simulation model consists of 

three basic processes. New members enter the organization (first process), current 

                                                 
2 Actually, the model could consist of a single process, although simulations are usually used to study 
systems in which multiple processes operate simultaneously. Also, one could use a static model—for 
example, to generate  probability distributions for variables lacking analytic density functions (as in 
Harrison and March, 1984)—but most simulations in organizational research are dynamic. 
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organizational members exercise social influence on one another (second), and some 

members exit the organization (third). Although each of these three processes has been 

investigated thoroughly, most research on organizational culture has focused (at least 

implicitly) on the socialization of current organizational members. New insights into 

organizational culture can likely be gained by studying an organizational system that 

includes entry and exit as well as socialization. The simulation makes it possible to do 

this, including understanding how the three basic processes interact to generate the 

behavior of the organization’s cultural system. 

This kind of investigation does not square neatly with many social scientists' ideas 

about cumulative research programs. Many methods textbooks state that successful 

development of cumulative knowledge about a phenomenon proceeds linearly and 

sequentially down a path from less structured qualitative approaches to the highly 

structured approach of formal modeling. The textbook by Ragin (1994), for example, 

claims that qualitative research methods work best for developing new theoretical ideas 

and making interpretations of a theory or a phenomenon's significance; quantitative 

research is directed towards the “goals of identifying general patterns and making 

predictions.” 

Our view is that the presumed linear sequence of cumulative knowledge 

development from qualitative (and informal) to quantitative (and formal) may be 

debilitating and even counterproductive. Some phenomena are inherently more difficult 

to measure and although we admire attempts to do so, we do not believe that theoretical 

progress needs to wait for breakthroughs in measurement technology. In particular, we 

see no reason why theoretical insights from qualitative and other observations might not 
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be directly translated into formal models. Indeed, we believe that doing so potentially 

improves the theory in many ways and that formalization efforts may in turn help 

empirical researchers better target their efforts. For instance, such a strategy has been 

pursued with great success by researchers in organizational ecology (see Carroll & 

Hannan, 2000). 

Definition 

Formally, we define a computer simulation as a computational model of system 

behavior coupled with an experimental design; the execution of the design is sometimes 

called a virtual experiment to distinguish simulation experiments from traditional 

laboratory experiments. The computational model consists of the relevant system 

components (variables) and the specification of the processes for changes in the 

variables. The equations or rules for these processes specify how the values of variables 

at time t+1 are determined, given the state of the system at time t. In stochastic models, 

these functions may depend partly on chance; the equation for the change in a variable's 

value may include a disturbance term to represent the effects of uncertainty or noise, or a 

discrete process such as the turnover of an organizational member may be modeled by an 

equation that gives the probability or rate of turnover.  

The model's functions typically require the investigator to set some parameters so 

that computations can be carried out. For example, in the Harrison and Carroll (1991; 

2006) simulation of cultural transmission in organizations, one process is the arrival of 

new members of the organization in each time period. These new members arrive at a 

certain rate with certain enculturation (fitness) scores. The arrival rate, as well as the 

mean and standard deviation of the enculturation scores of the pool from which new 



- 16 - 

members are selected, are all parameters of the process. 

The experimental design consists of five elements: the initial conditions, the time 

structure, the outcome determination, iterations, and variations. The computational model 

specifies how the system changes from time t to time t+1, but not the state of the system 

at time 0, so initial conditions must be specified. For example, in the cultural 

transmission simulation, initial conditions include the number of members in the 

organization at the beginning of the simulation and their individual enculturation scores. 

The time structure sets the length of each simulation time period and the number of 

time periods in the simulation run. The length of the time period links the simulation to 

observation; for example, it may be desirable for turnover rates in a simulation to 

correspond the realistic turnover rates for an organization. Once the time period is 

determined, the number of time periods to be simulated can be set to obtain the desired 

total duration of the simulation run, or a rule may be established to stop the run once 

certain conditions (e.g., system equilibrium) are met.  

The outcomes of interest are often some function of the behavior of the system, and 

need to be calculated from system variables. Outcomes may be calculated for each time 

period or only at the end of the run, depending on the simulation's purpose. In the cultural 

transmission simulation, the outcomes of interest were the mean and standard deviation 

of the enculturation scores of the organizational members and the number of periods it 

took the system to reach equilibrium. 

In stochastic models, the simulation outcomes will vary somewhat from run to run 

depending on the random numbers generated, so the results of one run may not be 

representative of the average system behavior. To assess average system behavior as well 
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as variations in behavior, multiple iterations are necessary; that is, the simulation run 

must be repeated many times (using different random number streams) to determine the 

pattern of outcomes. 

 Finally, the entire simulation process described above may be repeated with 

different variations. For two reasons, both the parameter values and the initial conditions 

can be varied.  First, the behavior of the system under different conditions may be of 

interest; the examination of such differences is often a primary reason for conducting 

simulation experiments. In the cultural transmission simulation, for example, turnover 

rates of organizational members were varied to examine differences in system behavior 

under conditions of low turnover and high turnover. This type of variation is analogous to 

standard strategies for experimental design. In both simulations and laboratory 

experiments, the context can be controlled and manipulated to assess the effects of 

variations (Burton, 2003). Simulations obviously have disadvantages relative to 

laboratory experiments, since the “actors” are artificial agents rather than human subjects. 

But they also have some advantages, including perfect control (unobserved heterogeneity 

and unwanted influences are eliminated), less constraint on sample size, the ability to 

manage greater complexity in experimental design, and the ability to track precisely the 

behavioral steps leading to the outcomes of interest (the computer's memory is not 

subject to the biases of subjects' recollections and other problems of reconstructing 

causes for human and organizational behavior). As with laboratory experiments, sound 

experimental procedures are essential in designing simulation experiments.  

 The second reason for introducing variations involves examining how sensitive the 

behavior of the system is to the choices of parameter settings and initial conditions. If the 
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behavior does not change much with small variations in conditions, then the system's 

behavior is robust, increasing confidence in the simulation process. Alternatively, 

observing significant behavioral changes when conditions vary slightly may indicate 

discontinuities or bifurcation points due to nonlinearities in the model’s behavior, 

warranting further investigation and perhaps new insights. This type of variation is called 

sensitivity analysis. 

After the simulation runs are completed, the results may be subjected to further 

analysis. Simulations can produce a great deal of data for each variation, including the 

values of system variables and outcomes for each time period and summary statistics 

across iterations, as well as the parameter settings and initial condition settings. These 

data may be analyzed in the same manner as empirical data, with some caveats. Since 

interactive systems typically produce nonlinear behavior, as noted earlier, estimation 

using the general linear model may not be appropriate except for comparing the model 

findings with empirical work using linear models. Instead, nonlinear statistical tools or 

graphical analysis may be called for—and there is much room for the development of 

better techniques for nonlinear data analysis. Because simulation models can produce a 

wealth of data, statistical measures take on a different meaning than they do in the 

analysis of empirical data. For example, when appropriate statistical techniques are 

applied to simulated data, most variables in the model are likely to yield statistically 

significant coefficient estimates due to the large sample size. Accordingly, the usefulness 

of the estimated coefficients is usually to show the directions of the effects of variables, 

and significance tests mainly help in identifying variables that make no behavioral 

contributions.  
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A Simple Example: Coin Tossing 

A very simple example of how a simulation is carried out may be instructive at this 

point. Suppose you wish to use a simulation to find the probability of getting first a head 

and then a tail in two independent coin tosses. The processes of the computational model 

are coin tosses. Variable values are assigned by determining whether a toss is a head or a 

tail. Computationally, we can define a parameter p as the probability of a head and set it 

to some value between 0 and 1 (not necessarily assuming that the coin is “fair”). The 

simulation program can then call a random number generator for the uniform distribution, 

which will yield any number between 0 and 1 with equal probability, to produce a 

number. If this number is less than p, the program concludes that the toss was a head, 

otherwise a tail. (To see why this works, say we have a biased coin with p=.4; the 

probability that the generator will produce a number less than .4 is precisely .4, since all 

numbers between 0 and 1 are equally probable.) 

In the experimental design, no initial conditions need be specified since the 

outcome of the first toss depends only on the parameter p. The time structure is two 

periods, one for each toss (although in this example their length does not matter). The 

program can determine the outcome by examining the results of the run to see whether 

the first toss was a head and the second a tail. The run can be repeated many times with 

different random numbers supplied by the generator—say for 10,000 iterations—to 

determine the percentage of head-then-tail outcomes. Finally, variations can be 

introduced by changing the parameter p and repeating the entire process. Further analysis 

could consist of plotting the percentage of head-then-tail outcomes for different values of 

p to produce a graph of the relationship.  



- 20 - 

Comparison of Modes of Inquiry 

Differences in the three forms of scientific inquiry can be illustrated with the simple 

coin-tossing example. The question can be addressed deductively by using probability 

theory to derive the answer. It may be addressed empirically by performing a coin-toss 

experiment with many trials; this procedure is simple for p=.5, assuming that a normal 

coin is fair, but it may be difficult in practice to obtain coins with different p values. Or a 

simulation can be used to address the question computationally, as described above. 

Simulation is similar to theoretical derivation, or deduction, in a very fundamental 

way. Both approaches obtain results from a set of assumptions. The results are the logical 

and inevitable consequences of the assumptions, barring errors. If one accepts the 

assumptions, then one must also accept the results; put another way, the results are only 

as good as the assumptions. So a simulation may be thought of as a numerical proof or 

derivation. 

Simulations differ from deduction in three significant ways, however. We have 

already mentioned the first difference—simulations can examine the consequences of 

formal models computationally when derivations cannot be carried out because of 

analytical intractability. This is the primary reason that simulation methods are 

particularly useful for studying complex models. 

The second difference is more subtle. As discussed above, good formal models 

generally possess four advantageous features (Kreps, 1990): clarity, ease of 

comparability, logical power, and transparency. The first three advantages also apply to 

formal simulation models. But the fourth advantage, transparency, may not. It would 

seem to require that models be analytically tractable in order to trace the sequence of 
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reasoning connecting assumptions with conclusions, whether forward or backward. In 

simulations, the formal model may involve the complex interaction of multiple 

interdependent processes where outcomes emerge from the interactive processes but 

cannot be predicted or derived in advance. Even with the results in hand, it may not 

always be possible to understand how the sequence of process behaviors produced the 

results; this may be an intrinsic property of truly complex systems. Although the precise 

manner in which the theoretical processes specified in the model produce the results may 

not be clear, simulations might still inform theory and research by demonstrating a 

relationship between model assumptions and components, on the one hand, and system 

outcomes on the other. 

  The third difference between simulation and deduction involves the nature of the 

intuition of the investigator that shapes the formal model. A common misconception 

about mathematical deduction comes from the way formal derivations are presented. In 

the usual presentation, definitions and assumptions are laid out first, and these are then 

used to derive lemmas and theorems, suggesting a mechanical process whereby insights 

follow from sterile assumptions. An alternative view, which more closely resembles 

deductive work as we know it, holds that the initial insights of the scientist are contained 

in the theorems (Lakatos, 1976). Once the theorem embodying the insight is specified, 

the formalization enterprise then consists of attempting to identify assumptions that might 

be used to derive it. Because realistic assumptions may lead to intractable models, the 

theorist sometimes resorts to convenient but unrealistic ones. The point is that, although 

deductive work is presented as a sequence of reasoning from assumptions to theorems, 

the initial insight is often contained in the theorem rather than in the way the model is 
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constructed. 

The process of envisioning the result and then figuring out how to produce it is 

unlikely to succeed for many complex interactive models. Instead, we believe that the 

intuition of simulators is more likely to play a role in the model construction phase—

specifically in identifying the key processes thought to be relevant to the behaviors under 

study and in determining the form of interaction of these processes. To be more precise, 

we believe that many good simulations arise in contexts where the analyst has a valid 

insight about how certain behavioral or other processes interact with each other but 

cannot trace through the impact of the interactions because of the potential complexity. 

Of course simulators, like deductive theorists, can tinker with model assumptions to try to 

get desired results, but this is more difficult for simulations because it is less apparent 

how assumptions may affect the complex behavior of interactive processes.    

Types of Simulation Models 

While a number of typologies of simulation models have been proposed (e.g., 

Burton, 2003; Cohen & Cyert, 1965; Macy & Willer, 2002), it is perhaps helpful to 

discuss three commonly used types: (1) agent-based models; (2) systems dynamics 

models; and (3) cellular automata models. Although many current simulations in 

management theory use agent-based models, we will briefly describe the defining 

characteristics of each type of model and provide a few examples. 

1. Agent-based models. Agent-based models focus on modeling the behaviors of 

adaptive actors who make up a social system and who influence one another through their 

interactions (Macy & Willer, 2002; Parunak, Savit, & Riolo, 1998); the behavior of the 

system is an emergent property of the interaction of the agents. Examples include 
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individuals interacting in an organizational system, or organizations interacting in an 

industry. For instance, in the organizational culture simulation (Harrison & Carroll, 1991; 

2006), the agents consist of the members of an organization who influence each other’s 

enculturation and turnover behavior through social influence, and an emergent 

organizational property is the cultural heterogeneity of the organization. March (1991) 

models the learning behavior of individual and organizational agents to examine the 

effects of exploration and exploitation on organizational knowledge and competitive 

advantage. Strang and Macy (2001) examine cascades in the organizational adoption of 

fads by modeling the manner in which organizational agents are influenced by one 

another to adopt innovative practices. And Rivkin and Siggelkow (2003) model the 

decision behavior of top management agents to examine the interdependence of 

organizational design elements, organizational search and stability, and decision 

characteristics. In agent-based models, the model simulates the behaviors of the actors 

(agents) who make up a social system—including in particular how they interact to 

influence one another—and the outcomes of interest typically are the consequences of the 

agent behaviors for the social system as a whole. The behavior of the social system is not 

modeled directly; rather, the system’s behavior emerges from the interactive behaviors of 

its constituent agents.  

 2. Systems dynamics models. Systems dynamics models focus on modeling the 

behavior of the system as a whole, rather than modeling the behaviors of actors within the 

system (see Forrester, 1961). At the system level, these models simulate the processes 

that lead to changes in the system over time. Systems dynamics models are typically 

presented in diagrams of variables connected with arrows—including feedback loops—
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that show the directions of influence of variables on one another, and then each influence 

component is formalized. For example, Sastry (1997) studied discontinuous or 

punctuated organizational change by modeling organizational change as a function of 

organization-environment fit and of trial periods following reorientations during which 

the change process is suspended. Repenning (2002) examined organizational 

implementation of innovations by modeling the process whereby participants collectively 

develop commitment to newly adopted innovations. 

3. Cellular automata models. Cellular automata models are based on an n x n 

lattice, or grid, with each square in the grid representing a cell.3 The model specifies how 

each cell changes from being occupied or not (that is, an actor either occupies the cell or 

it is vacant) in each time period as a function of the characteristics of neighboring cells; 

in other words, influence is limited to local interactions. Since individual cells change 

through interaction with other cells, cellular automata models can be seen as a special 

case of agent-based models if cells are viewed as agents—but they differ fundamentally 

from agent-based models in that unoccupied or vacant cells still exercise influence on 

their neighbors. The cellular automata approach has been popularized by work on a wide 

range of topics at the Santa Fe Institute. Lomi and Larsen (1996) used cellular automata 

models to explore how localized competition can be linked to founding and mortality 

processes in an organizational population. 

 Agent-based models are usually specified using either equations or rules, or a 

combination of the two. Systems dynamics models typically use differential equations for 

their formalizations. And cellular automata models tend to be rule-based. But there is no 

                                                 
3 We discuss two-dimensional grids here, although higher-dimensional (or one-dimensional) “grids” can 
also be used. 
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intrinsic reason for a particular type of model to be formalized using either equations or 

rules. The choice of using equations, rules, or both depends on the nature of the processes 

being modeled and the preferences of the researcher.   

THE USES OF SIMULATION MODELING 

Once a simulation model has been developed, it can be used for a variety of 

research purposes. Axelrod (1997) identified three: 

Prediction 

Analysis of simulation output may reveal relationships among variables. These 

relationships can be viewed as predictions of the simulation model, or hypotheses that 

can perhaps be subjected to empirical testing. Even if some variables in the 

computational model cannot be easily observed, often the output variables can be. For 

example, in their computer simulation, Carley and Lin (1997) theorized about how 

organizations can design effective structures to mitigate the impact of information 

distortion. Empirical confirmation of a simulation's predictions provides indirect support 

for the theory embodied in the model of the underlying (unobserved) processes.  

Proof 

Axelrod discussed proofs in terms of “existence” proofs; a simulation can show that 

it is possible for the modeled processes to produce certain types of behavior. For 

example, Lant and Mezias (1992) showed that a learning model of organizational change 

can produce patterns of punctuated equilibria in organizations. This strategy can be used 

to examine the feasibility of models, and to demonstrate that the resulting system 

behaviors meet certain conditions (such as boundary conditions). 

Discovery  
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Simulations can be used to discover unexpected consequences of the interaction of 

simple processes. In a simulation of competition between populations of organizations, 

Carroll and Harrison (1994) discovered path-dependent effects that sometimes made it 

possible for structurally “weaker” populations to win out over populations that were 

competitively superior. 

In our view, Axelrod's list can be complemented by four additional uses for 

simulations: 

Explanation  

Frequently behaviors are observed but it is not clear what processes produce the 

behaviors. Specific underlying processes can be postulated and their consequences 

examined with a simulation; if the simulation outcomes fit well with the observed 

behaviors, then the postulated processes are shown to provide a plausible explanation for 

the behaviors (Mark, 2002). A simulation of R&D investment in innovation and imitation 

(Lee & Harrison, 2001) shows that the process of adaptive firm search over a stochastic 

landscape for returns to innovation and imitation can explain the emergence of strategic 

groups in an industry under some conditions. The explanatory use of simulations is 

related to the use of simulation as existence proof, but typically goes beyond just showing 

that it is possible for the model to produce certain outcomes and also illuminates the 

conditions under which such outcomes are produced. 

Critique  

Simulations can be used to examine the theoretical explanations for phenomena 

proposed by researchers, and to explore more parsimonious explanations for these 

phenomena (Denrell, 2004). This is similar to the explanatory use of simulation, except 
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that in this case, simulation is used to assess preexisting explanations and possibly to find 

simpler explanations. For example, Levinthal (1991) demonstrated that a simple random 

walk over capital levels is capable of producing declining age dependence in 

organizational mortality, without making any assumptions concerning internal 

organizational processes.  

Prescription  

A simulation may suggest a better mode of operation or method of organizing. 

Many simulations in operations research—queuing simulations, for example—indicate 

more efficient ways of organizing the work flow, which sometimes serve as a basis for 

changes in organizational procedures. Some prescriptive models may also be associated 

with a set of management ware, such as graphic user interfaces, database management 

and accesses for input and output, statistical analysis tools for the generated data, and 

output visualization tools. These tools are not a core part of a simulation model but in 

many applications are becoming critical to the usefulness of the model. 

Empirical Guidance  

The development of theories and models using simulation methods may also 

generate new empirical strategies. Establishing a formal model holds out the possibility 

of uncovering systematic connections between previously unconnected observables—a 

consequence of the logic of the model. In other words, tracing through and understanding 

the implied connections between variables may show an expected covariation between 

two or more observable variables that can be used as a hypothesis in systematic empirical 

research. Further, by demonstrating nonlinear relationships among observables, a 

simulation model may indicate the inappropriateness of standard statistical testing and 
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suggest alternative empirical approaches. 

Of course, it is possible for a simulation to serve multiple purposes, as may be clear 

from some of the above examples.  Indeed, a simulation project probably starts with one 

of these purposes in mind but, since the outcomes of simulating complex systems may 

yield surprises, the simulation could end up serving other purposes. For example, a 

simulation originally envisioned as a critique could lead to a discovery. In using their 

cultural transmission model to critique demographic research linking the tenure (length of 

service or LOS) distribution to organizational outcomes, Carroll and Harrison (1998) 

observed a “disruption effect” whereby employee entry and exit events frequently 

produce substantial fluctuations in measures of LOS distribution heterogeneity that are 

weakly or even negatively correlated with changes in measures of intraorganizational 

social process diversity. This discovery showed that the widely used assumption that 

heterogeneity in the LOS distribution tracks diversity effects based on social processes is 

often invalid. So the seven research purposes described above illustrate the variety of 

ways in which simulations can be used, but there could be overlap in the purposes of 

specific simulation studies.  

The role of simulation modeling in management research is summarized in Figure 

1. We have emphasized the link between complex problems and simulation modeling as a 

theory development process. Theory development and model construction are informed, 

of course, by previous theory and empirical research, and new theory and research feeds 

back into the process. Model construction is also linked to computational technology: 

technology provides the means to implement and run the models, and also constrains 

computational possibilities because of limitations on computer speed, storage, and 
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programming features (constraints which are, fortunately, loosening with technological 

advances).  

__________________ 

Insert Figure 1 here 
__________________ 

 
SOME ISSUES IN SIMULATION RESEARCH 

What special issues are raised in simulation research? We address three sets of 

issues involved in the simulation research process: the degree of complexity in simulation 

models, empirical grounding of simulations, and some problems and limitations of 

simulation work. 

Model Complexity 

Construction of a simulation model involves a tension between simplicity and 

elaboration. When we give talks on our simulations, a frequent question (perhaps the 

most frequent) is, “Why don't you add variable X to the model?” Undoubtedly, a model 

can be made more realistic by adding more variables or processes. At the same time, it 

usually becomes more difficult to understand what drives the results in more complex 

models. As a model of an organization is made more elaborate or more realistic, the more 

it comes to resemble a real organization, including aspects of the organization’s 

incomprehensibility and indescribability (Starbuck, 1976; Weick, 1979). 

For theory development purposes, the objective is to construct a model based on a 

simplified abstraction of a system—guided by the purpose of the simulation study—that 

retains the key elements of the relevant processes without unduly complicating the model 

(Burton & Obel, 1995). According to Nelson and Winter (1982: 402), “willingness to 
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recognize complexity is not an unmitigated virtue. Models in economics must be greatly 

simplified abstractions of the situation they are intended to illuminate; they must be 

understandable and the logic must have certain transparency. Artful simplification is the 

hallmark of skillful modeling.” Axelrod (1997) suggests the KISS principle—keep it 

simple, stupid. The simpler the model, the easier it is to gain insight into the causal 

processes at work.  

This is sound advice, but is more appropriate for some simulation uses than for 

others. The findings from simple models help in understanding the phenomenon studied 

to the extent that the focal processes play an important role in influencing it. The 

downside of this approach is that important elements may be inadvertently excluded from 

the model, including some elements that interact with the simplified model in important 

ways, limiting the usefulness of the insights for understanding the system's behavior. Of 

course, it is not really possible in models of complex interactions to determine what is 

important without actually modeling and testing the omitted processes. Deciding which 

processes are relevant is part of the theoretical exercise of model construction, and the 

intuition and objectives of the modeler determine what is included in the model. So the 

applicability of the KISS principle depends to some extent on the nature of the 

phenomenon under investigation and on the investigator; in modeling multiple interactive 

processes, a delicate balance must be struck between keeping the model simple and 

including enough elements to get adequate leverage for understanding the behaviors of 

interest.  This might be considered part of the “art of simulation.” 

A simulation-based research program may start with a simple model and then 

elaborate it. This might be referred to as a building block approach, and amounts to 
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adding complexity in a stepwise fashion. It enables the researcher to understand the 

behaviors of simple models and then to study the consequences of extending them. 

Research programs using the building block approach often produce a series of articles; 

as with other forms of programmatic research, a full understanding and appreciation of 

later articles in the program may depend on familiarity with the earlier ones, since 

complete details of the program’s history cannot be repeated in each article. But as the 

complexity of the underlying model increases, it becomes increasingly difficult to 

interpret the findings. 

Simulations sometimes have purposes other than purely the development of 

theory. They may seek to develop realistic models of behavior that can be applied, for 

example, to policy analysis or to prescriptions for managing organizational processes. 

These simulations tend to use a building block approach. One example is the Virtual 

Design Team (VDT) platform (Jin & Levitt, 1996; Levitt et al., 1994; Levitt at al., 1999), 

which achieved high realism and has allowed these researchers to apply their work to a 

broad set of real world projects, including risk analysis for the U.S. space shuttle 

program. 

Model Grounding 
 

Simulation experiments are artificial in that they are based on computer models and 

their data are generated by a computer program. Artificiality naturally prompts the 

question of how the simulation relates to real-world behavior. There are several 

possibilities. The model's processes could be based on empirical work; for example, in a 

simulation of competing populations (Carroll & Harrison, 1994), both the model's 

functional forms and their parameter settings were based on empirical studies. The only 
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ungrounded parameters were the competition coefficients, which were systematically 

varied to demonstrate that the basic findings of the simulation did not depend on the 

specific settings. In many cases, formal models with empirical estimates are not 

available, but empirical work can still provide much information for model construction, 

and variations and sensitivity analysis can be used to examine the robustness of the 

results.  

Empirical grounding can also be established through the results of the simulation. 

The results can be compared to empirical work, as was the case with the simulation of 

network activation during crises (Lin, 2002). Alternatively, the simulation results can 

serve as a basis for subsequent empirical work to assess their correspondence with 

observable behavior. Empirical feedback of this nature can also aid in determining an 

appropriate level of model complexity. 

The type of grounding may differ with the purpose of the simulation. For a 

simulation used for prescription, grounding of the processes increases the likelihood that 

the results will lead to useful applications. For predictive purposes, empirical testing of 

the results is an appropriate form of grounding. Still other uses may involve grounding of 

both the processes and the results; for example, Carley (1996) demonstrated the validity 

of her computer simulation model by exploring empirical evidence for both the processes 

and the results. 

In our opinion, however, simulation can also be a valuable research tool even 

when grounding is not possible. Simulations can be used to explore the consequences of 

theoretically derived processes, for example, even if the outcomes cannot be readily 

assessed empirically. This may be viewed as a form of discovery, and is characteristic of 
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much theoretical work in both the natural and social sciences. For example, Wolfgang 

Pauli predicted the existence of the neutrino in 1931 using theoretical methods, although 

there was no realistic prospect at the time of observing this hypothetical particle. One 

would hope, of course, that theoretical work would eventually lead to some empirical 

validation (the neutrino was discovered in 1956 using advanced experimental methods, at 

which time Pauli was awarded the Nobel Prize for his prediction). Purely theoretical 

simulation work should not be avoided simply because grounding is not available; it is 

still a legitimate scientific endeavor with the potential to make important contributions to 

management theory (but needs to be regarded as purely theoretical). 

Problems and Limitations 
 

Simulation-based research, like other research methodologies, has problems and 

shortcomings. Obviously, simulation work can be poorly done, articles can be poorly 

written, and theoretical justifications can be inadequate. And like formal modeling in 

general, simulation models may not be specified in a way that convincingly captures the 

essence of the underlying theoretical reasoning. But simulations have other problems and 

limitations that are particularly salient for simulation research. Some of these issues have 

been addresses earlier, and others will be taken up in this section. 

One issue involves presentation of the model. In some articles, the modeling and 

experimental structures are not presented in sufficient detail to provide understanding of 

what was actually done, making it impossible to evaluate the work and to develop any 

level of confidence in the conclusions. In other cases, the researcher may fail to conduct 

enough analysis to illuminate the relationships implied by the model. Ideally, problems of 

this nature would be addressed in the review process. But when an article with inadequate 
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description or analysis is published, the reader must decide what if any weighting should 

be given to its claims. 

A special set of issues emanates from the fact that the consequences of the model 

are determined by writing and running computer programs. The most obvious problem is 

that programming errors (bugs) can occur—management simulators are as vulnerable to 

this problem as the teams of computer scientists at NASA who made errors in the 

software for one of the Martian probes. Bugs in the program may not be obvious and can 

produce spurious results. Eliminating bugs is a major concern of simulators, who may 

conduct a variety of tests to ensure that the program is operating appropriately, but some 

researchers are more conscientious that others in this respect, and as with other 

methodologies, even the best researchers can still make mistakes. The ultimate test is 

whether other simulators can replicate the simulation findings. This requires that the 

original researchers provide sufficient detail of the simulation—or make the actual 

computer code available—which is often not the case, and unfortunately, incentives to 

attempt replications are lacking.  

A related potential problem arises from the translation of the formal model into 

computer code. Even with a clearly specified formal model, there may be choices for how 

the code is written. For example, if three interdependent processes are involved in the 

model, and since the computer executes instructions sequentially, the order in which 

these three processes are carried out in a given time period may make a difference in the 

results. Different researchers could conceivably write different code and get different 

results using the same formal model. Particularly for simulation work with important 

theoretical implications, it is risky to put too much confidence in the findings of one 
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article and independent verification is called for (as with findings using other 

methodologies).  

Independent verification has been attempted for some important simulation 

work—for example, Cohen, March, and Olsen’s (1972) garbage can model and Axelrod’s 

(1984) tit-for-tat work—with mixed results. Failure to replicate a finding does not 

necessarily mean that it is wrong, however. It may be that the original finding only holds 

under certain conditions or only for certain ways of operationalizing the formal model. So 

efforts of this type can help to extend and refine theory in addition to weeding out errant 

results. 

 A final set of issue concerns the inferences drawn from simulation findings. 

Simulation experiments vary model parameters in an attempt to assess the model’s 

behavior over a range of conditions. While it can be tempting to generalize to other 

conditions, the simulation findings are only demonstrated for the region of parameter 

space examined experimentally; generalizations beyond this space can at best be 

considered conjectures (while inferences based on the parameter values studied can be 

considered hypotheses of the model). A further problem is associated with models of 

interdependent processes; since the complexity of the interactions may lead to nonlinear 

behavior, important effects such as discontinuities may be missed even within the 

parameter space examined if the parameter variations are not fine-grained enough (Kitts, 

2003). Lastly, it is difficult to make inferences about the relative strengths of the effects 

of different model components on the outcomes. These effects depend in part on the 

scaling of parameters and variables in the model and on the range of values examined; 

when these scales and ranges lack empirical grounding—and at least some do in almost 
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all simulation work—the strengths of component effects may not be comparable. With 

sufficient variation, simulation experiments can sort out which model effects matter and 

which do not, but comparisons of the relative strengths of effects with observable impacts 

may lack a substantive foundation.  

CONCLUSION 

Computer simulation can be a powerful way to do science. Simulation makes it 

possible to study problems that are not easily addressed, or may be impossible to address, 

with other scientific approaches. Because organizations are complex systems and many 

of their characteristics and behaviors are often inaccessible to researchers, especially over 

time, simulation can be a particularly useful research tool for management theorists. 

Simulation analysis offers a variety of benefits. It can be useful in developing 

theory and in guiding empirical work. It can provide insight into the operation of 

complex systems and can explore their behaviors. It can examine the consequences of 

theoretical arguments and assumptions, generate alternative explanations and hypotheses, 

and test the validity of explanations. By relying on formal modeling, simulation imposes 

theoretical rigor and promotes scientific progress. 

Simulation research, like any other research method, also suffers from problems and 

limitations. The value of simulation findings rests on the validity of the simulation model, 

which frequently must be constructed with little guidance from previous work and is 

prone to problems of misspecification. Simulation work can be technically demanding 

and susceptible to errors in computer programming. The data generated by simulations do 

not represent real observations, and techniques for their analysis are limited. And it is 

risky to attempt to generalize simulation findings to areas of the parameter space not 
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examined in the simulation. So claims based on simulation findings are necessarily 

qualified. 

The role of simulation is not well understood by much of the management research 

community. Simulation is a legitimate, disciplined, and powerful approach to scientific 

investigation, with the potential to make significant contributions to management theory. 

Properly used and kept in appropriate perspective, computer simulation constitutes a 

useful theoretical tool that opens up new research avenues. The computer simulations 

discussed in this article provide a sample of a future direction in management research, 

and many samples in the future of management research are likely to be generated by 

computer simulations. 

Only in the 1990s has simulation-based research appeared with any regularity in 

leading management journals. With the increasing acceptance of computer simulation as 

a legitimate research methodology, the rise in simulation-based journal articles, and the 

expanding number of newly-trained scholars using simulation techniques, computer 

simulation promises to play a major role in the future of management theory. 
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TABLE 1 
Proportions of Simulation Articles in Social Science Journals, 1994-2003 

________________________________________________________________________ 
 
Discipline  Journal               Proportion of Simulation Articlesa 
________________________________________________________________________ 
 
Management  Administrative Science Quarterly   .022 
   Academy of Management Journal   .003 
   Strategic Management Journal   .010 
   Organization Science     .037 
   Management Science     .236 
 
Sociology  American Sociological Review   .024 
   American Journal of Sociology   .024 

 
Psychology  Psychological Review     .378 
   Psychological Bulletin    .034 
 
Economics  American Economic Review    .073 
   Journal of Political Economy    .074 
 
Political Science American Journal of Political Science  .065 
   American Political Science Review   .047 
 
Total          .079 
________________________________________________________________________ 
 
 a Ten-year averages  



- 43 - 

 FIGURE 1 
The Interactive Process of Management Theory and Simulation Modeling 
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